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DeepTQ: Predictive TSN Switch Queue
Length Based on Deep Learning

Yanxin Jia1,3, Long Xu1,2,3(B), Wei Xiong1,2,3, Xin Wang4, Zhijun Shang4,
and Zijun Yuan1

1 3onedata Co., Ltd., Shenzhen, China
long.xu.rmit@gmail.com

2 Ministry of Education, School of Automation and the Key Laboratory
of Measurement and Control of Complex Systems of Engineering,

Southeast University, Nanjing, China
3 3onedata Qitong Co., Ltd., Shanghai, China

4 University of Chinese Academy of Sciences, Beijing, China

Abstract. With the rapid development of network technology, TSN
(Time-Sensitive Networking) is in the stage of rapid development. It
needs to ensure the deterministic transmission of time-sensitive flow,
further improve the network throughput, and meet the increasing traf-
fic demand. SDN (Software-Defined Networking) can realize the auto-
matic management of network resources by decoupling the control plane
and the data plane. Through global network information, it uses effi-
cient route scheduling to achieve load balancing and improve network
throughput. However, the prerequisite for route scheduling is that accu-
rately predict the queue length of TSN switch, so that route scheduling
can be carried out according to the predicted results. To address the
queue length prediction problem of TSN switch, DeepTQ (Predictive
TSN Switch Queue Length Based on Deep Learning) is proposed, which
predicts the queue length of TSN switches in the next time slot using
deep learning methods. It consists of the feature selection phase and the
model prediction phase. In DeepTQ, the feature selection phase uses the
Spearman rank correlation coefficient to remove redundant features in
the datasets. The model prediction phase uses an improved Transformer
Encoder and GRU (Gate Recurrent Unit) to construct the prediction
model. Simulation results demonstrate that DeepTQ achieves superior
performance compared to existing methods and individual components
contribute to its overall effectiveness.

Keywords: Time-Sensitive Networking · Gate Recurrent Unit ·
Transformer · Software-Defined Networking

1 Introduction

As Operation Technology (OT) and Information Technology (IT) continue to
advance, network applications require higher-quality traffic transmissions for
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
X. Li et al. (Eds.): CCSICC 2023, LNEE 1207, pp. 1–14, 2024.
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tasks such as industrial control, telemedicine surgery and etc. [1]. These applica-
tions demand end-to-end latency below 10 ms and jitter of the microsecond level.
However, issues such as complex fieldbus, different real-time requirements, and
transmission mechanisms have hindered IT-OT interaction [2]. To address these
problems, the IEEE 802.1 group developed Time-Sensitive Networking (TSN), a
set of link-layer communication standards that enable real-time, deterministic,
and compatible transmission of Ethernet, industrial control data, and Ethernet
data.

Multiple applications connected to the network will cause a sharp increase in
the data flow, and put more pressure on the network infrastructure. Considering
the sudden flow of packets, traditional routing algorithms cannot effectively avoid
network congestion. Developers have developed the concept of “Software-Defined
Networking” (SDN) to address the need for flexible networks. SDN can realize
the automatic management of network resources by decoupling the control plane
and the data plane. Through global network information, it uses efficient route
scheduling to achieve load balancing and improve network throughput. Wang
et al. [3] based on time-sensitive software-defined network (TSSDN) architec-
ture, use dimension reduction, feature selection, and LSTM (Long Short Term
Memory) prediction model to predict the queue length of TSN switch. Exper-
iments show that this method can obtain better experimental results. Yao et
al. [4] used machine learning methods to assist route load balancing. They used
dimensionality reduction, queue utilization prediction and route load balancing
to achieve route load balancing. The simulation results show that queue uti-
lization prediction is better than the traditional Bellman-Ford routing strategy.
In the above studies, the queue length of the switch is predicted, and then the
length is provided for the subsequent route scheduling.

The prediction of switch queue length depends on histroy information. To
improve the performance of the prediction model, this paper introduces Trans-
former and GRU two time series methods for learning. It is DeepTQ (Predictive
TSN Switch Queue Length Based on Deep Learning), which for predicting the
next time slot queue length of TSN switches based on SDN architecture. It col-
lects link information (such as queue length, throughtput etc.) of the entire net-
work from data plane and the SDN controller can make better routing decisions
and avoid network congestion, which leads to improved network performance and
reduced latency. The main contributions of this paper are summarized as follows:

1) This paper proposed a method DeepTQ to predict the queue length of TSN
switches in the next time slot based on SDN architecture. It combines an
improved Transformer Encoder and GRU, which is the first time such a com-
bination has been used for queue length prediction.

2) DeepTQ consists of two phases: the feature selection phase and the model pre-
diction phase. The feature selection phase filters out redundant features from
the link information collected in the data plane, while the model prediction
phase predicts the next time slot queue length of TSN switches.

3) The experiments conducted on datasets obtained by OMNET++ simulation
demonstrate that DeepTQ outperforms other baseline methods and achieves
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the best performance. DeepTQ can improve the maximum performance mea-
sure of MSE, MAE, and RMSE by up to 1.45%, 3.11%, and 3.70%, respec-
tively. Furthermore, the feature selection phase and the GRU in the model
prediction phase can also contribute to the overall performance improvement
of DeepTQ.

The paper is organized as follows. Section 2 introduces the background of
TSN and SDN. Section 3 introduces the proposed method DeepTQ, which
consists of two phases: the feature selection phase and the model prediction
phase. Section 4 introduces the implementation and evaluation, which specifi-
cally includes the collection of datasets, the parameter setting of the model,
the performance measure of the prediction model, and the experimental results
and ablation study of the DeepTQ. Section 5 concludes the paper and describes
future work.

2 Background

2.1 TSN

In the era of Industry 4.ch10, the information based on OT needs to interact with
the application software of IT [5], but there are many problems existing, such as
complex fieldbus, different real-time requirements, and different network trans-
mission mechanisms. To address these issues, the IEEE 802.1 working group lead
the development of a set of link-layer communication standards, namely TSN. It
can meet the real-time and determinism of industrial control and compatibility
with Ethernet to realize the mixed transmission of industrial control data and
Ethernet data [6].

To maintain compatibility with standard Ethernet, the TSN is built based
on IEEE 802.1Q Virtual Local Area Network (VLAN). The characteristics are
defined by inserting 4 bits in the standard Ethernet frame [7].

1) Tag Protocol Identifier is 0X810. It identifies the Ethernet supports 802.1Q
tag.

2) Priority Code Point defines 8 priority levels. Priority 0 is the lowest and used
for traditional best-effort traffic, priority 7 is the highest and used for critical
routing or network management functions [8].

3) Drop Eligible Indicator identifies the frame is discardable.
4) VLAN Identifier is the identification number of the VLAN network.

TSN will distinguish the importance of network traffic by priority and per-
form traffic scheduling and network configuration according to different applica-
tion scenarios.

2.2 SDN

Software-Defined Networking (SDN) is a programmable network architecture
that separates the control plane from the data plane. It consists of three parts:
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data plane, control plane, and application plane [9]. Among them, the bottom
layer is the data plane, which mainly composes the network device and data links
forming the basic forwarding network. The middle layer is the control plane,
which is the control center of the SDN system, mainly responsible for the gen-
eration and control of routes within the network and at the network boundary,
maintaining the network change state, etc. The top layer is the application plane,
which is mainly responsible for deploying various web applications developed by
users according to their needs.

In SDN controller, it implements the underlying hardware control and on-
demand provisioning of network resources through a programmable software
platform. Whenever a data flow comes to the switch, the routing algorithm on
the control plane starts planning the route and then generates a flow table that is
sent down to the switch to complete packet forwarding. According to the ideas of
Wang et al. [3], in this paper, the controller collects the switch’s real-time status
from the data plane and implements switch queue length prediction for the next
time slot. The control plane plans routes based on the prediction results and
selects the next-hop address to avoid network congestion, then generates flow
tables and sends them down to the switch to complete packet forwarding.

3 DeepTQ

In this paper, the proposed method DeepTQ consists of two phases: the feature
selection phase and the model prediction phase. The feature selection phase is
used to filter the network link information collected in the data plane, removing
redundant features and improving the performance of the prediction model. The
model prediction phase involves constructing the prediction model based on the
improved Transformer Encoder and GRU, which is used to achieve the prediction
of the next time slot queue length of TSN switches.

3.1 Feature Selection Phase

DeepTQ employs the Spearman rank correlation coefficient as the feature selec-
tion method, which is utilized to measure the correlation between two variables.
This method is advantageous because it does not impose any requirements on
the distribution of the original variables and is applicable to variables that do
not follow bivariate normal distribution, have unknown distributions, or lack
rank information [10]. It has been widely used in various disciplines [11] [12].

Suppose there are two variables X, Y , the number of them is n, and the
i-th values are Xi, Yi. Sort X, Y in ascending or descending order to obtain
two new sets x, y, respectively, where xi is the ranking of Xi in X and yi is the
ranking of Yi in Y . A ranking difference set d will be obtained by subtracting
the corresponding elements in the combined x, y, where d = x − y, 1 ≤ i ≤ n,
then the Spearman rank correlation coefficient between the random variables x,
y is defined as [13] [14]:
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ρ = 1 − 6
∑n

i d2i
n (n2 − 1)

(1)

The link information from TSN switches is utilized for feature selection.
Among these, the collected link information includes send, arrival, size, queue-
time, node, priority, interval, traffic, throughput, and y. A detailed description
is provided in Sect. 4.1 Table 2. Figure 1 depicts the Spearman correlation coeffi-
cient plot among these features. In the lower triangle, the correlation values are
displayed, while the upper triangle visualizes the ovals. The flatter the ellipse,
the darker the color, indicating that the absolute value of the correlation coef-
ficient is closer to 1. Following Jiarpakdee et al.’s recommendation [15] , the
feature selection phase eliminates features with an absolute value greater than
or equal to 0.7. Ultimately, the features used in the model prediction phase are
send, priority, interval, traffic, and y

Fig. 1. Spearman correlation coefficient plot

DeepTQ relies on data from the previous N moments when predicting the
switch queue length for the next time slot. Therefore, the input feature is repre-
sented as [Mf , Nt], where Mf represents the number of features, and Nt repre-
sents the factor time denoting the features from the previous N moments. The
specific configuration is detailed in Sect. 4.2.

3.2 Model Prediction Phase

After the aforementioned feature selection phase, the variables to be used for
modeling have been determined. These selected variables are utilized by the
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model constructed during the model prediction phase to predict the queue
length for the next time slot. DeepTQ implements model prediction based on
an improved Transformer Encoder with GRU. The specific structure is depicted
in Fig. 2. It is composed of N Encoders, and the structure of each layer of an
encoder is as follows.

Fig. 2. Structure of the prediction model Fig. 3. Multi-Head Attention [16]

1) Feed Forward. The Feed Forward layer consists of two fully-connected lay-
ers, where the hidden size is 1024, the activation function is ReLU , and the
output size is 128, the activation function is sigmoid. It maps the data to
the high-dimensional space and then to the low-dimensional space, which can
learn more represent the relationship between each feature. DeepTQ incor-
porates the Feed Forward layer after the input to enhance the performance
of subsequent attention mechanism learning.

2) Multi-head Attention.
Attention is a weighted summation mechanism that computes value based
on query. DeepTQ uses Multi-Head Attention in Transformer Encoder [16].
Where Attention is also known as scaled dot product attention, as shown in
the left of Fig. 3. The input Q, the dimension of K is dk, and the dimension
of V is dv. Firstly, the dot product of q and all keys is divided by the root
number dk, and then the softmax function is applied to get the weights of
all v. The calculation formula is

Attention (Q,K, V ) = softmax
(

QKT

√
dk

)

V. (2)

Vaswani et al. found that multi-head attention enables the model to learn
information from different representation subspace at different locations, and
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results in better model performance [16]. So, DeepTQ uses multi-head atten-
tion to merge h attentions with the structure shown on the right side of Fig. 3,
and the computational procedure is

Multi − Head (Q,K, V ) = Concat (head1, ..., headh) WQ, (3)

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
. (4)

DeepTQ uses different number of heads for different queues. See the Sect. 4.2.
3) Add & Norm.

Add & Norm use for residual connection followed by batch normalization.
Among them, the residual connection [17] [18] is to solve the problem of net-
work degradation and avoid the degradation of model performance due to
the increase of network depth. Batch normalization [19] is to do normaliza-
tion on the same dimensional features of batch samples, which can greatly
improve the model training speed and improve the network generalization
performance.

4) GRU.
Gate Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN)
that comprises two essential components: an update gate and a reset gate.
The update gate regulates the amount of state information that can be pre-
served from the previous time step. A larger value allows for more retention of
previous state information. On the other hand, the reset gate determines the
degree to which the current state is blended with the previous information.
A smaller value results in more information being disregarded [20].
In DeepTQ, the GRU consists of three layers. The first layer is a GRU with a
model dimension of 128 and ReLU activation function. The second layer is a
dropout layer with a dropout probability of 0.5. The third layer is the output
layer, which is a fully connected layer with one unit and a sigmoid activation
function.

5) Linear.
DeepTQ employs two linear layers to implement the learning of the model.
Linear 1 has 128 dimensions and utilizes the ReLU activation function. Linear
2 has 1 dimension and utilizes the sigmoid activation function, which is used
for the final prediction.

DeepTQ consists of N Encoders. The Encoder construct of Feed Forward,
Multi-Head Attention, Add & Norm, and GRU. Specifically, the input pass
through Feed Forward, Multi-Head Attention, and Add & Norm as the Atten-
tion learned information, the input pass through GRU, Add & Norm as the
GRU learned information. Then the two pieces of information are summed,
through Feed Forward, Add & Norm as the output of an Encoder. Accord-
ing to different training data, the number of Encoders can be adjusted by
itself, and finally, the Encoder output is passed into Linear to achieve the
final prediction.
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When DeepTQ is trained, its parameters are stored locally for the prediction
of TSN switch queue length in the controller of SDN. The SDN control plane
plans routes based on the prediction results and selects the next-hop address
to avoid network congestion, then generates flow tables and sends them down
to the switch to complete packet forwarding. In this way, the controller can
perform routing based on the real-time queue length, predict the switch queue
length to achieve load balancing globally, and avoid network congestion and low
bandwidth utilization.

4 Implementation and Evaluation

4.1 Datasets

This paper constructs the TSN simulation environment using OMNET++ [21].
It contains 5 hosts and 1 switch, inspired by the experiments of Wang et al. [3],
as shown in Fig. 4, where node 1 to node 4 randomly sends packets to node 5.
They send three types of flow (TT, AVB and BE) and other detail descriptions
as Table 1. To simulate the high-priority bursts data flow as much as possible,
the paper uses an exponential function to send the high-priority bursts data
flow at 2000us. The remaining priority of flow are simulated using normal and
uniform functions.

Fig. 4. Experimental simulation topology

Table 1. Description of datasets statistics

Node Send Interval Priority Queue Data Size

1 exponential(2000us) 7 1 17543

2 exponential(2000us) 6 2 1345

3 normal(2500us,1000us) 5 3 2491

4 uniform(1.25e-4 s,1.25E-3 s) 0 4 7175

Based on the simulation environment, the feature of collected datasets include
send, arrival, size, queuetime, node, priority, interval, traffic, throughput and y.
These features are explained as shown in the Table 2.
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Table 2. Detailed description of each feature

Feature Description

send Time when a packet sends the sending node

arrival Time when a packet reaches the receiving node

size Size of the sent packet

queuetime Time when a packet reaches the switch

node Number of the sending node

priority Priority of packets sent by the node

interval Difference between send and arrival

traffic Number of packets arriving at the switch in the previous time

throughput Number of successful packet transfers per unit time

y Number of packets in switch queue at moment

4.2 Setting

1) Datasets Split.
The datasets of different queues were split into training and test sets using
an 8:2 ratio. Since the change of queue length is in chronological order, the
first 80% data of the datasets uses as the training set and the last 20% data
uses as the test set according to the node send time. With this split, historical
data are used to predict new data, which is consistent with real application
scenarios.

2) Operating System Environment.
The proposed method runs on Windows 10 Operation System (CPU Intel(R)
Core(TM) I5-6300HQ and Memory is 24 GB).

3) Model Parameters.
The settings of the prediction model in the model prediction phase are as
follows.
a. Optimizer.

The model uses Adaptive Moment Estimation (Adam) optimization algo-
rithm to optimize the model parameters. Optimizer parameter settings
are consistent with Transformer and specific is β1 = 0.9, β2 = 0.98 and
ε = 10−9 [16].

b. Dropout.
The model apply dropout before data is added to the sublayer input and
normalized. The rate is 0.3.

c. Loss Function.
The model use MSE, the most commonly used function in regression
problems [3] [22], as the loss function.

d. Parameters.
The parameters of Deep TQ include the number of attention (num heads),
the number of Encoder layers (num layers), the number of training itera-
tion for all batches (epochs) and the features of the previous N moments
(factor time). According to the preliminary experimental exploration, the
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model set num heads=2, num layers=2 and epoch=3 in queue 1, queue
2 and queue 4. Due to the different data size, factor time of queue 1 and
queue 2 is 25 and factor time of queue 4 is 5. Set the parameters of queue
3 to num heads=8, num layers=6, epochs=10, and factor time=10.

4.3 Measure

DeepTQ uses to predict the queue length of TSN switches, which is a regression
problem. Therefore, this paper choose three performance measures commonly
used in regression problems to evaluate the performance of the method [3] [22].
In following formula, yi represents the real value, ŷi represents the predicted
value and m represents the size of samples.

MSE =
1
m

m∑

i=1

(yi − ŷi)
2
. (5)

MAE =
1
m

m∑

i=1

| (yi − ŷi) |. (6)

RMSE =

√
√
√
√ 1

m

m∑

i=1

(yi − ŷi)
2
. (7)

The value range of MSE (Mean Square Error), MAE (Mean Absolute Error),
and RMSE (Root Mean Square Error) is from 0 to infinity. The smaller the value,
the smaller the error between the real value and the predicted value, and the
better performance of the model.

4.4 Results

In previous research efforts, only the experiments conducted by Wang et al. [3]
were similar to the ones presented in this paper. They constructed a topology for
sending three types of data flow, and then used LSTM to predict switch queue
length. Based on this, this paper builds the same topology and uses LSTM as
a baseline. In particular, they used traffic type and queue length as input to
achieve the prediction of queue length in the next time slot.

To ensure the fairness of the experiment, the input of the factor time by
LSTM was kept consistent with that of DeepTQ, as detailed in Sect. 4.2. The
results of DeepTQ and the baseline LSTM are presented in Table 3, with the
best results highlighted in bold. As shown in the table, DeepTQ exhibits only a
slight improvement on queue 1, with an increase of only 0.01% in performance.
However, it shows significant improvements on the other three queues, with MSE
improving up to 1.45%, MAE up to 3.11%, and RMSE up to 3.70%.
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Table 3. The results of DeepTQ and baseline

Queue Method MSE (%) MAE(%) RMSE(%)

1

LSTM 4.01 15.7 20.02

DeepTQ 3.33 14.45 18.25

Improvement 0.68 1.25 1.77

2

LSTM 4.58 16.9 21.39

DeepTQ 3.13 13.79 17.69

Improvement 1.45 3.11 3.70

3

LSTM 6.17 19.4 24.84

DeepTQ 4.85 17.52 22.03

Improvement 1.32 1.88 2.81

4

LSTM 2.09 11.04 14.47

DeepTQ 2.08 11.18 14.43

Improvement 0.01 -0.15 0.04

4.5 Ablation Study

To verify the effectiveness of different components in DeepTQ, this paper con-
ducts ablation experiments on datasets. Table 4 shows measures of MSE, MAE
and RMSE. The table provides a comparison of the performance measures of
DeepTQ, DeepTQ without the feature selection phase and DeepTQ without the
GRU in the model prediction phase. DeepTQ-NF represents DeepTQ without
the feature selection phase, while TransE denotes DeepTQ without the GRU
and its associated Add & Norm layer in the model prediction phase. The best
performance is indicated in bold.

Table 4. The result of ablation study

Queue Method MSE (%) MAE(%) RMSE(%)

1

DeepTQ-NF 3.57 14.54 18.89

TransE 3.26 14.64 18.05

DeepTQ 3.33 14.45 18.25

2

DeepTQ-NF 5.69 17.52 23.86

TransE 5.02 16.47 22.41

DeepTQ 3.13 13.79 17.69

3

DeepTQ-NF 5.60 17.92 23.67

TransE 9.07 26.23 29.78

DeepTQ 4.85 17.52 22.03

4

DeepTQ-NF 2.29 12.10 15.12

TransE 2.08 11.08 14.42

DeepTQ 2.08 11.18 14.43
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Based on the results in the table, it can be concluded that:

1) The feature selection phase of DeepTQ is crucial in improving performance
measures across all queues. Notably, the most significant improvement can
be observed in queue 2, as indicated in Table 4. The MSE, MAE, and RMSE
metrics show increases of 2.56%, 3.73%, and 6.17%, respectively.

2) The inclusion of GRU in the model prediction phase also contributes to the
overall enhancement of model performance. While there are slight perfor-
mance variations in queues 1 and 4, these differences remain below 0.2%.
Considering the substantial improvements observed in other queues and the
relatively lower performance measures in queues 1 and 4, it can be concluded
that the incorporation of GRU positively impacts the overall performance of
DeepTQ.

5 Conclusion and Future Work

Through global network information, SDN can achieve load balancing and
improve network throughput using efficient route scheduling. However, the pre-
requisite for route scheduling is that accurately predict the queue length of TSN
switch. This paper proposed a method DeepTQ, which consists of two phases:
the feature selection phase and the model prediction phase. The feature selection
phase filters the network link information collected in the data plane to remove
redundant features and improve the performance of the prediction model. The
model prediction phase uses an improved Transformer Encoder and GRU to
construct the prediction model for the queue length of TSN switches in the next
time slot.

To evaluate the effectiveness of the proposed method, the paper simulates
a real network environment through OMNeT++ and uses three performance
measures (MSE, MAE, and RMSE) to evaluate the prediction model. The results
show that DeepTQ outperforms other methods, and the feature selection phase
and the GRU of the mode prediction phase can further improve the performance.
Specifically, DeepTQ achieves a model performance of 3.33%, 3.13%, 4.85%, and
2.08% for each queue in terms of MSE, 14.45%, 13.79%, 17.52%, and 11.18% for
each queue in terms of MAE, and 18.25%, 17.69%, 22.03%, and 14.43% for each
queue in terms of RMSE.

In future work, we plan to develop a general prediction model that can adapt
to different topologies and traffic flows and can be easily migrated to the corre-
sponding SDN controller.

Acknowledgment. The research was supported by the Shanghai Pujiang Program
(Grant No. 21PJ1422000) and National Key R&D Program of China (Grant No.
2022YFB290 1100).



DeepTQ 13

References

1. Wang, S., Yin, S., Lu, H., Zhang, J.: Survey of control and management mecha-
nisms for time-sensitive network. J. Netw. Inf. Secur. 7(6), 11 (2021)

2. Bello, L.-L., Steiner, W.: A perspective on IEEE time-sensitive networking for
industrial communication and automation systems. In: Proceedings of the IEEE,
vol. 107(6), pp. 1094–1120 (2019)

3. Wang, X., Shang, Z., Xia, C., Cui, S., Shao, S.: TSN switch queue length prediction
based on an improved LSTM network. In: Wireless Communications and Mobile
Computing, pp. 1–13 (2021)

4. Yao, H., Yuan, X., Zhang, P., Wang, J., Jiang, C., Guizani, M.: Machine learning
aided load balance routing scheme considering queue utilization. In: IEEE Trans-
actions on Vehicular Technology, vol. 68(8), pp. 7987–7999 (2019)

5. Deng, L., Xie, G., Liu, H., Han, Y., Li, R., Li, K.: A survey of real-time ether-
net modeling and design methodologies: from AVB to TSN. In: ACM Computing
Surveys (CSUR), vol. 55(2), pp. 1–36 (2022)

6. Li, Z., Yang, S., Yu, J., Deng, Y., Wan, H.: Survey of deterministic transmission
techniques in time-sensitive networks. J. Softw. 33(11), 4334–4335 (2022)

7. Song, H.-Z.: A survey of time-sensitive network technologies. In: Automatic Mea-
suring Instrument, vol. 41(2), pp. 1–9 (2020)

8. IEEE standard for local and metropolitan area networks – bridges and bridged net-
works – amendment 26: frame preemption. IEEE Std 802.1Qbu-2016 (Amendment
to IEEE Std 802.1Q-2014) (2016)

9. Fei, H., Qi, H., Ke, B.: A survey on software-defined network and OpenFlow: from
concept to implementation. In: IEEE Communications Surveys & Tutorials, vol.
16(4), pp. 2181–2206 (2014)

10. Bishara, A.-J., Hittner, J.-B.: Testing the significance of a correlation with non-
normal data: comparison of pearson, spearman, transformation, and resampling
approaches. In: Psychological methods, vol. 17(3), pp. 399 (2012)

11. Liu, D., Cho, S.-Y., Sun, D.-M., Qiu, Z.-D.: A Spearman correlation coefficient
ranking for matching-score fusion on speaker recognition. In: TENCON 2010-2010
IEEE Region 10 Conference, pp. 756–41. IEEE (2010)

12. Xiao, C., Ye, J., Esteves, R.-M., Rong, C.: Using Spearman’s correlation coefficients
for exploratory data analysis on big dataset, vol. 28(14), pp. 3866–3878 (2016)

13. Spearman, C.: ‘footrule’ for measuring correlation. British J. Psychol. vol. 2(1),
pp. 89 (1906)

14. Spearman, C.: The proof and measurement of association between two things. Int.
J. Epidemiol. 39(5), 1137–1150 (2010)

15. Jiarpakdee, J., Tantithamthavorn, C., Treude, C.: Autospearman: automatically
mitigating correlated metrics for interpreting defect models. In: arXiv preprint
arXiv:1806.09791 (2018)

16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

18. Orhan, A.-E., Pitkow, X.: Skip connections eliminate singularities. In: arXiv
preprint arXiv:1701.09175 (2017)

19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456. PMLR (2015)

http://arxiv.org/abs/1806.09791
http://arxiv.org/abs/1701.09175


14 Y. Jia et al.

20. Cho, K., Van M.-B., Bahdanau, D., Bengio, Y.: On the properties of neural machine
translation: encoder-decoder approaches. In: arXiv preprint arXiv:1409.1259 (2014)

21. Falk, J., et al.: NeSTiNg: simulating IEEE time-sensitive networking (TSN) in
OmNet++. In: 2019 International Conference on Networked Systems (NetSys),
pp. 1–8. IEEE (2019)

22. Chicco, D., Warrens, M.-J., Jurman, G.: The coefficient of determination r-squared
is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression
analysis evaluation. PeerJ Comput. Sci. 7(e623) (2021)

http://arxiv.org/abs/1409.1259


Multiplayer Pursuit-Evasion Differential
Games with Uncertain Perceptions: A
Cumulative Prospect Theory Approach

Hao Yang(B), Shi Lu, and Bin Jiang

College of Automation Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

haoyang@nuaa.edu.cn

Abstract. This paper establishes, for the first time, a Cumulative
Prospect Theory (CPT)-based multiplayer pursuit-evasion (MPE) differ-
ential game framework to capture the subjective irrationality of pursuers
and evaders in perceiving adversaries’ policies. In the case of determin-
istic perceptions, a Nash policy can be designed through the MPE dif-
ferential game formulation. When policy iterations follow a probability
distribution, CPT is incorporated into the conventional MPE differential
game to model human prospects under risk preference and probability
sensitivity. Subsequently, a perceived Nash policy can be designed, aim-
ing to maximize the prospect function. The effectiveness of the proposed
results is demonstrated by a numerical example.

Keywords: MPE differential game · uncertain perceptions · CPT ·
Nash policy

1 Introduction

Differential game theory has emerged as a valuable tool for analyzing strategic
interactions in dynamic systems involving multiple players. Within this frame-
work, the study of MPE differential game has garnered significant attention due
to its potential applications in various fields [1,2].

The key problem of MPE differential game lies in the formulation of control
strategies and decision-making processes for pursuers and evaders, aiming to
achieve conflicting objectives of pursuit and evasion [1]. The analysis and reso-
lution of MPE differential game involve the utilization of diverse methodologies
including optimal control theory, dynamic programming, and Nash equilibrium
concepts [2]. However, it is noteworthy that in many existing studies, the pol-
icy design process predominantly concentrates on deterministic updates [1,2].
Nevertheless, the presence of various factors, such as motion constraints, sensing
capabilities, and environmental knowledge, may lead to deviations from the opti-
mal policies and prompt pursuers and evaders to select the non-optimal policies
[3,4]. Using probability function captures the likelihood of choosing each policy
is a conventional method [5].
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In MPE differential games, perception is a critical tool to design policies
of pursuers and evaders. Especially, this method offers a viable solution to the
challenge of players not being able to directly observe adversaries’ policies. An
advanced perceptual model is “k-level thinking model” leveraged in the work
of [6], where players design their current policies by perceiving their oppo-
nent’s next strategy. Under deterministic perceptions, pursuers and evaders can
make the optimal policy based on the actual performance function [7]. However,
for the probabilistic decision, it is essential to consider subjective irrationality
among pursuers and evaders during maximizing the expected performance. Ele-
ments such as risk preference and probability sensitivity play a crucial role in
this context [8]. Actually, pursuers prefer to capture evaders with lower perfor-
mance costs, while simultaneously underestimate large probabilities associated
with these capturing policies. On the contrary, pursuers detest the capture with
higher performance costs, coupled with an overestimation of the small probabili-
ties associated with such policies. Evaders have an inverse pattern of preferences.
With risk preference and probability sensitivity, players’ prospects can be evalu-
ated by using CPT rather than relying solely on the conventional expected oper-
ator [9]. Although several studies have applied CPT to engineering problems to
highlight situations where actual results deviate from theoretical expectations,
to the best of my knowledge, there is currently a lack of research exploring sub-
jective irrationality in MPE differential games.

Drawing from the aforementioned observations, this paper, for the first time,
incorporates CPT into the framework of MPE differential game, with the aim of
capturing subjective irrationality in the context of probabilistic perceptions. By
considering both the optimal and worst policies under deterministic perceptions,
a prospect function is formulated to explore the optimal perceived policy under
uncertain perceptions. The main contributions are summarized as:

1) In the presence of probabilistic perceptions, a CPT-based MPE differential
game is constructed to capture the risk preference and probability sensitivity
of pursuers and evaders, in which a specialized expectation operator is applied
to evaluate the expected prospect value.

2) The difficulty of optimizing the complex prospect function is addressed by
reformulating it as the search for a policy that maximizes or minimizes the
weighting sum of the optimal and worst performances, and eventually, the
optimal perceived policy is designed by solving coupled Riccati equations.

Notations: R represents the set of real values; Rn represents the set of n-
dimensional real vectors; Rn×m represents the set of n × m-dimensional real
matrices; |N | represents the number of elements in the set N ; ż represents the
time derivation of z; ∇V (z) and ∂V (z)

∂z represent the partial derivation of the
function V (z) with respect to z; zT represents the transposition of z.

2 Preliminaries

In this section, the main problems will be formulated after describing a
perception-based MPE differential game model, probabilistic decision model.
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2.1 MPE Differential Games

Consider MPE differential game with N1 pursuers and N2 evaders. The dynamic
of each pursuer and evader satisfies{

żi,x = vi,x,

żi,y = vi,y,
(1)

where zi,x, zi,y ∈ R represent the position of player i in the coordinate plane R2,
and vi,x, vi,y ∈ R represent the speed along the x-axis and y-axis, respectively.
Let zi := {zi,x, zi,y} and vi := {vi,x, vi,y}. Then, the augmented system for all
players can be rewritten as

ż = Bx, z(0) = z0. (2)

where z := {z1, · · · , zN} ∈ RN is the system state, x := {v1, · · · , vN} ∈ RN

is the control policy of pursuers and evaders, where N is the number of all
players. The matrix B = I is the input matrix with the appropriate dimension.
Obviously, the system (2) is controllable. In order to distinguish pursuers and
evaders, the system (2) is rewritten as

ż = B1u + B2v, z(0) = z0. (3)

u := {v1, · · · , vN1} ∈ RN1 and v := {vN1+1, · · · , vN} ∈ RN2 are control policies
of pursuers and evaders, respectively. The matrices B1 and B2 are input matrices
with appropriate dimensions. The goal of pursuers is to minimize the distance
between themselves and evaders, meanwhile, to keep as close as possible with
their neighboring pursuers in order to achieve team-cooperation, while evaders
desire to maximize the distance. Therefore, the performance index is defined by

J(z, u, v) =
∫ tf

0

[ ∑
i∈N1

∑
j∈Ni

(zi − zj)T Pij(zi − zj) + uT Ru − vT Sv
]
dt

=
∫ tf

0

[zT Pz + uT Ru − vT Sv]dt,

(4)

where tf > 0 is the terminal time, matrices P ≥ 0, R > 0 and S > 0. Due to the
coupled nature of the performance index and the system dynamics, there is a
plethora of different approaches to the “solution” of a differential game. The most
common one, which constitutes an equilibrium concept, i.e., the pure-strategy
Nash equilibrium (NE) solution.

Definition 1. (NE) A tuple of input policies (u∗, v∗) constitutes a Nash equi-
librium of MPE differential game if it satisfies J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗)
for any policies u and v. ��

To ensure the designed policy within a desired performance range, an under-
lying assumption is introduced as follows. This assumption serves two primary
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purposes: firstly, it ensures that the designed policy adheres to the predefined
performance criteria, and secondly, it mitigates the issue of gain matrix param-
eter explosion during designing the worst policies for pursuers and evaders, as
discussed in the subsequent sections.

Assumption 1 The performance J(u, v) ∈ [a, b], where a, b ∈ R+ with a ≤
J(u∗, v∗) ≤ b. ��

Based on “k-level thinking model” [6], one-step perception model is intro-
duced to show the progressiveness of the decision process, wherein players for-
mulate their current policies by perceiving next policies of adversaries, essentially
employing a “think of what you think” strategy. This basic one-step model can
also be extended to multi-steps perception further. The subsequent mathemati-
cal formulation of one-step perception is presented as follows.⎧⎪⎨

⎪⎩
N1 : min

u(k+1)
J(u(k), v(k + 1)|v(k)),

N2 : max
v(k+1)

J(u(k + 1)|u(k), v(k)),
(5)

where v(k + 1)|v(k) and u(k + 1)|u(k) represent the policy prediction for adver-
saries under the current policy.

2.2 Probabilistic Decision-Making

Consider that pursuers N2 update the policy u(k) to u(k +1) with a probability
defined as

p1(u(k + 1)|u(k), v(k), u(k + 1) ∈ ψ1(z, v(k))),

where the policy set ψ1(z, v(k)) := {u, s.t.J(u, v(k)) ≤ z}, i.e., the policy u
ensures that the performance of pursuers remains at or below a specified variable
z ∈ R, given the fixed evaders’ policy v(k). Evaders N2 update the policy v(k)
to v(k + 1) with a probability defined as

p2(v(k + 1)|v(k), u(k), v(k + 1) ∈ ψ2(z, u(k))),

where the policy set ψ2(z, u(k)) := {v, s.t.J(u(k), v) ≥ z}, i.e.,the policy v
ensures that the performance of evaders remains at or above a specified vari-
able z ∈ R, given the fixed pursuers’ policy u(k). Based one-step perception
model, the design of policies need to perceive the probability distributions of
adversaries’ policies, i.e., probabilistic perceptions.

2.3 Problem Formulations

Following the statement in Sect. 1, the risk preference and probability sensitivity
can not be neglected in the presence of probabilistic perceptions. Therefore, the



Multiplayer Pursuit-Evasion Differential Games 19

significant challenge lies in incorporating subjective irrationality into perception-
based MPE differential game and establishing a suitable evaluation framework.
Furthermore, the subsequent task of designing the optimal perceived policy
presents its own set of complexities. The specific problems can be described
as follows:

Problems : Consider MPE differential game subject to (3) and (4), wherein one-
step perception model (5) and probabilistic decision model are incorporated. The
primary objectives of this paper are twofold:

1) To establish an expected prospect function that effectively captures the risk
preference and probability sensitivity in uncertain perceptions;

2) To optimize the complex prospect function with the aim of designing the
optimal perceived policy for both pursuers and evaders.

3 The Optimal and Worst Policies Under Deterministic
Perceptions

In this section, the optimal and worst policies are designed under deterministic
perceptions to provide some convenience for seeking the optimal perceived policy
in uncertain perceptions.

Following methods from the theory of optimal control, the optimal policy
for pursuers can be designed as u∗

min = −R−1BT
1 P1(t)z. Suppose that evaders’

policy satisfies v = S−1B2P̄1(t)z. Then, the matrix P1 satisfies Riccati equation

− Ṗ1 = P − P1B
T
1 R−1B1P1 − P̄1B

T
2 S−1B2P̄1 + 2P1B

T
1 S−1B2P̄1. (6)

On the other hand, we can design the worst policy for pursuers as u∗
max =

R−1BT
1 P2z, subject to (3) and

J(u∗
max, v) = b. (7)

Similarly, the optimal policy for evaders can be designed as v∗
max =

S−1BT
2 P3(t)z. Suppose that pursuers’ policy satisfies u = −R−1BT

1 P̄3(t)z. Then,
the matrix P3(t) satisfies Riccati equation

− Ṗ3 = −P + P3B
T
2 S−1B2P3 + P̄3B

T
1 R−1B1P̄3 − 2P3B

T
2 R−1B1P̄3. (8)

Besides, the worst policy can be designed as v∗
min = −S−1BT

2 P4z, subject to (3)
and

J(u, vmin) = a. (9)

Under deterministic perceptions, the update of policy still depends on the per-
formance function J(z(0), u, v), so the design process of the optimal policy is the
same as that without perceptions.

Based on the above statement, the Nash policy (u∗, v∗) satisfies

u∗ = −R−1BT
1 P5(t)z, (10)

v∗ = S−1BT
2 P15(t)z, (11)


