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Attention Scheduler Based
on Reinforcement Learning
for Multi-robot System

Kun Jiang1, Lingyue Kong1, and Lu Dong2(B)

1 School of Automation, Southeast University, Nanjing, China
2 School of Cyber Science and Engineering, Southeast University, Nanjing, China

ldong90@seu.edu.cn

Abstract. In a manufacturing job shop, many machines demand the
assistance of auxiliary robots, such as supplement raw materials. In order
to balance energy saving and effective scheduling, auxiliary robots have
to understand the urgency of tasks and plan a safe and stable working
path in the job shop. However, previous works based on exact methods
and approximation methods suffer from many realistic constraints, such
as complex factory environments and non-deterministic polynomial (NP)
characteristics. To address the shortcomings of those works, we propose
an attention scheduling (Att-Sched) module for Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) framework. Instead of hand-crafted
function-based algorithms, we leverage MADDPG to tackle nonlinear and
NP characteristics between robots and machines with the job shops. To
capture the spatial relationships between robots and learn prioritization
dispatching rules respectively, we employ the attention mechanism for dis-
tinguishing the urgency of tasks. Through experiments on several simula-
tion environments of job shops, we demonstrate our approach can achieve
socially acceptable scheduling and fulfill the demands of machines.

Keywords: Multi-Robot system · reinforcement learning (RL) ·
attention · task assignment

1 Introduction

With the rapid development of artificial intelligence and information technolo-
gies, manufacturing-related technologies have also led to rapid social progresses
in recent years. More and more automated guided vehicles (AGVs) and other
mobile robots are adopted in job shops to ensure high efficiency and quality
requirement in the enterprise. Job shop scheduling problem (JSSP) is a challeng-
ing task as it should fulfill the efficient arrangement of the multi-robot system

This work was supported by National Key R&D Program of China (2021ZD0112700),
the National Natural Science Foundation of China (62173251), the “Zhishan” Scholars
Programs of Southeast University, the Fundamental Research Funds for the Central
Universities.
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Fig. 1. Schematic diagram of factory scene.

under many realistic constraints of a complex factory environment and non-
deterministic polynomial (NP) characteristics [17].

The importance and socio-economic benefits of JSSP attract many researchers
to this field. As illustrated in Fig. 1, there are three auxiliary robots and six work-
ing machines in the experimental environment. The tasks of the robots are to pro-
vide auxiliary work, such as supplementing raw materials and solving machine
stoppage, for machines, and every machine can send signals to the control unit
to request assistance with emergencies. Mathematics-based methods are divided
into exact methods and approximation methods for solving the NP features [29].
However, exact methods, like a branch and bound method [18], are only applica-
ble to small-scale JSSP for its complex mathematical restriction. Approximation
methods, including prioritization dispatching rules, can be applied to large-scale
JSSP, but it deviates from practical situations occasionally. Swarm intelligence
algorithms, including ant colony algorithm and genetic algorithm, have a great
performance in tackling NP characteristics and have been adopted to JSSP. Nev-
ertheless, the strong randomicity of swarm intelligence algorithms makes it inad-
equate for being stably applied in large-scale job shops.

Different from mathematics-based methods, reinforcement learning (RL) can
collect data interactively. In RL, agents take actions by the reward and punish-
ment obtained from the environment that is sparse, noisy, and delayed some-
times, without indicating how to accomplish tasks, which makes it can handle
non-deterministic polynomial characteristics easily. In this paper, we leverage
the characteristic of RL and propose our frame based on Multi-Agent Deep
Deterministic Policy Gradient (MADDPG).

To learn the spatial relationships between robots and arrange various prioriti-
zation for the tasks, we introduce an attention mechanism to our MADDPG and
propose our attention scheduling (Att-Sched) module. The attention mechanism
can learn spatial relationships and select important frames for word prediction and
has made progress in computer vision [19] and natural language processing [20].

We propose our algorithm under the framework of MADDPG to schedule the
multi-robot tasks. To capture spatial interaction between robots with machines
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and arrange various importance to the tasks, we introduce an attention mecha-
nism to our algorithm and propose an attention scheduling module (Att-Sched).
Through experiments in several simulation environments of the job shop scenes,
our algorithm is evaluated to balance the economically-acceptable schedule and
makespan. There are two fundamental contributions of this paper as follows: (i)
we propose to modal JSSP by MADDPG to learn long-term rewards and sched-
ule energy-savingly for many nonlinear cases without hand-crafted functions. (ii)
attention mechanism is introduced to arrange different importance to working
machines and distinguish the prioritization of tasks, which is socially acceptable
for job shops.

2 Preliminary Work

The multi-robot system has many excellent features, including efficiency and
flexibility, and has the capability of splitting a complicated task into multiple
smaller tasks for every robot, making it an effective solution to many com-
plex nonlinear tasks. The research on job shop control algorithms of multi-robot
scheduling has a long history [9]. Many swarm intelligence and artificial intel-
ligence algorithms have been adopted to multi-robot system [10]. Davis et al.
[11] proposed genetic-based algorithms (GA) for treating the non-deterministic
polynomial properties in job shop scheduling. Due to the limitation of premature
and local convergence features, GA has difficulty in dealing with complex JSSP.
To address the shortcomings of GA, Liu et al. [21] proposed a PSO-GA hybrid
algorithm, which was found to outperform regular standard particle swarm opti-
mization (PSO) and GA. In their works, crossover and mutation operators in
genetic algorithms are introduced to PSO to balance performance between the
convergence rate and the convergence precision. Furthermore, Chong et al. [12]
proposed a multi-agent genetic algorithm based on tabu search (MAGATS) for
improving resource utilization and production efficiency of enterprises.

Inspired by the development of deep learning and neural networks, many
deep learning-based algorithms, like DQN [13] and DDPG [14], are proposed to
promote the further evolution of reinforcement learning. Simultaneously, multi-
agent reinforcement learning (MARL) has also been further developed. The
MARL algorithm can be divided into the following four fields, Analysis of emer-
gent behaviors, Learning communication, and Learning cooperation. Under par-
tially observable Markov decision process settings, DIAL [16] was introduced to
pass messages between agents. In DIAL, centralized learning and Q-networks are
combined, making it possible that gradients to flow from one agent to another.
MADDPG [6] extended the DDPG algorithm to the multi-agent environment.
MADDPG assumes a critic network and an actor network for every agent and
assumes that each agent has its own independent reward function. It can simulta-
neously solve the collaborative problem, the competitive problem, and the mixed
problem in a Multi-agent system (MAS). The COMA model [15] tackles the
challenge of multi-agent credit assignment in the Dec-POMDP problem. COMA
follows the centralized training distributed execution (CTDE) framework based
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on actor-critic. Different from MADDPG, COMA uses GRU on actor-network
for better performance with local observation problems.

Inspired by the progress of MARL, many deep reinforcement learning-based
algorithms are proposed [22] to cope with the dynamic environments in the JSSP.
To obtain the capability of solving a wide variety of combinatorial optimization in
the Vehicle Routing Problem (VRP), Nazari et al. [23] presented an RL-based
end-to-end framework. The algorithm utilizes a self-driven learning procedure
to handle the robustness of various problems, which is proved to perform better
than the OR-Tools VRP engine [24]. Inspired by AlphaGo [26], Liu et al. [25]
proposed a parallel training method based on Actor-Critic structure, and asyn-
chronously update as well as DDPG. The model is evaluated on several JSSP
benchmarks from the OR library. The results indicate that the proposed model
is robust to both dynamic environments and static JSSP benchmark problems,
and is of great balance between makespan and execution time.

Attention mechanism has been widely applied in natural language process-
ing [7] and computer vision [8], especially for sequential models with Long Short
Term Memory (LSTM). With the prior knowledge that attention mechanisms
can handle spatial interaction between agents, Veličković et al. [26] applied
masked self-attention to graph convolution network [28] (GCN) to propose Graph
Attention Network (GAT). The GAT assigns different importance to various
nodes without costly matrix operations. The evaluated results show that GAT
can address the shortcomings of GCN, and it is efficient for spatial relationships
since it is parallelizable and can specify arbitrary weights to the neighbors. Fur-
thermore, Xu et al. [8] proposed their model based on soft and hard attention
mechanisms, and employ soft attention as the gate of LSTM. In their work,
attention can strengthen and weaken the extracted feature, making it flexible
for the surrounding information like human beings.

Naive use of MADDPG for JSSP can not specify the prioritization of tasks.
We introduce an attention mechanism to our algorithm as a scheduling module.
To the best of our knowledge, this is the first work that combines MADDPG
and attention to cope with JSSP problems.

Reinforcement Learning (RL). In our work, the task of AGVs scheduling is
considered as Markov decision processes(MDPs). An MDP is described by the
tuple 〈S,A, r, P, γ〉. The agent takes an action at ∈ A according to the policy
π : S → A and state st ∈ S and gets the reward rt ∈ R, and st transitions
to next state st+1 according to the transition probability P : S × A → S. The
reinforcement learning solves the MDP problem by optimizing the policy π to
maximize discounted reward Rt = E[

∑∞
k=0 γkrt+k|π], where γ ∈ [0, 1] denotes

the discount factor.

Deep Deterministic Policy Gradient (DDPG). Different from many algo-
rithms for stochastic strategies like stochastic policy gradient (SPG) and Deep
Q Network (DQN) [3], DDPG is an off-policy algorithm based on deterministic
policy gradient [2]. Policy gradient [4] methods aim at maximizing the objec-
tive J(θ) = Es∼pπ,a∼πθ

[R] according to the policy gradient ∇θJ(θ). Determin-
istic policy gradient is an extension of policy gradient, and DPG optimizes the
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deterministic policy μθ : S → A along the gradient direction of deterministic
policy ∇θJ(θ) = Es∼D[∇θμθ(a|s)∇aQμ(s, a)|a=μθ(s)]. Based on DPG, DDPG
[14] is expanded to actor-critic algorithm framework [5]. There are two deep
neural networks parameterized by θμ and θQ respectively, and named by actor
network and critic network. The function of the actor network is to select an
action according to deterministic policy a = μ(s|θμ), while the critic network
computes the value function of state-action and the gradient.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG). Multi-
agent reinforcement learning has been widely used to solve multi-agent schedul-
ing. Based on DDPG, MADDPG [6] utilizes an actor-critic model in the multi-
agent environment. A centralized critic takes the observations and actions of all
agents as input, and the decentralized actor receives information from their corre-
sponding agents. During the learning, the centralized action-value Qμ

i is updated
as L(θi) = Ex,a,r,x′ [(Qμ

i (x, a1, ..., aN )−y)2], y = ri+γQμ′
i (x′, a′

1, ..., a
′
N )|a′

j=μ′
j(oj),

where μ′ is the target policies with delayed parameters θ′
i, and oj is the obver-

cation of agent j. The state information x could consist of the observations of
all agents. And the gradient of k − th sub-policy μ

(k)
i is updated with respect to

θ
(k)
i as:

∇
θ
(k)
i

Je(μi) =
1
K

E
x,a∼D

(k)
i

[∇
θ
(k)
i

μ
(k)
i (oi)∇ai

Qμi(x, a1, ..., aN )|
ai=μ

(k)
i (oi)

].
(1)

where D
(k)
i is the experience replay buffer for agent i.

Attention. Self-attention is usually adopted to learn the relative weights and
importance between agents and targets. For each agent i, the query matrix
qi = fq(hi) and key matrix ki = fk(hi) are learned separately, where hi is the
agent state and f is the fully connected network with relu block. The attention

for each agent i is represented as Attention(qi, ki) = softmax(
qikiT

√
dk

), where dk

is the dimensionality of the matrix to ensure numerical stability.

3 Method

3.1 Architecture

In this section, we will propose a multi-robot task scheduling algorithm under
the framework of MADDPG and the idea of an attention mechanism. We call
it the attention scheduling algorithm (Att-Sched). The whole architecture is
shown in Fig. 2. Att-Sched consists of the following three components: (i) actor
network, (ii) attention scheduler, and (iii) critic network. The actor network out-
puts action based on its own observation oi and task T sch

i distributed from the
Attention Scheduler. The critic network is to evaluate the centralized action-
value function, its input includes actions at = (at

1, · · · , at
N ) and observations
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Environment

Actor 1 Actor N

Critic

Attention
Scheduler

Fig. 2. The entire architecture of Att-Sched.

ot = (ot
1, · · · , ot

N ) of all agents, as well as scheduled tasks from Attention Sched-
uler. Therefore, the actor networks in Att-Sched are updated by the following
gradient from critics:

∇
θ
(k)
i

Je(μi) =
1
K

E
x,a∼D

(k)
i

[∇
θ
(k)
i

μ
(k)
i (oi, T

sch
i )∇ai

Qμi(x, a1, ..., aN ,T sch)|
ai=μ

(k)
i (oi,T sch

i )
].

(2)

where T sch = (T sch
1 , · · · , T sch

N ). The Attention Scheduler is the most impor-
tant part of the Att-Sched algorithm, its input includes the dynamic states
st = (st

1, · · · , st
N ) of all agents, as well as the locations T t = (tt1, · · · , ttM ) and

prioritization pt = (pt
1, · · · , pt

M ) of all tasks. The sum of all elements in pt equals
0.

3.2 Attention Scheduler

We consider a multi-robot job shop scheduling system, the robot should supply
materials according to the prioritization of the machine’s demand for materials.
Therefore, the Attention Scheduler needs to allocate tasks appropriately based
on the adaptability of each robot to all tasks. Firstly, we encode the dynamic
state of each agent and each task to be performed:

xt
i = μθx

i
(st

i), yt
j = μθy

j
(T t

j ). (3)

where μθx
i

and μθy
j

are multi-layer perceptron (MLP) parameterized by θx
i and

θy
j , respectively. Further, we calculate the query of xt

i and the key of yt
j according

to (4), where μθq
i

and μθk
j

are multi-layer perceptron (MLP) parameterized by
θq

i and θk
j , respectively.

qt
i = μθq

i
(xt

i), kt
j = μθk

j
(yt

j). (4)
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We compute the interactions between each query qt
i and all the keys kt

i by per-
forming Hadamard product �. We then apply a linear transformation W

[dq×d1]
iq

to every interaction:

qht
ij = qt

i � kt
j , qut

ij = W
[dq×d1]
iq qht

ij . (5)

where the dimensions of qt
i , kt

j , and qht
ij are both R

dq , and the dimension of

qut
ij is R

1. The purpose of the linear transformation W
[dq×d1]
iq is to produce the

adaptive weight of a robot for a task.
We then perform a softmax operation on qut

ij to obtain the attention weight
δt
i of each robot for all tasks, which measures the adaptability of a robot to all

tasks.

δt
i = softmax[

qut
i1√
dq

· · · qut
ij√
dq

· · · qut
iM√
dq

] (6)

According to the attention weight δt
i , the Attention Scheduler assigns the

task T sch
i corresponding to the largest weight in δt

i to an agent. That means the
agent is best suited to perform the selected task. After that, each agent takes
action according to its own observation and assigned tasks.

3.3 Training of Attention Scheduler

Encode 
unit 1

Encode 
unit 2

Query
unit 1

Key
unit 1

MatMul

softmax

Loss:

MatMul

Fig. 3. Schematic process diagram of calculation and training of attention scheduler.

Through all the operations in the Attention Scheduler, we can get the team
attention matrix δt = [δt

i , · · · , δt
N ]T . The dimension of matrix δt is RdN ×dM and

all elements in matrix δt are nonzero. We define a matrix αt with dimension
R

d1×dN , where all elements are 1. The matrix αt is used to replace the key unit
in the self-attention [7]. Then, we wrote the final attention task prioritization
as:
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pt
sch =

1
N

αtδt (7)

The expression in pt
sch is the prioritization reassigned to all tasks in combination

with the dynamic characteristics of the robot. Besides, we use the technique of
replay buffer, so the Attention Scheduler is trained to minimize the following
loss:

Lsch =
b∑

i=1

(pt
sch − pt)2. (8)

where b is the batch size of sampled data from the replay buffer, the above
process of calculating attention weight and loss can be summarized in Fig. 3.

4 Experiment

In this section, We will demonstrate the performance of the Att-Sched algorithm
in simulation environments. We refer to the continuous environment in [6] and
make some adjustments. The simulation environment is shown in Fig. 4, n robots
need to work and collaborate to provide materials to m machines that lack
materials. The robots receive the collective rewards based on the sum of distance
−d between every robot and its nearest machine(Y). In addition, if a robot
reaches a machine(N) that does not need to provide materials, the robot team
will give a penalty of −2. Since the working condition of the machine is relatively
stable, the machine that needs to be provided materials will not change too
quickly, We randomly specify m machines that need to be supplied with materials
and the corresponding prioritization value at the beginning of each episode.
Although the simulation environment we show is relatively simple, our algorithm
can be easily extended to larger and more complex scheduling systems. After
some testing, the selected hyperparameters are shown in Table 1.

Firstly, We trained 6 sets of training processes and compared the perfor-
mance differences between Att-Sched and MADDPG algorithms, as shown in
Fig. 5. It can be seen that the reward gradually increases with the number of
training episodes until it converges, indicating that Att-Sched has carried out an
effective learning process. In addition, the confidence band of the reward curve is
very small, indicating that the performance of our proposed algorithm is stable.
Finally, we can see that the Att-Sched algorithm with the attention mechanism
performs better than MADDPG algorithm. We then show the trajectory of the
robot in several task scenarios in Fig. 6. We only show a few typical task sce-
narios, but in other task scenarios, the attention scheduler can still assign tasks
reasonably. We can see that the robot team can reach the machine that needs
to be provided with materials under the task assigned by the Attention Sched-
uler. For Fig. 6(c), robot 1 is assigned to provide materials to the machine with
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Machine(Y)

Machine(Y)Machine(N)

Robot1 Robot2 Robot3

Machine(Y)

Fig. 4. Simulation environment of the robot scheduling system. The blue machine needs
to be provided with materials by the robot, and its color from dark to light means that
the prioritization is gradually reduced. The gray machine does not need to be provided
with materials by robots.

the highest priority and closer distance. Robot 2 needs to bypass machine(N) to
provide materials to the machine with the highest priority, so robot 2 finally is
assigned to provide materials to another priority machine. This causes Robot 1
and Robot 2 to cross on the trajectory. In other scenarios, the attention sched-
uler makes a good task allocation to the machines that need to be provided with
materials

Fig. 5. The performance curve of Att-Sched and MADDPG algorithm.
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Table 1. Hyper-parameters settings for the simulation environment.

Hyper-parameters Value

Discount factor (γ) 0.99

Learning rate (α) 0.01

Initialized greedy rate 0.1

Batch size 1024

Replay buffer size 250000

Episode number (Ne) 50000

Trajectory length (T ) 50

Robot number 3

Machine(Y) number 3

Encoder units 20

Query units 20

key units 20

Actor units (32, 32)

Critic units (80, 80)

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Robot trajectories in some mission scenarios of Att-Sched algorithm

5 Conclusion

This paper presents a MADDPG-based framework with an attention-scheduling
module for multi-robot task scheduling. Contrary to many works which used
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hand-crafted functions and rules for scheduling, we utilize MADDPG to tackle
the nonlinear and non-deterministic polynomial characteristics in job shop
scheduling. Our attention scheduling module assigns different importance to
robots and learns the urgency of tasks to assign prioritization dispatching rules.
After empirical evaluations of the simulation environments, our approach can
make energy-saving scheduling, and fulfill the demands of machines with priori-
tization.

However, there are two drawbacks to our work: (i) Our simulation environ-
ment is based on a small-scale job shop. Since MADDPG can handle more com-
plex situations, we will increase the number of robots and machines and evaluate
our approach with more realistic constraints for future work, such as obstacles.
(ii) Our attention scheduling module can not discriminate assigned machines at
the first time (shown as Fig. 6 (d), robot 2 comes close to the first machine in
the second row at the first time. After robot 1 comes to the machine, robot 2
changes its way to the highest priority machine.). The reason for the limitation is
that all robots are independent, and there is no communication between robots.
Future work will attempt to tackle this by using a control module to plan paths
for all robots simultaneously.
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Abstract. A collaborative search planning method based on an information map
is proposed for the problem of multi-moving target detection in gray areas using a
heterogeneousUAVswarm.Thismethod takes into account the detection probabil-
ity and false alarm probability of sensors, the heterogeneity and flight constraints
of UAVs, and the randommovement of targets. The mathematical planning model
for the collaborative search of multiple UAVs is built by balancing short-term
gain, long-term gain, and coordination gain. An information map for search is
designed, incorporating target existence probability, environmental uncertainty,
and revisiting pheromones. Different planning schemes are designed based on the
heterogeneous characteristics of UAVs. Through numerical simulations in typical
collaborative search scenarios, the effectiveness of the proposed method is val-
idated. The simulation results show that the proposed method can make search
trajectory decisions for each UAV within seconds. The organic combination of
short-term, long-term, and coordination gain can guide the UAV swarm to cap-
ture more targets. Comparative simulation results demonstrate that the proposed
method can capture more targets with fewer false alarms, effectively improving
the task efficiency of heterogeneous multi-UAV collaborative search.

Keywords: Collaborative Search · Information Map · Heterogeneous UAVs ·
revisit mechanism · receding horizon

1 Introduction

The gray area multi-UAV cooperative search problem has high practical value in various
applications such as battlefield reconnaissance, urban tracking, maritime rescue, security
monitoring, and military operations, which has attracted wide attention and extensive
research in the academic community [1]. From the perspective of method characteris-
tics, it can be divided into two categories: rule-based search methods and mathematical
optimization-based search methods.

Rule-based cooperative search methods are designed for specific task scenarios, pri-
marily focusing on achieving full coverage through the design of search rules. References
[2–4] propose parallel search strategies, using “Z-shaped” parallel flight paths to achieve
complete coverage of the area. References [5, 6] introduce algorithms for motion tar-
get perpendicular search and motion target diagonal search. References [7, 8] aiming

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Yu et al. (Eds.): CCSICC 2023, LNEE 1206, pp. 13–28, 2024.
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to address the low search efficiency of traditional perpendicular search algorithms for
moving targets, propose side-by-side backtrack search algorithm and transverse equally
divided perpendicular search algorithm to enhance the search capability for moving
targets. The aforementioned cooperative search methods are designed based on prede-
termined search rules, which are less flexible and may have limited effectiveness in
searching for moving targets.

Mathematical programming-based collaborative search methods typically involve
constructing a mathematical programming model for collaborative search, designing
a search information map that describes environmental information, and then using
heuristic algorithms [9–11] or reinforcement learning [12, 13]methods to solve themodel
and obtain the optimal search trajectory. As the search progresses, the search information
map is dynamically updated to effectively utilize real-timedetection information,making
it suitable for dynamic search processes.

Reference [14] proposes a UAV cooperative search method based on a coverage dis-
tribution information map. Reference [15] designs an independent layered decomposed
environmental information map system to achieve coverage search in the area. Refer-
ence [16] considers constraints such as sensors, UAV motion, and communication, and
presents a probability graph search model based on Bayesian updates. Reference [17]
introduces a method for motion target prediction and designs a search information map
that incorporates environmental uncertainty, target probability, and pheromones. Based
on this, a cooperative search model is constructed, considering the cost of environmen-
tal search, target discovery, and inter-UAV coordination. Reference [18] establishes a
probability search information map and proposes a distributed algorithm for informa-
tion fusion and cooperative control based on it. Reference [19] considers revisiting high
uncertainty regions and establishes a cooperative searchmodel that includes environmen-
tal search benefit, target detection and grid revisit benefit, and inter-UAV coordination
cost. A multi-UAV cooperative search method with pheromone revisiting is proposed.
Reference [20] designs a search information map that incorporates target probability
distribution, environmental uncertainty, and environmental search status. A cooperative
searchmodel is established, considering target search benefit, environmental search ben-
efit, expected detection benefit, and cooperative benefit, and a revisiting mechanism is
customized to guide UAVs in revisiting.

It can be observed that current research on collaborative search mainly has two
problems. Firstly, most studies only consider the short-term gain of UAV search (i.e.,
the benefits obtained from searching the maximum possible area at present) and coor-
dination gain (i.e., the benefits obtained from avoiding overlapping flight paths), while
giving less consideration to long-term gain (i.e., the benefits obtained from reaching
subsequent promising search areas after executing the current optimal trajectory). Sec-
ondly, there is limited research on collaborative search involving heterogeneous aircraft.
Generally, it is assumed that all UAVs are of the same type, while collaborative search
with heterogeneous UAVs can better leverage the advantages of different types of UAVs,
leading to improved search performance.

To address the aforementioned issues, this paper proposes an InformationMap-based
Collaborative Search Planning for Heterogeneous UAV Swarms (IM-CSPH) method.



Collaborative Search Method of Heterogeneous UAVs in Gray Area 15

Firstly, a multi-UAV collaborative search planning model is established, which compre-
hensively balances the short-term gain, long-term gain, and coordination gain of UAV
search. Secondly, a search informationmap is designed to dynamically describe the envi-
ronment, incorporating a revisiting pheromone factor to guide UAVs in revisiting. Based
on this, different search planning methods are designed for different types of UAVs, tak-
ing into account the heterogeneity of the UAV swarm. The collaborative search planning
model is solved using a receding horizon architecture. Finally, the effectiveness of the
proposed method is validated via numerical simulations.

2 Problem Formulation of Heterogeneous UAVs Collaborative
Search

Aheterogeneous UAV swarm consisting of nUAVs collaboratively searches for k targets
within the region S. The UAVs have a speed of vd , and the targets within the region S
have unknown initial positions andmove randomly with a speed of vt , as shown in Fig. 1.
The onboard sensors of the UAVs have detection probability and false alarm probability.
After confirming the presence of a target, theUAV captures it and then proceeds to search
for other targets. The objective of designing a cooperative search method is to capture as
many moving targets as possible within a specified time frame while minimizing false
alarms on non-existent targets.

Fig. 1. Heterogeneous UAV Swarm Collaborative Search Task.

2.1 Task Area Mode

The task area S is modeled using a grid-based approach, dividing it into Lx × Ly grids.
Each grid is identified by its coordinates x and y. For example, the grid in the bottom-left
corner is denoted as G1,1.



16 H. Wang et al.

2.2 UAV Model

The motion range of the UAV is discretized, assuming that the UAV moves by one
grid cell at a time. The UAV’s movement step is greater than the minimum trajectory
segment constraint, and θ represents themaximum turning angle of the UAV. By limiting
the maximum turning angle and minimum trajectory segment length, the UAV’s normal
overload constraint is satisfied to ensure the feasibility of the planned trajectory. The
UAV has eight possible motion directions at each moment, as shown in Fig. 2(a).

Fig. 2. Model Behaviors.

Different types of UAVs have different detection ranges, detection probabilities, and
false alarm probabilities. The detection probability is defined as:

PD = P(Detection target present|Actual target present)
The false alarm probability is defined as:

PF = P(Detection target present|Actual target not present)
Considering the types and detection capabilities of real UAVs, UAVs can be

abstracted into two categories. The first category includes UAVs equipped with radar-
based detection payloads, offering a wide coverage range but with a low detection proba-
bility and a high false alarmprobability. In contrast, the second category comprisesUAVs
equipped with optical-based detection payloads, featuring a narrow coverage range, high
detection probability, and low false alarm probability.

2.3 Motion Target Model

The moving target (e.g., radar vehicle) can move on the ground in a two-dimensional
plane. The target has 8 possible behaviors at each moment, as shown in Fig. 2(b). The
initial positions of the targets within the task area are randomly assigned, and their
movements are random as well. However, they will not move outside of the task area.
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2.4 Collaborative Search Planning Model

Taking into account the UAV’s flight and collision avoidance constraints, with the core
objective of balancing the short-term, long-term, and coordination gain of multi-UAV
search, and aiming to maximize the overall search efficiency, the problem model for
multi-UAV collaborative search is established as follows:

Find R = {R(1),R(2), · · · ,R(t), · · · ,R(T )}

max
∑T

t=0
J (t,R(t)) =

∑T

t=0
[wV JV (t,R(t)) + wEJE(t,R(t)) + wCJC(t,R(t))] (1)

s.t.t ∈ [0,T ]

R(t) = {R1(t),R2(t), · · · ,Rn(t)}

Ri(t) ∩ Rj(t) = ∅,∀i, j = 1, 2, · · · , n, i �= j (21)

Ri(t) ∈ F, i = 1, 2, · · · , n (3)

where R is the decision variable representing the trajectory of the UAV swarm, R(t)
represents the trajectory of the UAV swarm at time t, T is the total duration of the search
task, and n represents the number of UAVs.

Equation (1) represents the objective function, where J (t,R(t)) represents the search
efficiency of the UAV swarm at time t, and JV (t,R(t)), JE(t,R(t)), JC(t,R(t)) represent
the value search gain, potential search gain, and coordination search gain of the UAV
swarm at time t, respectively. wV , wE , wC represent the weight coefficients for the gain.

Equation (2) represents the collision avoidance constraint, where Ri(t) represents
the search trajectory of the i − th UAV at time t.

Equation (3) represents the flight constraints of the UAVs, where F represents the
set of flight constraints, including constraints on the UAV’s flight direction and flight
distance.

Value Search Gain JV .

Value search gain represents the amount of value obtained by the UAV in searching
the current most promising search area during the search process, reflecting the idea of
short-term search gain. The value search gain of the UAV swarm at time t, denoted as
JV (t,R(t)), is given by the following equation:

JV (t,R(t)) =
∑n

i=1

∑
(x,y)∈Gi(Ri(t))

V (x, y, t) (4)

where Gi(Ri(t)) represents the detection range of UAV i at time t; V (x, y, t) represents
the value of grid Gx,y at time t, calculated as follows:

V (x, y, t) = w1p(x, y, t) + w2χ(x, y, t) + w3s(x, y, t) (5)
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where p(x, y, t) represents the probability of the grid Gx,y having a target at time t,
χ(x, y, t) represents the uncertainty, s(x, y, t) represents the revisit pheromone, and
w1,w2,w3 is the weight assigned to the aforementioned three factors.

Potential Detection Gain JE .

In order to enhance the global search capability and enable UAVs to reach subsequent
potential and promising search areas after executing the current search path, laying the
foundation for subsequent planning, the concept of potential detection gain JE has been
designed to reflect the long-term search benefits. The potential detection gain JE(t,R(t))
of the UAV swarm at time t are expressed as follows:

JE(t,R(t)) =
∑n

i=1

(∑
(x,y)∈ANi (Ri(t))

Vp(x, y, t)

nANi (Ri(t))
−

∑
(x,y)∈AFi (Ri(t))

Vp(x, y, t)

nAFi (Ri(t))

)
(6)

Vp(x, y, t) = χ(x, y, t) + s(x, y, t)

where AN
i (Ri(t)) represents the proximity detection range of UAV i at time t, AF

i (Ri(t))
represents the distancing detection range of UAV i at time t, nAi(Ri(t)) represents the
number of grids in zone Ai(Ri(t), χ(x, y, t) represents the uncertainty of grid Gx,y at
time t, and s(x, y, t) represents the revisit pheromone of grid Gx,y at time t.

The definitions of proximity and distancing detection ranges are shown in Fig. 3.
Assuming the entire task area is divided into 9 sub-zones, after executing the trajectory,
the UAVmay exhibit the following tendencies, excluding the zone it currently occupies:
getting closer to a zone, moving farther away from a zone, or maintaining the same
distance from a zone. The grids in the zones where the distance gets closer are considered
as the proximity detection range, represented by the solid shaded area in the figure. The
grids in the zones where the distance increases are considered as the distancing detection
range, represented by the diagonal shaded area in the figure.

Fig. 3. Potential detection range.
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Coordinated Search Gain JC .

To enhance the efficiency of collaborative search among UAVs, minimize redundant
search efforts between UAVs, avoid flight conflicts, and expand the search range of the
UAV swarm as much as possible, a coordinated search gain JC has been designed. It
embodies the idea of mutual coordination among the UAV swarm and the avoidance of
overlapping flight paths. The coordinated search gain JC(t,R(t)) of the UAV swarm at
time t is expressed as follows:

JC(t,R(t)) =
∑

(x,y)∈G(R(t))

V (x, y, t)+

1

nAN (R(t))

∑
(x,y)∈AN (R(t))

[
χ(x, y, t) + s(z, y, t)

]−
1

nAF (R(t))

∑
(x,y)∈AF (R(t))

[
χ(x, y, t) + s(z, y, t)

]

(7)

where G(R(t)) represents the detection range of the UAV swarm at time t; AN (R(t))
represents the proximity detection range of theUAV swarm at time t;AF (R(t)) represents
the distancing detection range of the UAV swarm at time t; nA(R(t)) represents the number
of grids in area A(R(t)).

3 Construction and Updating of the Search Information Map

The search informationmap primarily consists of the target probability distributionmap,
environmental uncertainty map, and revisit pheromone map.

3.1 Target Probability Distribution Map

The target probability distribution map p(x, y, t) ∈ [0, 1] represents the probability of
grid Gx,y having a target at time t.

During the execution of the search mission, UAVs dynamically update the target
existence probabilities p(x, y, t) in the task area based on the detection information
b(x, y, t) from their own sensors, considering the detection probability PD and false
alarm probability PF of the sensors. The Bayesian criterion is used to update the target
existence probabilities in the detected grids.

p(x, y, t + 1) =
{

PDp(x,y,t)
PDp(x,y,t)+PF (1−p(x,y,t)) , b(x, y, t) = 1

(1−PD)p(x,y,t)
(1−PD)p(x,y,t)+(1−PF )(1−p(x,y,t)) , b(x, y, t) = 0

(8)

where b(x, y, t) represents the detection result of UAV for gridGx,y at time t. b(x, y, t) =
1 indicates that the grid is detected to have a target, and vice versa if there is no target.

Due to the random movement of targets, it is possible that targets may still exist in
areas that have been previously detected as empty. Therefore, a compensationmechanism


