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Distributed Nash Equilibrium Seeking
Algorithm for Aggregative Games

with Time-Varying Directed
Communication Networks

Rui Zhu1,2, Fuyong Wang1,2(B), Zhongxin Liu1,2, and Zengqiang Chen1,2

1 College of Artificial Intelligence, Nankai University, Tianjin 300350, China
2 TianjinKey Laboratory of Brain Science and Intelligent Rehabilitation,

Nankai University, Tianjin 300350, China
wangfy@nankai.edu.cn

Abstract. A distributed discrete Nash equilibrium (NE) seeking algo-
rithm is designed for aggregative games (AGs) through multi-round com-
munications under the restricted strongly monotone assumption. Every
agent can observe its own cost function and strategy, and access infor-
mation only of neighbors according to the time-varying directed commu-
nication networks. Then, the proposed algorithm where the number of
communications per iteration is fixed turns out to converge to a unique
NE point and the rate of convergence is linear. The complexity of the
algorithm in this paper is lower compared with others of increasing com-
munication rounds. Finally, a networked Nash-Cournot game is consid-
ered to show the accuracy of the algorithm.

Keywords: Distributed NE seeking · Aggregative game ·
Time-varying directed networks · Linear convergence · Restricted
strongly monotone

1 Introduction

It is simple to note that there exist a lot of cases around us that all agents of
a multi-agent system are in a competitive relationship such as the congestion
control of communication networks [1]. Every agent in this time can be regarded
as a player of non-cooperative game and they only want to minimize their own
cost function. Thereupon, the concepts of game theory were applied to multi-
agent systems, which had made a lot of progress in the research of multi-agent
systems [2,3]. The NE is an important concept in non-cooperative games. At
the NE point any agent unilaterally changing its strategy will not reduce its own
costs, it is an optimal solution for all agents. Hence, how to seek the NE arouses
the research interest of many experts and scholars.

At present, there exist many algorithms about Nash equilibrium seeking, and
with the deepening of research, the algorithms develop from centralized [4] to
semi-decentralized[5,6], then to distributed [7,8]. The distributed setup contains
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Hua et al. (Eds.): CCSICC 2023, LNEE 1203, pp. 1–11, 2024.
https://doi.org/10.1007/978-981-97-3324-8_1
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many advantages comparing with the others, such as communication cost sav-
ings, privacy protection and robustness. Tatarenko et al. [9] have proposed a kind
of Nesterov type accelerated distributed gradient play algorithm for convex net-
worked Nash games with strongly monotone mappings and verified the geometric
convergence rate of this discrete algorithm. Distributed algorithm designs for dif-
ferent game models are distinct. Aggregative games, as an important subclass
of non-cooperative game, are taken as the research objects in many literatures
to design corresponding distributed algorithms [10–12]. Every agent in it will be
influenced by the aggregate of all agents rather than just other agents’ strate-
gies. Reference [10] has considered a distributed continuous-time algorithm to
seek the generalized NE of aggregative games with coupled constraints. In [11], a
distributed algorithm with multi-round constant communications has been inves-
tigated for strongly monotone AGs based on the undirected connected graph.
This algorithm reaches the linear convergence rate and needs less communica-
tion rounds per iteration. These advantages inspire us to extend this algorithm
to directed time-varying topological graphs so that it can be applicable to a
wider range of scenarios.

Several attempts have been made to research aggregation games on time-
varying topological graphs including the continuous [13,14] and discrete [15,16]
time. Ye et al. [14] proposed a distributed continuous privacy-preserving Nash
equilibrium seeking algorithm which combined a gradient algorithm with the per-
turbed average consensus protocol when the objective function of every agent
cannot be leaked. There exist some differences between continuous and discrete
algorithm, while this paper focuses on discrete forms. A distributed discrete
algorithm is derived to seek the generalized NE of AGs over undirected time-
varying jointly connected graphs in [15]. Reference [16] introduces a momentum
term into the update of agents’ strategies and this term can accelerate the con-
vergence rate of designed distributed discrete-time NE seeking algorithms with
vanishing step-sizes over time-varying jointly strongly connected graphs. How-
ever, current proposed discrete algorithms can not be verified to be linearly
convergent directly for AGs over time-varying topological graphs. Hence, this
makes us more determined to apply multi-round communications to the algo-
rithm design of this model.

Compared with the literatures above, the followings are the main contribu-
tions of this paper in summary. Firstly, the multi-round communications are
applied to design the discrete time algorithm for AGs over time-varying directed
communication networks. Secondly, the assumption about strongly monotone
mapping is relaxed as the restricted strongly monotone one, which make the
assumption milder. Thirdly, this algorithm is proved to converge linearly to the
NE.

The rest of the paper is arranged as follows: Sect. 2 introduces the distributed
NE seeking problem for AGs with time-varying topological graphs and makes
some common assumptions, while the algorithm for solving this problem is estab-
lished in Sect. 3. Section 4 analyzes the convergence property of this algorithm.
Then a numerical example is provided in Sect. 5. Finally, a brief conclusion is
given in Sect. 6.
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2 Problem Statement

Consider the following AG including the agent set, strategy sets and cost func-
tions. The agent set M consists of m agents, i.e. M = {1, 2, . . . ,m}. Let Ωj ∈ R

l

denote the strategy set of the agent j, where Rl is l-dimensional real space. Define
x = (xT

1 , . . . , xT
m)T � col(x1, . . . , xm) ∈ Ω =

∏m
j=1 Ωj as the strategy profile,

where xj ∈ Ωj stands for the strategy variable of the agent j and
∏m

j=1 Ωj

is the Cartesian product of the strategy sets of all agents. The cost function
Jj(xj , δ(x)) of agent j is subject to its own strategy and an aggregate function
δ(x) = 1

m

∑m
j=1 xj depending on the strategies of all agents. Every agent in this

game takes minimizing its own cost function as the goal, that is

min
xj∈Ωj

Jj(xj ,
1
m

xj + δ(x−j)) ∀j ∈ M (1)

where x−j are all rival agents other than the agent j, δ(x−j) expresses all rival
agents’ aggregate and Jj : Ωj × R

l → R.

Definition 1. A strategy profile x∗ is called a NE of the game (1), if Jj(x∗
j ,

1
mx∗

j + δ(x∗
−j)) ≤ inf{Jj(x′

j ,
1
mx′

j + δ(x∗
−j))|x′

j ∈ Ωj} holds for every agent
j ∈ M.

For subsequent convergence analysis, some common assumptions are enumer-
ated.

Assumption 1. The strategy set Ωj is convex and compact for every agent j ∈
M. Furthermore, at arbitrarily fixed x−j ∈ Ω−j, the cost function Jj(xj , δ(x))
is convex in xj ∈ Ωj and continuously differentiable in xj.

Based on Assumption 1, Two mappings Gj : Ωj ×R
l → R

l and Ψj : Ω → R
l

are defined respectively as

Gj(xj , yj) := (∇xj
Gj(·, δ) +

1
m

∇δGj(xj , ·)) |δ=yj

Ψj(x) := ∇xj
Jj(xj , δ(x)).

Let y = col(y1, . . . , ym), G(x, y) = col(G1(x1, y1), . . . , Gm(xm, ym)) and Ψ(x) =
col(Ψ1(x), . . . , Ψm(x)), it is obviously obtained that Ψ(x) = G(x,1m ⊗ Ilδ(x)).

The following lemma is the famous result of associating the NE with the
solution to a variational inequality.

Lemma 1 ([17]). A NE x∗ of the game (1) is the same as a solution of the
variational inequality problem V I(Ω,Ψ), that is, x∗ = ΠΩ [x∗ −αΨ(x∗)],∀α > 0,
where ΠΩ(z) := argminx∈Ω{‖ x − z ‖} is the Euclidean projection of z ∈ R

ml

onto a set Ω ⊂ R
ml.

Some assumptions are needed about the mappings {Gj}m
j=1 and Ψ to aid in

convergence analysis of the algorithm.
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Assumption 2. The map Gj(xj , y) is Lj-Lipschitz continuous on y ∈ R
l for

any fixed xj ∈ Ωj, i.e., ‖ Gj(xj , y
′) − Gj(xj , y

′′) ‖≤ Lj ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ R
l.

Denote LG := maxj∈M Lj.

Assumption 3. The map Ψ(x) is LΨ -Lipschitz continuous on Ω and restricted
γΨ -strongly monotone in regard to any NE x∗ ∈ Ω, that is,

‖ Ψ(x) − Ψ(x̂) ‖≤ LΨ ‖ x − x̂ ‖ ∀x, x̂ ∈ Ω;

(Ψ(x) − Ψ(x∗)T (x − x∗) ≥ γΨ ‖ x − x∗ ‖2 ∀x ∈ Ω.

Remark 1. It is worth noticing that there exists a unique NE x∗ ∈ Ω for the
considered game under Assumption 1 and 3 [9].

Assumption 4. The directed communication network is strongly connected at
every time k ∈ N, where N denotes the set of natural numbers. Then, the weighted
adjacency matrix W (k) ∈ R

m×m of this network satisfies:

– Self-loops: w(k)j,j > 0 for any j ∈ M, where w(k)j,j represents the element
on row j and column j of W (k);

– Double stochastic(column and row stochastic): W (k)1m = 1m and 1T
mW (k)

= 1T
m.

It is obvious that λm−1(W (k)) < 1 for any k under Assumption 4, where
λm−1(W (k)) indicates the second largest eigenvalue of W (k). Further, the fol-
lowing assumption can be established when the networks are selected among a
finite family [18].

Assumption 5. There exists λ̂ ∈ (0, 1) which makes λm−1(W (k)) ≤ λ̂ hold for
any k.

3 Algorithm Design

For solving the NE of considered aggregative game, a distributed multi-round
communication NE seeking algorithm is put forward in Algorithm 1.

Algorithm 1. Distributed multi-round communication NE seeking algorithm

Initialization: for every agent j, set the initial strategy and aggregate esti-
mate as xj(0) ∈ Ωj and sj(0) = xj(0), respectively. Let the step-size be α > 0
and μ be a positive integer signifying the constant communication rounds at
every iteration.
Update of xj(k). For every agent j ∈ M, the update form of the strategy
estimate is

xj(k + 1) := ΠΩj
[xj(k) − αGj(xj(k), sj(k))]. (2)
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Update of sj(k).For every agent j ∈ M, the first update form of aggregate
estimate is

s̃j(k + 1) :=
m∑

i=1

wj,i(si(k) + xi(k + 1) − xi(k)); (3)

then set s̃1j (k + 1) = s̃j(k + 1) and the following update is repeated for v =
1, . . . , μ − 1,

sv
j (k + 1) :=

m∑

i=1

wj,is̃
v
i (k + 1); s̃v+1

j (k + 1) := sv
j (k + 1). (4)

Finally, sj(k) := s̃μ
j (k + 1).

Let x(k) := col(x1(k), . . . , xm(k)), s̃(k) := col(s̃1(k), . . . , s̃m(k)) and s(k) :=
col(s1(k), . . . , sm(k)). Then, the proposed algorithm is transformed into the fol-
lowing matrix form:

⎧
⎨

⎩

x(k + 1) = ΠΩ [x(k) − αG(x(k), s(k))]
s̃(k + 1) = (W (k) ⊗ Il)(s(k) + x(k + 1) − x(k))
s(k + 1) = (W (k) ⊗ Il)μ−1s̃(k + 1)

. (5)

According to the communication network of iteration k, every agent j can receive
the difference of the strategy estimate xq(k + 1) − xq(k) and aggregate estimate
sq(k) from its neighbors q ∈ M, moreover, it can also transmit these information
of its own to agents whose neighbors include the agent j.

4 Convergence Analysis

Firstly, the relationship between x(k) and s(k) is demonstrated.

Lemma 2. Based on Assumption 4, the formula
∑m

j=1 sj(k) =
∑m

j=1 xj(k)
holds for any k ≥ 0.

Proof. The formula can be verified by the mathematical induction. Because
sj(0) = xj(0) for all agents j, it is easy to know that the equation holds when
k = 0. Then, suppose the equation holds for k > 0, there exists

m∑

j=1

sj(k + 1) = (1T
m ⊗ Il)s(k + 1)

= (1T
m ⊗ Il)(W (k) ⊗ Il)μ(s(k) + x(k + 1) − x(k)).

On account of 1T
mW (k) = 1T

m, we have
m∑

j=1

sj(k + 1) = (1T
m ⊗ Il)(s(k) + x(k + 1) − x(k))

=
m∑

j=1

sj(k) +
m∑

j=1

xj(k + 1) −
m∑

j=1

xj(k) =
m∑

j=1

xj(k + 1).

(6)
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Therefore, this formula holds for any k ≥ 0. The proof is completed.
Next, the convergence of the algorithm is given.

Theorem 1. Let Assumptions 1–5 hold, the sequence {x(k)}k≥0 generated by
the designed Algorithm 1 will converge to the NE x∗ at the rate of linear con-
vergence if the step-size α and communication rounds μ per iteration satisfy the
following conditions, respectively,

0 < α < min{ 1 − λ̂μ

2λ̂μLG

,
4(1 − λ̂μ)λ̂μLG − 2γΨ (1 − λ̂μ)2

4λ̂2μL2
G − L2

Ψ (1 − λ̂μ)2
}, (7)

μ > log
̂λ

γΨ

2LG + γΨ
. (8)

Proof. It follows from Lemma 2 that the estimation error variable can be
expressed as

h(k) := s(k) − 1m ⊗ Ilδ(x(k)) = (Im − 1
m
1m1T

m) ⊗ Ils(k).

Therefore, the (5) can be rewrote as based on W (k)1m = 1m,
{

x(k + 1) = ΠΩ [x(k) − αG(x(k), h(k) + 1m ⊗ Ilδ(x(k)))]
h(k + 1) = (W (k) ⊗ Il)μh(k) + [W (k)μ(Im − 1

m1m1T
m)] ⊗ Il(x(k + 1) − x(k)).

(9)
Then, define T (x) = ΠΩ [x − αΨ(x)] and ε(x, h) = ΠΩ [x − αG(x, h + 1m ⊗
Ilδ(x))] − T (x) to facilitate the subsequent analysis.

For any x′ ∈ Ω, there exists through Assumption 3

‖ T (x′) − T (x∗) ‖ ≤‖ x′ − x∗ − α(Ψ(x′) − Ψ(x∗)) ‖
=

√
‖ x′ − x∗ − α(Ψ(x′) − Ψ(x∗)) ‖2

≤
√

1 − 2αγΨ + α2L2
Ψ ‖ x′ − x∗ ‖ .

Similarly, we can obtain by Assumption 2

‖ ε(x, h) ‖ ≤ α ‖ G(x, h + 1m ⊗ Ilδ(x)) − G(x,1m ⊗ Ilδ(x)) ‖

≤ α

√
√
√
√

m∑

j=1

L2
j ‖ hj ‖2 ≤ αLG ‖ h ‖ .

Due to Lemma 1 and the above analysis, we have

‖ x(k + 1) − x∗ ‖ ≤‖ T (x(k)) − T (x∗) ‖ + ‖ ε(x(k), h(k)) ‖
≤

√
1 − 2αγΨ + α2L2

Ψ ‖ x(k) − x∗ ‖ +αLG ‖ h(k) ‖
(10)
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and

‖ x(k + 1) − x(k) ‖ ≤‖ x(k + 1) − x∗ ‖ + ‖ x(k) − x∗ ‖
≤ (

√
1 − 2αγΨ + α2L2

Ψ + 1)× ‖ x(k) − x∗ ‖ +αLG ‖ h(k) ‖ .

Next, a series of orthogonal matrices S(k) = (S1(k),S2(k)) are introduced,
where every column of S1(k) ∈ R

m×(m−1) consists of the eigenvector of W (k)
and S2(k) = 1m√

m
corresponds to the eigenvalue 1 of W (k) for any k, that is,

S(k)T W (k)S(k) =
[
E(k) 0
0 1

]

where E(k) = diag{λ1(W (k)), . . . , λm−1(W (k))} and 0 < λ1(W (k)) ≤ . . . ≤
λm−1(W (k)) < 1.

Hence,

(W (k) ⊗ Il)μh(k) = S(k)
[
E(k) 0
0 1

]μ

S(k)T ⊗ Ilh(k)

= S1(k)E(k)μS1(k)T ⊗ Ilh(k),

then we can obtain

‖ (W (k) ⊗ Il)μh(k) ‖≤ λμ
m−1(W (k)) ‖ h(k) ‖≤ λ̂μ ‖ h(k) ‖ (11)

follows from the Assumption 5 and the properties ‖ S1(k) ‖= 1 of orthogonal
matrices.

Similarly, owing to ‖ Im − 1
m1m1T

m ‖= 1,

‖ [W (k)μ(Im − 1
m
1m1T

m)] ⊗ Il(x(k + 1) − x(k)) ‖
≤ λ̂μ ‖ (x(k + 1) − x(k)) ‖
≤ λ̂μ[(

√
1 − 2αγΨ + α2L2

Ψ + 1) ‖ x(k) − x∗ ‖ +αLG ‖ h(k) ‖].

(12)

Based on the above analysis, it is easy to know that

‖ h(k + 1) ‖ ≤ λ̂μ(1 + αLG) ‖ h(k) ‖ +

λ̂μ(
√

1 − 2αγΨ + α2L2
Ψ + 1) ‖ x(k) − x∗ ‖

(13)

Therefore, there yields combining (10) with (13)
(‖ x(k + 1) − x∗ ‖

‖ h(k + 1) ‖
)

≤ Q

(‖ x(k) − x∗ ‖
‖ h(k) ‖

)

(14)
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where

Q =
( √

1 − 2αγΨ + α2L2
Ψ αLG

λ̂μ(
√

1 − 2αγΨ + α2L2
Ψ + 1) λ̂μ(αLG + 1)

)

.

Let Ξ :=
√

1 − 2αγΨ + α2L2
Ψ for ease of understanding. It is noted that the

matrix Q is a non-negative matrix. So ρ(Q) < 1 can be demonstrated if all the
sequential principal minors of I2 − Q is positive. In other words, 1 − Ξ > 0 and
det(I2 − Q) > 0 need to be proved when (7) and (8) hold.

Firstly, we demonstrate 1 − Ξ > 0. It follows from (8) that 2λ̂μLG − γΨ (1 −
λ̂μ) < 0. Because γΨ ≤ LΨ , there exists 2λ̂μLG − LΨ (1 − λ̂μ) < 0 which ensures
the second term of the upper bound for α is positive. Then, we can find that in
view of (7)

α(2γΨ (1 − λ̂μ)2 − 4(1 − λ̂μ)λ̂μLG) + α2(4λ̂2μL2
G − L2

Ψ (1 − λ̂μ)2) > 0

which is rearranged as

4λ̂2μL2
G

(1 − λ̂μ)2
α2 − 4λ̂μLG

1 − λ̂μ
α + 1 > α2L2

Ψ − 2γΨα + 1.

It is obvious that the right side of the above inequality is positive, so the two
sides of it are squared as

1 − 2λ̂μ

1 − λ̂μ
αLG >

√
1 − 2αγΨ + α2L2

Ψ . (15)

Therefore, we can obtain 1 − Ξ > 2̂λµ

1−̂λµ
αLG > 0.

Next, det(I2 − Q) > 0 is verified. The form of det(I2 − Q) is as follows,

det(I2 − Q) = (1 − Ξ)[1 − λ̂μ(1 + αLG)] − αLGλ̂μ(Ξ + 1)

= (1 − 2αLG

1 − Ξ + 2αLG
− λ̂μ)(1 − Ξ + 2αLG).

(16)

Based on (15), we have

1 − Ξ + 2αLG >
2αLG

1 − λ̂μ
> 0.

that is, 1 − λ̂μ > 2αLG

1−Ξ+2αLG
. Then, it is easy to see that det(I2 − Q) > 0.

As a result, we can obtain ρ(Q) < 1, which implies the algorithm (5) will
converge to the NE x∗ at a linear rate when (7) and (8) hold. The proof is
completed.
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5 Numerical Example

A networked Nash-Cournot game, as in [19], is considered in this section to
show this designed algorithm will converge to the NE. This game consists of 15
firms which sell their own products to a unique market. All firms in the game
exchange information based on the time-varying directed graphs. The graph of
every iteration is generated randomly and satisfies Assumption 4 and 5, where
λ̂ = 0.9 is set as the upper bound of the second largest eigenvalue λm−1 for a
series of graphs’ adjacency matrices i.e. {W (k)}∞

k=1.
Denote the quantity of products sold by the firm j to the market by xj ∈ Ωj ,

where Ωj = [0, j
10 + 1

j2 ] is taken. And Let Jj(xj , δ(x)) = cj(xj) − p(mδ(x))xj be
the cost function of the firm j, where

cj(xj) = ejx
2
j ; p(mδ(x)) = 5 − rδ(x).

Choose ej = 0.002+0.001j2 and r = 0.005. Let e = col(e1, . . . , em), it is obvious
that

Gj(xj , sj) = 2ejxj − 5 + rsj +
r

m
xj ,

Ψ(x) = 2diag{e}x − 51m +
r

m
(x + 1T

mx1m).

Then, it can be calculated that LΨ = 0.4547, γΨ = 0.0066, LG = 0.005.
Let α = 0.003 and μ = 9 which can ensure (7) and (8) hold. The following

Fig. 1 is trajectory of the strategy and consensus error, which verifies the effec-
tiveness of Theorem 1 and shows the designed algorithm will converge to the NE
linearly.
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Fig. 1. Trajectory of the strategy and consensus error
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6 Conclusion

A distributed discrete multi-round communication algorithm is designed to solve
the NE seeking problem for AGs with time-varying directed communication net-
works in this paper. The common assumption about strongly monotone mapping
is relaxed as the restricted strongly monotone one. Based on this, the conver-
gence of the algorithm can be proved and the rate is linear. The work that the
communication networks are jointed strongly connected graphs will be investi-
gated in the future.

Acknowledgements. This work was supported in part by the National Natural Sci-
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Decentralized Alternating Direction
Method of Multipliers for Constrained
Optimization over Directed Networks
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Abstract. In this paper, we consider the decentralized constrained opti-
mization problem in which the objective is to minimize the sum of convex
functions subject to equality and set constraints over a directed network.
To tackle the optimization problem, we introduce a new algorithm that
integrates finite-time weighted average consensus with the Alternating
Direction Method of Multipliers (ADMM). Most decentralized optimiza-
tion algorithms for solving this problem over directed networks use a
column-stochastic weight matrix, which necessitates that each agent be
aware of its own out-degree. However, the proposed algorithm eliminates
this requirement but uses a row-stochastic weight matrix. Additionally,
the provided algorithm is proven to achieve a sublinear convergence rate.
Finally, the efficacy of our algorithm is confirmed through the numeri-
cal simulations performed on a least squares problem subject to local
equality and set constraints.

Keywords: Decentralized constrained optimization · directed
networks · convergence rate · alternating direction method of
multipliers (ADMM)

1 Introduction

In this article, we explore the decentralized constrained optimization (DCO)
problem defined in a directed network, where N agents collaborate to find the
optimal solution. The DCO problem can be described as follows:

min
x∈Rn

N∑

i=1

fi(x) s.t. Aix = bi, i = 1, . . . , N, x ∈
N⋂

i=1

Xi, (1)
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where the local function fi : R
n → R is convex, closed, proper and known

only by agent i; Aix = bi with Ai ∈ R
m×n, bi ∈ R

m is the local equality
constraint and Xi represents the local convex constraint set related to the deci-
sion variables of agent i. The objective of this work is to devise a decentralized
algorithm that allows every agent to obtain a consensus optimal solution to prob-
lem (1) through local computation and information exchange with its neighbor
agents. Such decentralized optimization problems are common in many engineer-
ing fields, including machine learning [1,2], and energy system control [3].

Decentralized optimization methods have been extensively investigated in
literature. To tackle the decentralized optimization problem over directed net-
works, [4] proposes the subgradient-push algorithm. Building upon the Alternat-
ing Direction Method of Multipliers (ADMM) [5], the authors in [6,7] propose
D-DistADMM and D-ADMM-FTERC, respectively. However, the above meth-
ods are only applicable to unconstrained optimization problems. To solve DCO
problems, several continuous- and discrete-time algorithms have been proposed
[8–10]; however, these algorithms are designed over undirected networks. In [11],
DC-DistADMM is proposed to solve the DCO problem in directed networks
based on a column-stochastic weight matrix. DC-DistADMM achieves an ergodic
sublinear convergence rate of O(1/k) under the general convexity assumption.
However, DC-DistADMM relies on the information of each agent’s out-degree,
which is unrealistic within the broadcasting environment.

In this article, to solve problem (1) over directed networks, we propose a
Directed Constrained Decentralized ADMM (DCD-ADMM), which utilizes a
row-stochastic weight matrix and thus can be adapted to more communica-
tion environments than the algorithms that use column-stochastic weight matri-
ces. Compared to the previously proposed algorithms using column-stochastic
weight matrices, such as [4,6,7,11], DCD-ADMM does not require agents to pos-
sess information about their own out-degree to construct the column-stochastic
matrices. This is more practical in networks based on broadcast communication.
In addition, during the communication process, each agent has to transmit two
variables to its neighbors in DC-DistADMM [11]. However, in DCD-ADMM,
only one variable needs to be transmitted, thereby reducing the communication
cost. We prove that DCD-ADMM converges to an exact optimal solution and
achieves a sublinear convergence rate of O(1/k).

The rest of this article is structured by: In Sect. 2, necessary notations
and preliminaries for the algorithm development and analysis are presented. In
Sect. 3, we propose the DCD-ADMM algorithm. In Sect. 4, the convergence anal-
ysis and rate of DCD-ADMM are shown. In Sect. 5, we illustrate the numerical
simulation results of DCD-ADMM. Finally, in Sect. 6, we conclude the article.

2 Notations and Preliminaries

2.1 Notations

AT represents the transpose of matrix A. Let ei = [0, . . . , 1i, . . . , 0]T ∈ R
N . The

all-ones vector and identity matrix of appropriate dimensions are denoted by 1
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and I, respectively. The operator ⊗ denotes the Kronecker product. ‖ ·‖ denotes
the l2-norm. For xi ∈ R

n, i = 1, 2, . . . , N , we define col{x1, x2, . . . , xN} =
[xT

1 , xT
2 , . . . , xT

N ]T . Z � 0 denotes that the matrix Z is positive definite. Given
Z � 0 and y ∈ R

n, we denote ‖y‖Z =
√〈y, Zy〉. The indicator function of a set

S is defined as IS(y) = 0 if y ∈ S, and IS(y) = +∞, otherwise.
Let G(V, E) denote a directed graph, where V = {1, 2, . . . , N} is the set of

agents, and E ⊆ V × V is the set of directed edges. If a directed edge (i, j) ∈ E
exists, it signifies that agent j can send information directly to agent i, where j is
treated as an in-neighbor of i and, conversely, i is considered as an out-neighbor
of j. Define N in

i = {j ∈ V|(i, j) ∈ E} as the set of in-neighbors of i. The directed
graph G(V, E) is called strongly connected if a directed path can be found from
any agent i to any other agent j, where i, j ∈ V, and i �= j.

2.2 Weighted Average Consensus

In a directed graph G(V, E) with N agents, the non-negative matrix R = [rij ] ∈
R

N×N is the weighted adjacency matrix related to the graph G, defined as rij > 0
if (i, j) ∈ E or i = j, and rij = 0, otherwise. For agent i ∈ V, we denote uk

i as the
local information of agent i at time k, and each agent i has an initial information
u0

i . Each agent updates its information by the following update:

uk+1
i = riiu

k
i +

∑

j∈N in
i

riju
k
j , k ≥ 0. (2)

Assumption 1. The directed graph G is strongly connected and the related
weighted adjacency matrix R is row-stochastic.

Lemma 1 ([12]). Under Assumption 1, let {uk
i }k≥0 denote the sequence gener-

ated by (2) at each agent i ∈ V. Define ū =
∑N

j=1 πju
0
j , where [π1, π2, . . . , πN ]T

∈ R
N is the normalized left eigenvector of the matrix R related to the eigenvalue

1. Then, uk
i asymptotically converges to ū for all i ∈ V, i.e., limk→∞ uk

i = ū =∑N
j=1 πju

0
j , ∀i ∈ V.

2.3 Finite-Time Consensus

In the following, we briefly describe the decentralized algorithm proposed in
[13,14], with which each agent can obtain ū =

∑N
j=1 πju

0
j after a finite number

of steps.
Define the vector uT

2k = [u0
i , u

1
i , . . . , u

2k
i ] as 2k + 1 successive values at agent

i and define the associated matrix:

Γ{uT
2k} =

⎡

⎢⎢⎢⎣

u0
i u1

i . . . uk
i

u1
i u2

i . . . uk+1
i

...
...

. . .
...

uk
i uk+1

i . . . u2k
i

⎤

⎥⎥⎥⎦ .
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The vector that represents the differences between successive values of u2k
i is

expressed as ūT
2k = [u1

i −u0
i , u

2
i −u1

i , . . . , u
2k+1
i −u2k

i ]. By increasing the dimension
k of the matrix Γ{ūT

2k} until it loses rank, we obtain Γ{ūT
2ko

i
} as the first defective

matrix of agent i. It has been shown in [13] that for any initial condition, the
kernel βi = [β0

i , β1
i , . . . , βMi

i ]T of the matrix Γ{ūT
2ko

i
}, where Mi = ko

i , can
be utilized to calculate the weighted average consensus, except a set of initial
conditions with Lebesgue measure zero. Then, ū can be computed by

φu(i) =
uT

Mi
βi

1T βi
= ū, (3)

where uT
Mi

= [u0
i , u

1
i , . . . , u

Mi
i ].

Lemma 2 ([13]). Let Assumption 1 hold, and {uk
i }k≥0 denote the sequence

generated by (2) at each agent i ∈ V. The weighted average consensus ū =∑N
j=1 πju

0
j can be distributively obtained by (3) at each agent i ∈ V within a

finite number of steps no greater than 2N .

2.4 Max-Consensus Algorithm

The maximum value in the network can be calculated in a decentralized manner
by the max-consensus algorithm [15]. Each agent i ∈ V has an initial state
x0

i ∈ R and updates its state by xk+1
i = maxj∈N in

i ∪{i}{xk
j }. All states converge

to the maximum value xmax = max{x0
1, . . . , x

0
N} within a finite number of steps

no greater than N [16].

3 DCD-ADMM Algorithm Development

Consider a directed network G(V, E) of N agents. Let R = [rij ] ∈ R
N×N be the

weighted adjacency matrix correlated to G. Under Assumption 1, the weighted
matrix R satisfies the properties of being irreducible and row-stochastic, with
positive diagonals. By the Perron-Frobenius theorem [17], one has that there
exists a strictly positive left eigenvector π = [π1, π2, . . . , πN ] ∈ R

N (i.e., πi >
0, ∀i ∈ V) of R related to the eigenvalue 1 such that πT1N = 1.

To solve problem (1) in a distributed way, we introduce local copies xi ∈ R
n

of the global decision variable x for all i ∈ V and impose the consensus constraint
xi = xj , ∀i, j ∈ V to ensure that the local copies of every agent are identical.
Then, problem (1) is equivalent to

min
N∑

i=1

fi(xi) s.t. Aixi = bi, xi ∈ Xi, ∀i ∈ V, xi = xj , ∀i, j ∈ V. (4)

Define the agreement subspace C = {[yT
1 , yT

2 , . . . , yT
N ]T ∈ R

Nn| yi = yj , 1 ≤ i, j ≤
N}. Let π̄ = [π

1
2
1 , π

1
2
2 , . . . , π

1
2
N ] ∈ R

N , Π = diag{π} ⊗ In and Π̄ = diag{π̄} ⊗ In.
Using the indicator function IXi

of the set Xi, (4) transforms into
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min
N∑

i=1

(fi(xi) + IXi
(xi)) s.t. Aixi = bi, ∀i ∈ V, Π̄(x − y) = 0, y ∈ C, (5)

where x = [xT
1 , xT

2 , . . . , xT
N ]T ∈ R

Nn, y = [yT
1 , yT

2 , . . . , yT
N ] ∈ R

Nn. Then, utiliz-
ing the indicator function IC of the set C, (5) becomes

min F (x) + IC(y) s.t. Ax = b, Π̄(x − y) = 0, (6)

where F (x) =
∑N

i=1(fi(xi)+IXi
(xi)), A = blkdiag(A1, A2, . . . , AN ) ∈ R

Nm×Nn,
and b = [bT

1 , bT
2 , . . . , bT

N ]T ∈ R
Nm.

The augmented Lagrangian function of (6) is

Lc(x,y, λ, μ) =F (x) + IC(y) + λT Π̄(x − y) + μT (Ax − b)

+
c

2
‖Π̄(x − y)‖2 +

c

2
‖Ax − b‖2, (7)

where λ ∈ R
Nn and μ ∈ R

Nm are dual variables, and c > 0 is a constant. Based
on ADMM, the primal and dual updates are respectively given as

xk+1 = arg min
x

{F (x) + (λk)T Π̄(x − yk) + (μk)T (Ax − b)

+
c

2
‖Π̄(x − yk)‖2 +

c

2
‖Ax − b‖2}

= arg min
x

{F (x) +
c

2
‖Π̄(x − yk) +

1
c
λk‖2 +

c

2
‖Ax − b +

1
c
μk‖2}, (8a)

yk+1 = arg min
y

{IC(y) + (λk)T Π̄(xk+1 − y) +
c

2
‖Π̄(xk+1 − y)‖2}

= arg min
y

{IC(y) +
c

2
‖Π̄(xk+1 − y) +

1
c
λk‖2}, (8b)

λk+1 = λk + cΠ̄(xk+1 − yk+1), (8c)

μk+1 = μk + c(Axk+1 − b). (8d)

One can derive an explicit expression for the optimal solution yk+1 of (8b), i.e.,
yk+1 = [(yk+1)T , . . . , (yk+1)T ]T ∈ R

Nn, where yk+1 =
∑N

i=1 πi(xk+1
i + 1

cπ̄i
λk

i ).
The proof is omitted here as it closely resembles the one presented in Appendix
B of [18]. Thus, (8b) reduces to a weighted average consensus problem.

Since the normalized left eigenvector π of the matrix R is used in the algo-
rithm development, we need a preprocessing process to compute π at each node
in a distributed manner, as shown in Algorithm 1. The preprocessing process
performs 2N + N iterations, of which 2N iterations are used for the finite-time
consensus algorithm to calculate the normalized left eigenvector π and βi, and
N iterations are used for the max-consensus algorithm to calculate tmax at each
agent i ∈ V. After the preprocessing process, each node i ∈ V obtains π, βi and
tmax. Finally, we give DCD-ADMM in Algorithm 2.

4 Convergence Analysis

In this section, we analyze the convergence of DCD-ADMM and prove that it
achieves an ergodic sublinear convergence rate of O( 1

k ).
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Algorithm 1: Preprocessing process
Input:

Weighted adjacency matrix R, number of nodes N .

Initialize:
si = ei ∈ R

N , flagi = 1, ∀i ∈ V.

/* finite-time consensus */

for k = 0, 1, 2, . . . , 2N − 1, each node i = 1, ..., N, (In parallel) do

sk+1
i = riis

k
i +

∑
j∈N in

i
rijs

k
j

if k is even and flagi = 1 then
t = k/2
s̄T
2t = [s1i − s0i , . . . , s

2t+1
i − s2t

i ]
if Γ{s̄T

2t} loses rank then
Mi = t
Compute the kernel βi of the matrix Γ{s̄T

2t}
flagi = 0

end

end

end

sT
Mi

= [s0i , . . . , s
Mi
i ] ∈ R

N×(Mi+1) and π = s∗
i =

sTMi
βi

1T βi
, ∀i ∈ V

/* max-consensus */

t0i = Mi, ∀i ∈ V
for k = 0, 1, 2, . . . , N − 1, each node i = 1, ..., N, (In parallel) do

tk+1
i = maxj∈N in

i ∪{i}{tk
j }

end

tmax = tN
i

4.1 Convergence Analysis of DCD-ADMM

In this subsection, we provide a convergence proof of DCD-ADMM, demonstrat-
ing that it converges to the exact optimal solution.

The Lagrange function of (6) is

L(x,y, λ, μ) = F (x) + IC(y) + λT Π̄(x − y) + μT (Ax − b). (9)

Assumption 2. The Lagrange function L has a saddle point (x∗,y∗, λ∗, μ∗),
i.e., for all x ∈ R

Nn, y ∈ R
Nn, λ ∈ R

Nn and μ ∈ R
Nm,

L(x∗,y∗, λ, μ) ≤ L(x∗,y∗, λ∗, μ∗) ≤ L(x,y, λ∗, μ∗) (10)

holds.

In accordance with the Karush-Kuhn-Tucker (KKT) conditions of (6),
(x∗,y∗, λ∗, μ∗) satisfies
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Algorithm 2: DCD-ADMM Algorithm
Input:

Weighted adjacency matrix R.

Initialize:
x0

i ∈ R
n, y0

i ∈ R
n, λ0

i = 0n, μ0
i ∈ R

m, ∀i ∈ V.

for k = 0, 1, 2, . . . , each node i = 1, ..., N, (In parallel) do

xk+1
i =

arg minxi{fi(xi) + IXi(xi) + c
2
‖π̄i(xi − yk

i ) + 1
c
λk

i ‖2 + c
2
‖Aixi − bi + 1

c
μk

i ‖2}
z0

i = xk+1
i + 1

cπ̄i
λk

i

for t = 0, 1, 2, . . . . , tmax do
zt+1

i = riiz
t
i +

∑
j∈N in

i
rijz

t
j

end

yk+1
i =

zT
Mi

βi

1T βi
, where zT

Mi
= [z0

i , . . . , zMi
i ] ∈ R

n×(Mi+1)

λk+1
i = λk

i + cπ̄i(x
k+1
i − yk+1

i )
μk+1

i = μk
i + c(Aix

k+1
i − bi)

end

−Π̄λ∗ − AT μ∗ ∈ ∂F (x∗), (11a)
Π̄λ∗ ∈ ∂IC(y∗), (11b)

Ax∗ − b = 0, (11c)
x∗ = y∗, (11d)

where ∂F (x∗) and ∂IC(y∗) are the set of sub-gradients of F at x∗, and IC
at y∗, respectively. To simplify the notations in analysis, we define wk =
col{xk,yk, λk, μk}, w∗ = col{x∗,y∗, λ∗, μ∗}, vk = col{yk, λk, μk}, v∗ =
col{y∗, λ∗, μ∗} and the positive definite matrix H = diag{ c

2Π, I
2c , I

2c}.

Theorem 1. Given Assumptions 1 and 2, the sequences {xk} and {vk} gener-
ated by (8a)-(8d) satisfy

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H . (12)

Moreover, limk→∞ vk = v∗ and limk→∞ xk = x∗.

Proof. In accordance with the first-order optimality conditions of subproblems
(8a) and (8b), we have

−(Π̄λk + AT μk + cΠ(xk+1 − yk) + cAT (Axk+1 − b)) ∈ ∂F (xk+1), (13)

cΠ(xk+1 − yk+1) + Π̄λk ∈ ∂IC(yk+1). (14)

Then, combining (13) with (8c) and (8d), and combining (14) with (8c), we
obtain

−(Π̄λk+1 + cΠ(yk+1 − yk) + AT μk+1) ∈ ∂F (xk+1), (15)

Π̄λk+1 ∈ ∂IC(yk+1). (16)
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Notice that the indicator function of a set is convex, but it is not differentiable.
Since F and IC are convex functions, we have

F (xk+1) − F (x∗) + IC(yk+1) − IC(y∗)

≤ −(x∗ − xk+1)T dF (xk+1) − (y∗ − yk+1)T dIC(yk+1)

= (x∗ − xk+1)T (Π̄λk+1 + cΠ(yk+1 − yk) +AT μk+1) − (y∗ − yk+1)T Π̄λk+1

= (x∗ − xk+1)TAT μk+1 + c(x∗ − xk+1)T Π(yk+1 − yk) + (yk+1 − xk+1)T Π̄λk+1,

where dF (xk+1) can be any sub-gradient of F at xk+1 and dIC(yk+1) can be
any sub-gradient of IC at yk+1; in the first equality we use (15) and (16), and
in the last equality we use (11d). Note that IC(yk+1) = IC(y∗) = 0. Then, for
any λ and μ, utilizing (11c) we obtain

F (x
k+1

) − F (x
∗
) + λ

T
Π̄(x

k+1 − y
k+1

) + μ
T
(Ax

k+1 − b)

≤ (μ − μ
k+1

)
T
(Ax

k+1 − b) + (λ
k+1 − λ)

T
Π̄(y

k+1 − x
k+1

) + c(x
∗ − x

k+1
)
T

Π(y
k+1 − y

k
).

Then, utilizing (8c) and (8d), we obtain

F (x
k+1

) − F (x
∗
) + λ

T
Π̄(x

k+1 − y
k+1

) + μ
T
(Ax

k+1 − b)

≤ 1

c
(μ − μ

k+1
)
T
(μ

k+1 − μ
k
) +

1

c
(λ − λ

k+1
)
T
(λ

k+1 − λ
k
) + c(x

∗ − x
k+1

)
T

Π(y
k+1 − y

k
)

=
1

2c
(‖μ − μ

k‖2 − ‖μ − μ
k+1‖2 − ‖μ

k+1 − μ
k‖2

) +
1

2c
(‖λ − λ

k‖2 − ‖λ − λ
k+1‖2 − ‖λ

k+1 − λ
k‖2

)

+
c

2
(‖Π̄(x

∗ − y
k
)‖2 − ‖Π̄(x

∗ − y
k+1

)‖2
+ ‖Π̄(x

k+1 − y
k+1

)‖2 − ‖Π̄(x
k+1 − y

k
)‖2

)

=
1

2c
(‖μ − μ

k‖2 − ‖μ − μ
k+1‖2 − ‖μ

k+1 − μ
k‖2

) +
1

2c
(‖λ − λ

k‖2 − ‖λ − λ
k+1‖2 − ‖λ

k+1 − λ
k‖2

)

+
c

2
(‖Π̄(y

∗ − y
k
)‖2 − ‖Π̄(y

∗ − y
k+1

)‖2 − ‖Π̄(y
k+1 − y

k
)‖2

)

− 〈λ
k+1 − λ

k
, Π̄(y

k+1 − y
k
)〉, (17)

where in the first equality the identity (a1 − a2)T (a3 − a4) = 1
2 (‖a1 − a4‖2 −

‖a1 − a3‖2) + 1
2 (‖a2 − a3‖2 − ‖a2 − a4‖2) is used, and (8c) and (11d) are used in

the last equality. As IC is convex, we have (y1 − y2)T (dIC(y1) − dIC(y2)) ≥ 0,
using (16) and setting y1 = yk+1 and y2 = yk, then we obtain

〈Π̄(λk+1 − λk),yk+1 − yk〉 ≥ 0. (18)

Since IC(yk+1) = IC(y∗) = 0, with (11c) and (11d), one has

F (xk+1) − F (x∗) + (λ∗)T Π̄(xk+1 − yk+1) + (μ∗)T (Axk+1 − b)

= L(xk+1,yk+1, λ∗, μ∗) − L(x∗,y∗, λ∗, μ∗) ≥ 0. (19)

When λ = λ∗ and μ = μ∗, substituting (18) and (19) into (17), we get

c

2
‖yk+1 − y∗‖2Π +

1
2c

‖λk+1 − λ∗‖2 +
1
2c

‖μk+1 − μ∗‖2

≤ c

2
(‖yk − y∗‖2Π − ‖yk − yk+1‖2Π) +

1
2c

(‖λk − λ∗‖2 − ‖λk − λk+1‖2)

+
1
2c

(‖μk − μ∗‖2 − ‖μk − μk+1‖2). (20)


