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Preface 

Agricultural residues are a significant waste product of various agriculture practices. 
These residues mainly include crop residues, industrial processing wastes, livestock 
wastes, and fruit and vegetable wastes. Global trends in agricultural waste produc-
tion reveal a complex landscape influenced by various factors. Rapid population 
growth, urbanization, and changing dietary preferences contribute to increased 
demand for food, amplifying agricultural activities. This in turn leads to higher 
waste production, encompassing crop residues, post-harvest losses, and livestock 
waste. Farmers in the countryside burn agricultural waste on their fields after each 
harvest season. As a result, it has polluted the country’s rural areas, water, and air. 
Efforts to address food security may inadvertently escalate waste volumes. More-
over, as countries modernize, the shift toward intensive farming practices and agro-
industrial activities intensifies waste generation. These residues are usually left to 
decompose, or dumped in landfills, leading to environmental degradation and health 
hazards. However, with the growing demand for sustainable agriculture practices, 
there is a need to find innovative ways to utilize these residues. This book aims to 
provide a comprehensive exploration of the potential of agriculture waste valoriza-
tion, showcasing innovative technologies and applications for transforming waste 
materials into valuable resources such as value-added metabolites, bioenergy, etc. 
Addressing various aspects of the agricultural waste-to-wealth paradigm, it will 
serve as a valuable resource for researchers, policymakers, and industry profes-
sionals seeking sustainable solutions for agricultural residue management and the 
transition to a more circular economy. 

There are 17 chapters in this book, divided into 4 parts. Part I is the Introduction 
consisting of two chapters. Chapter 1 provides an overview of the impacts of 
agricultural waste on the environment, and Chap. 2 provides a glimpse of various 
valorization strategies in agricultural residue management. Part II (Routes for Val-
orization to Agricultural Wastes) consists of four chapters describing the biochem-
ical and thermochemical conversion strategies, emerging technologies for the 
extraction of value-added compounds from agriculture wastes along with the inte-
gration of cross-industry technology to increase precision agriculture output and
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efficiency, including the Internet of Things, artificial intelligence, blockchain, 
machine learning, unmanned aerial vehicles, and artificial neural networks for the 
transformation of agricultural activities on digital platforms. One of the chapters in 
this section has explored the possibility of biodegradable trash as a feasible substitute 
for developing a maintainable economy that aids society by providing safer and less 
hazardous greenways for the manufacture of nanoparticles. Part III (Recent Trends in 
the Valorization of Agricultural Wastes) consists of nine chapters covering a wide 
range of aspects on agro-waste valorization, such as the production of single-cell 
protein, biofertilizers, and application in soil amendment, high-value animal feed, 
sustainable packaging materials, i.e., bioplastics, biopolymers, and biocomposites, 
sustainable building materials, and production of bioenergy. A chapter is dedicated 
to dealing with agricultural waste applications in water and wastewater treatment. 
Part IV (Public Policy and Circular Economy) has two chapters discussing the 
challenges and perspectives in agri-waste valorization, taking sugarcane trash as a 
case study, and the last chapter on economic viability and policy implications of 
agriculture waste valorization: social, economic impacts, policy frameworks, and 
regulations, with a case study in Veracruz, Mexico. 

vi Preface

The book provides up-to-date information on research and development in the 
field of agricultural residue transformation into the production of high-value prod-
ucts and biocommodities, from waste to wealth. The book will be useful for all those 
involved in the environment, disposal of agricultural waste, rural economy, produc-
tion of useful metabolites, and energy. Editors wish to thank all the international 
contributors who have put their time at our disposal and made serious efforts to put 
all the latest information in one place for this book. We are thankful to Prof. Cristina 
Trois, Director of the Centre for Renewable and Sustainable Energy Studies, 
South African Research Chair in Waste and Climate Change (SARCHI), School of 
Engineering, University of KwaZulu-Natal, for accepting the book proposal in the 
“Waste as a Resource” Book Series. We are also thankful to the staff at Springer 
editorial and production house for their professional support. 

Udaipur, Rajasthan, India Jaya Arora 
Udaipur, Rajasthan, India Abhishek Joshi 
Bhubaneswar, Odisha, India Ramesh C. Ray
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1.1 Introduction 

The world’s population marked 8 billion people on November 15, 2022, and with 
this milestone of growing population, it is expected to increase to 9.7 billion by 2050 
and 11.2 billion by 2100, respectively (United Nations Department of Economic and 
Social Affairs, Population Division, 2022). The world population is increasing daily, 
and fulfilling the food requirements of this growing human population is a major 
challenge worldwide (Arora et al., 2023; Koul et al., 2022; Riseh et al., 2024). To 
combat this food insecurity, global food production has increased significantly as a 
result of the use of modern agricultural techniques. Particularly in developing 
nations like India and Mexico, the development of dwarf varieties of rice and 
wheat has a major positive impact on food grain production (Duque-Acevedo 
et al., 2020). For farm scientists, achieving SDG 2 (Sustainable Development Goal 
2) with this growing population is a difficult task. Another important factor is to 
achieve a balance between the production of nutritious food production and farmer 
income. To feed this population, agroecological and organic agricultural concepts 
are integrated (Giller et al., 2021). It is imperative to control population growth while 
managing agro-industry waste efficiently. Therefore, it is necessary to use all 
resources sustainably (Ramawat et al., 2023). China, India, and Africa have seen 
incredible population and economic growth over the past century, along with an 
increase in the production of agricultural waste, with China holding the top position 
and India being the second-largest country in agricultural waste generation (Kaul 
et al., 2022). The agricultural wastes which are the by-products of producing and 
processing agricultural products mainly staple food crops, fruits, vegetables, and 
livestock manure produce 998 million tons every year at the global level (Joshi & 
Arora, 2023; Raut et al., 2023; Tripathi et al., 2019, Fig. 1.1). These waste products 
came from arable land and horticulture practices. Stems, branches, and leaves make 
up the majority of crop residue (Mohite et al., 2022; Ray, 2022). Unfortunately, only 
a small proportion of this waste is utilized in the form of fodder for cattle, used as 
manure, shed building, low-quality paper, and matchsticks making, while most of it 
is being disposed of through random burning or landfilling activities (Maji et al., 
2020; Patel et al., 2022; Phiri et al., 2023). Burning agricultural waste has tradition-
ally been used to prepare land for the next crop cycle (Arora et al., 2023; Choochuay 
et al., 2022). They may contain materials useful beings, but their economic value is 
less than the cost of collection (Obi et al., 2016). 

The disposal of agricultural waste through open burning, landfilling, and direct 
dumping significantly contributes to the emission of various gaseous and solid 
pollutants including carbon dioxide (CO2), carbon monoxide (CO), methane



(CH4), nitrogen oxides (NOx), sulfur oxides (SOx), particulate matter (PM10 and 
PM2.5), and polycyclic aromatic hydrocarbons (PAHs). These pollutants can cause 
serious environmental damage and pose a risk to human health and safety (Kaab 
et al., 2019; Koul et al., 2022). Besides, disposal of agrochemicals (fertilizer, 
pesticides, herbicides veterinary antibiotics) rich residue could result in the deterio-
ration of natural resources, particularly soil and water at a regional scale, and may 
threaten people’s health (He et al., 2019). 
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Fig. 1.1 Classification and major examples of agricultural wastes 

Another important issue related to agricultural waste is related to the economy of 
a country. Despite agricultural food loss, the food waste generated in the food chain 
comprised 42% from domestic activities, 38% from food dispensation, and 20% 
from other procedures (Capanoglu et al., 2022; Bancal & Ray, 2022). Such food 
waste has been estimated at around 57 million tons costing EUR 130 billion in the 
European Union (EAA, 2024). Thus, food waste reduction can be used to feed the 
starving deprived people of the growing population. It is a critical issue in terms of 
the economy, environment, and society. To combat the situation of increasing agro-
waste, many countries started working on 5R strategies (Refuse, Reduce, Reuse, 
Repurpose, and Recycle). The agriculture waste is now being reused as the substrate 
for producing various value-added compounds (Arora et al., 2023; Bala et al., 2023, 
see Chap. 2 for details). Agricultural waste can be valorized through various 
strategies to produce the desired compound and achieve the goals of sustainable 
development (see Chap. 2). Besides this reduction in food loss is also a big measure 
being taken up by many countries to fill the food gap, generated by 2050 for feeding 
approximately 9 billion population (Capanoglu et al., 2022). This chapter deals with



the current status of agro-waste generation throughout the world and its impact on 
the environment along with regulatory framework and policies being implemented 
by governments of various countries. 
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1.1.1 Trends in Agriculture Waste Production 

Global trends in agricultural waste production reveal a complex landscape 
influenced by various factors. Rapid population growth, urbanization, and changing 
dietary preferences contribute to increased demand for food, amplifying agricultural 
activities. This in turn leads to higher waste production, encompassing crop residues, 
post-harvest losses, and livestock waste. Farmers in the countryside burned agricul-
tural waste on their fields after each harvest season. As a result, it has polluted the 
country’s rural areas’ water and air (Tran et al., 2024). Efforts to address food 
security are directly correlated with an increase in waste volumes. 

On the international scale, agriculture waste varies widely by country and region. 
In the Food Waste Index Report (United Nations Environment Programme, 2021), 
studies were carried out with 152 food waste data points identified in 54 countries 
representing 75% of the world population. The three main sectors were identified for 
food waste calculation, comprising household, food service, and retail. The contri-
bution of high-income, upper-middle income, and lower-middle-income countries in 
household waste generation is 79, 76, and 91 kg/capita/year, respectively, while for 
low-income group, data is insufficient. The high-income countries’ contribution to 
food service and retail is 26 kg/capita/year and 13 kg/capita/year, while for the rest 
groups, the data is insufficient. Overall, the per capita per year food waste generation 
is similar in high, upper, and lower-middle-income countries (United Nations 
Environment Programme, 2021). The estimated waste, arising from food supply 
chains mainly produced in special geographical conditions, are vegetable oil in the 
UK approx. 50,000–100,000 tons per year, tomato pomaces in Europe approx. 
4,000,000 tons per year, wheat straw in the USA approx. 57,000 tons per year, 
cereal waste in Europe approx. 40,000–45,000 tons per year, orange peel in the USA 
approx. 700 tons per year, grape pomace in France approx. 700 tons per year, olive 
waste worldwide 2,881,500 tons per year, 3,000,000–4,200,000 tons per year apple 
pomace worldwide, and 70–140 tons per year potato peel worldwide (Capanoglu 
et al., 2022). 

China being the most populous country is occupying the top position in agricul-
ture waste generation. Recently China has generated 870 million tons of straw 
comprising 230 million tons (MT) of rice straw and 1.06 billion tons (BT) of poultry 
manure, livestock along 160 MT of household waste as agriculture waste. China is 
making policies, generating funds to reuse these agricultural wastes, and diverting 
towards bioenergy generation to fulfill the ever-increasing demand for energy (Liu 
et al., 2022; Cong et al., 2023). India is the second-largest country in terms of 
agricultural output, with 70% of rural households still depending on agriculture for 
their livelihood.
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India produces 350–990 MT/year of agricultural waste comprising 130 MT/year 
of paddy straw (Koul et al., 2022). In a study done by Jain et al. (2014), the major 
agricultural waste residue comprised of cereals including millet husk, rice husk and 
oilseeds including groundnut cake and rapeseed mustard cake, fibers with jute, 
cotton stalk, coconut husk, and sugarcane bagasse. The edible part of crop, the 
residue-to-crop ratio, and the dry matter fraction in the crop biomass were used to 
estimate the amount of crop residue generated. For cereal crops, the residue-to-crop 
ratio ranged from 1.5 to 1.7, for fiber crops from 2.15 to 3.0, for oilseed crops from 
2.0 to 3.0, and for sugarcane, it is 0.4. Nine major crops produced 620.4 MT of dry 
crop residue in total. Uttar Pradesh made the largest contribution followed by 
Punjab, West Bengal, Haryana, Maharashtra, and Andhra Pradesh in crop residue 
generation and further burning (Jain et al., 2014). 

Malaysia, having good agricultural practices, alone produces almost 1.2 MT of 
agricultural waste with pineapple leaves as one of the major agricultural waste 
(Sarangi et al., 2023). Nowadays to achieve zero agriculture waste target, Malaysia 
has taken the initiative to derive commercial products from pineapple leaves includ-
ing high-quality fibers, bioethanol, biofertilizer, and hydrogels (Sarangi et al., 2023). 
Iran produced approximately 3.1 MT of rice (paddy) in 2019, according to FAO 
statistics. Thus, the production of rice husk and straw will be approximately 
620 thousand tons and 4.65 MT, respectively, in the coming years (Pashaki et al., 
2024). 

In EU countries, agricultural waste, including food waste and related unused 
products, was estimated at around 2.6 BT/year, from the year 2010 to 2016, which 
was greater than the waste generated in all other sectors (i.e., industrial solid waste 
and municipal solid wastes) (Bedoić et al., 2019). Eurostat estimated that 0.088 BT 
of agriculture waste was generated in the year 2018. EU is contributing approxi-
mately 1.3 BT/year to global food waste generation according to the United Nations’ 
Food and Agriculture Organization (FAO) (Duquennoi & Martinez, 2022). Europe 
including the former Russian Federation contributed 14% to global food wastage 
and hold the third position worldwide in this sector comparable to North America 
and Oceania (also 14%). In the same year, Industrialized Asia and South and 
Southeast Asia contributed to 28% and 23% of food waste generation (Lipinski 
et al., 2013). 

Agriculture waste generation is an indispensable part of countries where either 
agriculture plays a major role in its gross domestic product (GDP) or has the burden 
to feed the ever-increasing population. Worldwide various organizations are keeping 
an eye on that sector to make it more sustainable in terms of the generation of 
valuable by-products and safe disposal of such agricultural waste. This is not the 
point in debating which country is producing which waste more as the data points are 
random and not comparable; the time is to take action to achieve SDG 12.3, SDG 
12.4, and SDG 12.5 of Agenda 2023 by ensuring sustainable consumption and 
production of food.
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1.2 Impact of Agriculture Waste on the Environment 

Various agricultural activities are correlated with an increase in waste biomass 
generation at different levels. The improper disposal results in various hazardous 
environmental impacts (Fig. 1.2). The following sections deal with some of them in 
detail. 

1.2.1 Emissions of Greenhouse Gases (GHGs) 

Open burning is the primary cause of air pollution, climate change, and the melting 
of ice and snow in regions such as the cryosphere (Estrellan & Iino, 2010). 
Worldwide, farmers frequently burn cultivated fields to remove stalks, weeds, and 
leftovers before planting new crops. Stubble burning is a substantial contributor to 
air pollution, particularly in South Asia (Abdurrahman et al., 2020). Several recent 
studies have reported that open burning of crop residues releases substantial amounts 
of PM, black carbon, PAHs, volatile organic compounds (VOCs), and other toxic 
pollutants into the atmosphere, which adversely affect air quality, produce photo-
chemical smog, and reduce visibility (Mehmood et al., 2020; Jaffe et al., 2020; Bahşi 
et al., 2023). In a recent study, Phuong et al. (2021) investigated the impact of open 
rice straw burning on the air quality in the Mekong Delta of Vietnam. This study 
reported a substantial increase in the concentrations of PM, PAHs, VOCs, and

Fig. 1.2 Impacts of 
agricultural waste on 
Ecosystems and human 
health



Region

Estimated emission (KT)

O

primary gaseous pollutants. Furthermore, a 1000-fold increase in PAH concentration 
was reported during this study. The latest gridded emission inventory of PM2.5 

emissions from residue burning in India reported 990.68 kilotons (KT or Gg) of 
PM2.5 emissions (Sahu et al., 2021), with rice contributing 41% followed by wheat 
(27%) sugarcane (14%), maize (8%), and coarse cereal (7%).
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Table 1.1 Estimated region-
wise GHGs emissions by the 
crop residue-burning practices 
in the year 2021 

CH4 N2 CO2 eq (AR5) 

Africa 151.3226 3.923 5276.6278 

America 275.3083 7.1374 9600.0434 

Asia 522.663 13.5506 18,225.473 

Europe 121.9359 3.1608 4251.8172 

Oceania 14.6803 0.3807 511.9339 

World (total) 1085.9101 28.1525 37,865.8953 

Data generated from agri-food systems disseminated in the 
FAOSTAT Climate Change Emissions domains 

Also, open burning practices lead to the release of gaseous pollutants, including 
CO2, CH4, and N2O, which are potent GHGs. These GHGs have detrimental impacts 
on global warming and climate change (Jogdand, 2020; Mar et al., 2022). Both CO2 

and CH4 emissions from burning can be attributed to combustion processes, whereas 
N2O emissions can be attributed to the decomposition of nitrogen-containing com-
pounds in soil after a burning event (Jiménez et al., 2015). As reported in a recent 
study by Abdurrahman et al. (2020), burning 63 MT of crop stubble releases 3.4 
metric tons of CO, 0.1 metric tons of NOx, 91 metric tons of CO2, and 0.6 metric 
tons of CH4 into the atmosphere. 

The most recent data from FAOSTAT indicate that the global emissions of CH4, 
N2O, and CO2 (eq) resulting from crop residue burning in 2021 are estimated to be 
1085.91, 445.17, and 396,983 KT, respectively (Anonymous, 2024). Furthermore, 
Asia is the largest emitter, accounting for over 48% of total CH4, N2O, and 
CO2(eq) emissions, followed by Africa, America, Europe, and Oceania 
(Table 1.1). A recent study that used a novel satellite-based approach to track crop 
residue burning reported that GHG emissions from agricultural residue burning 
across India have increased by 75% (1.3 ton CO2e per hectare) since 2011 
(Deshpande et al., 2023). 

Other major agri-food system practices such as agri-food waste disposal systems, 
food processing, and manure management have also produced organic waste, which 
is commonly disposed of in landfills and composted. A variety of pollutants are 
released during these processes, including GHGs, phenols, heavy metals, and acid-
sensitive compounds (Gaur et al., 2020). When GHGs react with water, they create 
acidulous compounds such as nitric acid, sulfuric acid, and ammonium nitrate, 
which later disperse as acid rain that harms every component of both terrestrial 
and aquatic ecosystems (Debnath et al., 2021; Bhardwaj & Saxena, 2023). 

Based on the most recent data from FAOSTAT, it is estimated that the global 
emissions of CH4 in 2021 accounted for 42,283.84 KT from agri-food waste 
disposal, 159.30 KT from food processing, and 9964.68 KT from manure



Agri-food system practices Region O

management practices (Anonymous, 2024). Similarly, global N2O emissions were 
estimated to be 244.97 KT from agri-food waste disposal, 6.413 KT from food 
processing, and 445.18 KT from manure management practices. Meanwhile, global 
CO2(eq) emissions were estimated to be 1,281,260.13 KT from agri-food waste 
disposal, 659,004.39 KT from food processing, and 659,004.39 KT from manure 
management practices (Table 1.2). In the current report published by the European 
Environment Agency (EEA), in 2024, agriculture in the European Union contributed 
to 11% of GHGs, with a significant contribution of harmful air pollutants such as 
ammonia. 
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Table 1.2 Estimated region-wise GHGs emissions by the different practices of agri-food systems 
in the year 2021 

Estimated emission (KT) 

CH4 N2 CO2 eq (AR5) 

Agri-food waste disposal Africa 5824.572 29.4668 170,896.7215 

Americas 9395.6797 37.9916 276,465.4041 

Asia 22,565.3707 137.1134 689,840.3073 

Europe 4268.7354 38.7371 137,033.9414 

Oceania 229.4889 1.6641 7023.7549 

World (total) 42,283.8467 244.973 1281,260.1293 

Food processing Africa 1.5101 0.1409 10,164.5488 

Americas 15.8731 0.8762 145,437.1035 

Asia 121.0629 4.0253 295,689.5149 

Europe 19.3422 1.2858 198,386.6935 

Oceania 1.5093 0.0848 9326.5353 

World (total) 159.2977 6.413 659,004.396 

Manure management Africa 769.3245 28.8953 10,164.5488 

Americas 2356.2583 88.1227 145,437.1035 

Asia 4061.8643 224.2352 295,689.5149 

Europe 2463.3302 96.601 198,386.6935 

Oceania 313.9044 7.3231 9326.5353 

World (total) 9964.6817 445.1773 659,004.396 

Data generated from agri-food systems disseminated in the FAOSTAT Climate Change Emissions 
domains 

1.2.2 Pollution of Land and Water Resources 

Agricultural activities generate a significant amount of organic waste, which can 
have significant impacts on terrestrial as well as aquatic ecosystems if improper 
landfilling and dumping are not managed (Siddiqua et al., 2022). 

Undoubtedly, the agriculture sector consumes 70% of the global surface water 
supply and is the primary cause of the deprivation of both surface and groundwater 
resources (Jury & Vaux, 2007). Over the past decades, there has been a significant



increase in the use of fertilizers, pesticides, herbicides, and other synthetic agri-
chemicals to meet the growing food demand in moving dietary preferences and 
population growth (Verma et al., 2023). When these chemicals are applied beyond 
the capabilities of the soil to retain, agrochemical runoff during the production of 
crops, vegetables, and fruits can lead to water pollution (Pericherla et al., 2020; 
Verma et al., 2022; Zahoor & Mushtaq, 2023). 
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Although, nitrogen (N) and phosphorus (P) are crucial macronutrients for plant 
growth, an excess amount of these nutrients in water can have severe ecological 
consequences. The presence of excessive amounts of nitrate (NO3

�) and phosphate 
(PO4 

3�) in surface waters can result in eutrophication, which is caused by excess 
nutrients stimulating the growth of plants and algae (Liu et al., 2021; Akinnawo, 
2023). 

It has been shown that the groundwater can be contaminated by synthetic 
pesticides and herbicides through a process called leaching, which implicates the 
downward crusade of chemicals from the soil surface by rainfall, infiltration, and 
irrigation (Sadegh-Zadeh et al., 2017). As a result of the intensive use of pesticides in 
agriculture for high yields, water bodies have been polluted by runoff from terrestrial 
environments, as well as the direct disposal of chemical waste. Besides deteriorating 
water quality, these chemicals also pose a threat to non-target organisms, including 
fish, shrimp, phytoplankton, and zooplankton (Kumar et al., 2023). 

Similarly, veterinary antibiotics are widely used in livestock farming, and their 
utilization is anticipated to increase by over 60% shortly (Spielmeyer, 2018). A 
substantial portion of such antibiotics added to animal feed is excreted in the urine or 
feces. Studies have indicated that many antibiotics are strongly adsorbed in soils and 
are not easily degraded. Upon excretion, antibiotics can pollute the surface or 
groundwater via nonpoint source pollution from manure-applied land (Peña et al., 
2020; Kokotović et al., 2024). Despite the low concentrations, manure-applied 
antibiotics could lead to a decline in microbial population by shrinking food sources 
and affecting decomposition and mineralization processes (Zaller et al., 2021; Kaur 
et al., 2021). 

The pollutants generated from agri-food and livestock production practices have 
detrimental effects on aquatic ecosystems, resulting in a decline in fish populations 
and alterations to the composition of aquatic plants and animals (Akinbile et al., 
2016; Zhao et al., 2020). Furthermore, these pollutants can disrupt biodiversity by 
eliminating weeds and insects, which can have cascading effects on the ecological 
food chain (Mahmood et al., 2016; Naz et al., 2023). 

Food processing industries, such as oil mills and paper and pulp industries, have 
detrimental effects on both land and water resources. The waste produced by these 
industries contains a mixture of organic and inorganic contaminants, primarily 
arising from utensils and floor cleaning rather than food waste (Singh & Chandra, 
2019). This wastewater, commonly referred to as effluent, ultimately flows into 
rivers and lakes, leading to pollution of aquatic ecosystems (Asgharnejad et al., 
2021). Furthermore, the waste generated from the lye peeling of vegetables and 
fruits, which utilizes high salt concentrations for pickling and food processing, has



been shown to adversely affect soil fertility. Several recent studies have demon-
strated that residual waste and effluents produced by food processing industries 
adversely impact aquatic and terrestrial ecosystems, leading to changes in water 
and soil quality as well as a decline in aquatic and terrestrial creature populations 
(Nguyen et al., 2020; Read et al., 2020; Shabir et al., 2023). 
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1.2.3 Impact on Human Health and Well-Being 

The burning of crop residues releases a mixture of hazardous pollutants that can 
exacerbate respiratory diseases, including asthma, chronic obstructive pulmonary 
disease, and bronchitis (Parikh et al., 2021). Recent studies have also linked expo-
sure to chronic pollutants to adverse cardiovascular outcomes, such as an increased 
risk of heart attack, stroke, and cardiovascular mortality (Adetona et al., 2020; 
Chukwuemeka et al., 2021). 

The abundant release of pollutants like black carbon, PM2.5, and some gaseous 
pollutants (SO2, CO, N2O, etc.,) during stubble burning can induce systemic inflam-
mation, oxidative stress, and endothelial dysfunction, contributing to the develop-
ment and progression of cardiovascular and neurodegenerative disorders (Jadhav 
et al., 2022; Kusumawardani et al., 2023). Long-term exposure to these pollutants 
can also increase stress, anxiety, and depression as well as decrease cognitive 
function and productivity (Lai et al., 2022; Ramadan et al., 2023). It has been 
shown that psychologically vulnerable populations, such as children, the elderly, 
and individuals with preexisting health conditions, are disproportionately affected by 
these pollutants, further contributing to social disparities in health outcomes (Ajay 
et al., 2022; Khurana et al., 2023). 

Landfilling and disposal practices for agro-industrial waste pose significant risks 
to human populations. Residents living near landfills may experience respiratory 
issues and infections owing to chronic exposure to landfill emissions, particularly 
VOCs and PM (Ogbuehi et al., 2022). Agro-industrial waste contains organic 
pollutants, pathogens, and heavy metals, which can be leached into water bodies, 
causing waterborne diseases such as diarrhea and drowsiness, especially in 
populations that rely on untreated or inadequately treated water sources (Kumari 
et al., 2017; Asomaku, 2023). 

During the cultivation practices, agricultural workers are frequently exposed to 
synthetic agrochemicals, which can negatively impact both workers and surrounding 
communities. Through skin contact, exposure to these chemicals may cause serious 
health problems, such as diabetes, reproductive disorders, neurological dysfunction, 
cancer, and respiratory illness (Rani et al., 2021).
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1.3 Regulatory Framework and Policies 

Regulatory frameworks and policies are crucial for managing the environmental 
impact of agricultural waste and promoting sustainable waste management practices. 
International agreements, conventions, and policies provide a global cooperative 
framework for environmental issues, while national legislation and regulations 
establish standards and requirements for waste management (Joshi et al., 2019; 
Zorpas, 2020). 

The Basel Convention, established in 1989, aims to control the transboundary 
movement of hazardous wastes and ensure environmentally sound management. It 
provides guidelines for waste classification, minimization, and disposal, emphasiz-
ing the prevention of pollution and the protection of human health and the environ-
ment. Regulating the international trade of hazardous waste helps to prevent 
dumping and improper disposal practices (Krueger, 2001). 

The Stockholm Convention, adopted in 2001, targets persistent organic pollutants 
(POPs) related to agriculture, such as pesticides and agrochemicals. Essentially, this 
convention aims to eliminate or restrict the production, use, and release of POPs 
(Rayfuse, 2016). It contributes to protecting biodiversity and public health by 
minimizing the release of POPs into the environment (Wang et al., 2022). 

International cooperation and coordination regarding environmental issues, 
including agricultural waste management, is greatly facilitated by the UN Environ-
ment Programme (UNEP). The UNEP promotes integrated approaches to addressing 
agricultural runoff and waste disposal pollution (Ijaiya, 2017). By raising awareness, 
providing technical assistance, and supporting capacity-building efforts, UNEP 
helps countries develop and implement policies and strategies for sustainable agri-
cultural waste management, thus reducing environmental degradation and promot-
ing ecosystem resilience (Citaristi, 2022). Further, see Chap. 17 of this book for 
details on policy frameworks and regulations related to agricultural waste 
management. 

1.4 Conclusion 

The impact of agricultural waste on soil, water, air, biodiversity, and climate poses 
significant challenges to both environmental sustainability and human well-being, 
highlighting the importance of waste management in agriculture. Policy instruments 
and incentives encouraging farmers to adopt environmentally friendly practices 
coupled with RandD initiatives supporting innovation and technological advance-
ment in waste management can help mitigate these challenges. For instance, the 
implementation of “no burn” and 5R (Refuse, Reduce, Reuse, Repurpose, and 
Recycle) strategies has the potential to reduce GHGs and black carbon emissions 
by half, while also providing economic and social benefits not only to farmers but to



the entire population. By implementing comprehensive regulatory frameworks and 
policies, policymakers can protect the environment, promote public health, and 
ensure the sustainability of agricultural production systems. 
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