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Preface

The evolving national programs and the global world-order can be considered to
be driven by three major factors, viz., economics, security and sustainability. It is
interesting to note that de-risking (that deals with security and safety) and reliability
are the two factors that provide support to the top-level objectives, viz. economics,
safety, security and finally to sustainability. The current engineering systems, having
its roots in technological evolution, are essentially governedby rules or specifications,
best practices, hands-on learning, experience, peer review and enforcement systems.
Here the scope for interpretation at times is limited toward arriving at decisions.

There is a phenomenal progress in science and technology that is reflected in
advanced technologies that not only support but effectively enhance safety and reli-
ability objectives. The advancement in safety and reliability technology in safety
critical systems, viz. structural, process, nuclear, space, defense, water transport, rail
and road transport, software, is a testimony or tribute to the success of state-of-the-art
in science and technology. However, when we look at the history of accidents and
societal challenges, we still see that further efforts are required. One of the observa-
tions has been that human factor is one of the major contributing factors to accidents
and unrests. As a result, one still wonders—‘a lot has to be done even now’. On the
positive side, the risk assessment tools and methods themselves have evolved like
failure analysis or to be precise the root cause analysis, human factor development,
modeling for digital systems, surveillance and condition monitoring techniques, etc.
that provides the required and needed edge for development of advanced applica-
tions. However, the new challenges are popping perpetually due to new and complex
scenario that pushes development of advanced tools and methods to achieve the
higher level of maturity, e.g., demands for higher capability in terms of capturing
dynamic scenario, modeling andmanagement of fuzzy aspects, monitoring and prog-
nosis of common cause failure, human factor considerations, data and models such
that the targets associated with improvement in prediction capability on one hand
and acceptable level of risk and uncertainty, on the other, are met.

Probabilistic Risk Assessment (PRA) framework is now considered matured and
dependable enough to support effectively the risk-informed and further risk-based
engineering applications. This is due to the reason that PRA provides an integrated,
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structured and quantified model with provision to characterize uncertainty docu-
mented and ready for any review and evaluation. Here, PRA provides a needed
platform to either complement or supplement the existing deterministic methods as
part of risk-informed approach or as an alternate or standalone approach for not only
risk assessment but also development of risk-based applications requiring identifica-
tion and prioritization, e.g., risk-based in-service inspection, maintenance manage-
ment, safety significance identification to support prioritization of regulatory review
management, etc.

There appears silver lining in the context of de-risking our systems, structures
and components. The phenomenal growth of advanced technologies particularly the
digital technology, availability of complex computing systems, artificial intelligence
and machine learning tools, advances in physics-of-failure and data-driven-based
prognostics and health management approaches coupled with improved availability
of plant design and operational experience, that is creating the needed ecosystems for
advanced research and implementation tools and methods for addressing real-time
challenges in the industry. One of the major developments in say nuclear industry,
design and development of the plants with inherent safety features has potential to
support the safety objectives of advanced and next general systems. One of the inter-
esting examples which created waves is design and development of small modular
reactors (SMRs). This is truly a promising in terms of achieving higher safety and
reliability and eventually meeting the sustainability objectives.

The 5th International Conference on Reliability, Safety and Hazard-2024
(ICRESH 2014) was organized during February 21–24, 2024, at DAE Convention
Centre inMumbai, India. The three major technical programs were plenary sessions,
pre-conference tutorials and parallel sessions. A separate book has been published
based on the 17 keynote talks by distinguished experts. The pre-conference tutorials
were organized on February 21, 2024 and focused on the theme topics in the area
of risk reliability. The parallel technical sessions were most exciting and vibrant and
formed core component of this event. The motivation here was to address some of
the areas that are directly related to existing complex engineering systems and offer
some ideas for future systems. The conference received overwhelming response,
and this book is based on the invited and contributory talks covered in three parallel
sessions spread over three days.

This book entitled Advances in Risk and Reliability Modelling and Assess-
ment—Proceedings of 5th International Conference on Reliability Safety andHazard
(ICRESH 2024) is based on the contributory and invited talks presented during the
parallel sessions of the conference. Total 72 papers were presented that included both
contributory and invited papers. The major theme of the parallel sessions was relia-
bility methods mainly focusing on probabilistic risk assessment (PRA), Reliability,
Availability Maintainability and Safety (RAMS), Hazard Studies, development and
application of risk-informed approach, artificial intelligence and machine learning
(AI&ML) in support of riskmodeling and analysis, human factor considerations, and
the major application areas such as nuclear systems, structural systems, electronics
and software systems, etc. The distribution of papers in the above areas shows that
there is an active interest in the R&D areas dealing with development, challenges
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and future directions for risk and reliability modeling toward application of risk-
informed approach to complex engineering systems. The presentation from students
and scholars in the areas related to the risk and reliability like AI&ML for real-time
applications was one of the major features of ICRESH 2024. Another interesting
aspect was that there were number of presentations on external events. Based on the
reports of sessions chairs and suggestions of experts, recommendations will be made
in respect of future, R&D, availability of resources, collaborative requirements and
creation of advanced infrastructure at national and international levels, such that risk
and reliability research and development provide effective support to industries and
societal applications.

We sincerely thank all the experts, academic, researchers, practicing professionals
and not the least our scholars and students who contributed to the ICRESH 2024.
We thank them for their support and presenting their work capturing their R&D
and professional experiences. Special thanks to Springer team, Ms. Priya Vyas and
colleagues for development andmanagement of the tasks associatedwith this volume
and publishing this book, well in time.

Mumbai, India
December 2024

Prabhakar V. Varde
Gopika Vinod

N. S. Joshi
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A Support Vector Machine Model
for Detection of Transients in Nuclear
Reactor

V. Arunprasath, T. V. Santhosh, Gopika Vinod, P. K. Guchhait, N. Gohel,
and S. Sengupta

1 Introduction

Timely identification of transients is a growing area of research in the safety of
nuclear reactors. Reactors generally are equipped with various supporting systems
for the operator, including plant instrumentation, operator display & data acquisi-
tion systems, alarm annunciation systems, system safety logics, etc. Additionally,
the operator must adhere to standard & emergency operating practices in the event
of any abnormal scenarios. These traditional processes and procedures do, however,
have drawbacks. They can only respond to certain occurrences that fall under the
scope of their fundamental principle models. Additionally, it is difficult to find
accurate models of nuclear reactors based on physical principles, which makes it
impractical to use model-based diagnosis procedures. Data-driven procedures don’t
necessitate in-depth understanding of the process system, in contrast to physical prin-
ciple model-based approaches. Data-driven strategies create empirical models using
process data that are measured in the plant.

In nuclear reactors, the operator’s ability to evaluate a number of alarms and
annunciations, and to take correct action well within the stipulated time is crucial.
It is well-known that one of the major variables that might result in severe accidents
in reactors is human error. Vast amounts of data are nowadays available due to
improvements in fast data recording systems that makes it possible to createMachine
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Learning models to accurately forecast transients and support operators in early
actions.

Various techniques in identification of transients are studied and these results bene-
fits in ensuring safe and cost-effective operation. Typically, these techniques extract
features using pattern recognition techniques to describe system interactions or to
identify anomalous reactor status from related process data [1]. Data based strategies
in monitoring reactors have gained popularity recently [2]. A neural network-based
observing of sensor status in reactors was discussed by Hines et al. [3]. An abnor-
mality detection system by neural network integrated with plant knowledge base was
discussed by Ohga et al. [4]. Use of ANN for the diagnosis of accidents and the deter-
mination of the state of nuclear power plants was discussed in Refs. [5–7]. Sirola
and Hulsund [8] discussed identification of sensor degradation and remaining life
prediction using data analysis and clustering techniques. Whereas Saeed and Peng
[9] presented a diagnosis scheme using neural networks and principal component
analysis which also calculated severity of faults in sensors.

Support Vector Machine (SVM) is a very popular machine learning technique
used in solving regression and classification problems. References [10, 11] discussed
application of SVM for monitoring health of components & anomaly detection in
nuclear power plants. In this paper, an SVMmachine learning model is proposed for
detection of transients in a research reactor. SVMis chosen because they provide good
generalized classification accuracy while being simple to implement with compu-
tational efficiency [12]. In this study, a technique to obtain an optimal SVM model
from variousmodels with different hyper-parameters ranked using a grid search algo-
rithm is presented. Among the many built models, the proposed method produced a
classification model with the highest accuracy and quickest computation time.

2 Transient Detection

Identifying hypothesized transients in a conventional pool type research reactor is
the problem under consideration here. In these reactor configurations, the core is
submerged in a water pool, cooled continuously via forced circulation and passive
valves in case of pump trip. Additionally, cooling towers act as heat sinks. Crit-
ical plant parameters, including process signals, valves and equipment statuses,
are continuously monitored and recorded. Such reactors often have extensive
instrumentation generating & recording large number of process data [13].

In the context of such research reactors, certain transients are often postulated
and these transients represent significant abnormal events in the reactor. These tran-
sients could potentially lead to severe consequences if not appropriately mitigated.
Consequently, the timely detection of these transients during reactor operation is of
paramount importance. Hence, in this study, the problem of identifying and clas-
sifying the major transients hypothesized for such pool type research reactors is
addressed using a SVM model.
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Table 1 Transients modeled for detection

S. No. Transient

1 Loss of flow due to pump trip (LOFA1)

2 Loss of Flow accident due to pump seizure (LOFA2)

3 Loss of coolant accident due to pipe break at pump discharge header (LOCA)

4 Loss of heat sink (LOHS)

3 Dataset

For creating data based models for recognizing transients, it is imperative to have
a dependable and readily accessible dataset. In this study, we employ simulated
transient data generated using the RELAP5/MOD 3.2 code, developed by INL
specifically for analyzing transients and accidents in light water reactors (LWRs).
By utilizing thermal–hydraulic codes, RELAP5 replicates the dynamic behavior of
reactor parameters in accidental scenarios in Light water reactors including research
reactors [14, 15]. Transients occur if the reactor transitions from normal to any
abnormal operating conditions, often resulting from various factors such as system/
component failures, human errors, and internal or external events. For the reactor
being studied, transientswere determined as per IAEASSR-3 [16].Here, four distinct
types of transients are considered utilizing simulated data from these scenarios.
Table 1 shows the transients taken for this work, representing the main process
deviations anticipated in such reactors.

In each transient, trends in plant parameters over time are depicted by the event
sequence simulation. All the simulated plant parameters comprising 16 signals are
utilized for modeling as these are found to be contributing to the four considered
transients. The input data for modeling comprises a labeled dataset categorized into
five classes including normal reactor state. The parameters encompass vital analog
and digital plant data, including level of pool, power, flow of reactor coolants, and
temperatures at inlet & exit of heat exchangers, among others.

4 SVM Algorithm

SVM is a powerful supervised machine learning algorithm widely used for classifi-
cation and regression tasks. An SVM’s primary goal is to identify the best hyperplane
in a high-dimensional feature space for separating data points from various classes.
This hyperplane serves as a decision boundary, facilitating the classification of new,
unseen data points. The key idea behind SVMs is to identify the hyperplane that
maximizes the margin, which is the distance between the hyperplane and the nearest
data points (support vectors) of each class. SVMs look for the hyperplane that not
only divides the data into classes but also maintains a wide gap between them to
improve generalization to new data [17].
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Basic SVM algorithm are applied for classification of binary data. SVM binary
classifier separates two data points of a linearly separable data

(
xi , y j

)
in to positives

and negatives such that

wT x + b ≥ 1 for cases where y j is positive (1)

and

wT x + b ≤ 1 for cases where y j is negative (2)

with the classifying hyperplane given by

wT x + b = 0 (3)

Following is the SVM optimization problem is to calculate the weight w and the
bias b:

min
w,b

1

2
wTw + C

N∑

i=1

ξi (4)

such that

yi
(
wT xi + b

) ≥ 1 − ξi i = 1, 2, . . . , N , (5)

ξi ≥ 0, i = 1, 2, . . . , N (6)

If the hyperplane separating the two classes is not linear, a function �() can be
used to transform the data points to a higher dimensional feature space where the
data is linearly classifiable using the ‘kernel trick’. The decision function in SVM is
given by:

f (x) = sign

(

b +
N∑

i=1

αi yi K (xi , x)

)

, (7)

where αi s are the Lagrange multipliers and K is the kernel function given by

K (u, v) = �(u).�(v) (8)

Some of the most common kernels used are Radial Basis Function (RBF) kernel

K (u, v) = exp

(
−||u − v||2

2σ 2

)
(9)
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and polynomial function kernel. C is the regularization parameter that accounts for
the balance between the training accuracy and themargin sinceC decided the penalty
for misclassifications during the training process. C is a hyper parameter to be tuned
in selecting an SVM model. Other hyperparameters are the parameter γ = 1

2σ2 of
the RBF kernel that sets the spread of the kernel and the degree of polynomial in a
polynomial kernel [17].

SVMs are effective in datasets where high dimensionality is involved. They work
relatively well when there is a clear margin of separation between classes. They also
workwell with non linear decision boundaries with the help of the kernel trick. SVMs
are memory efficient, as only the support vectors need to be stored. And they are
robust against overfitting, as regularization is built into the optimization. However,
it is significant to note that performance of SVMs can be dependent on the choice of
kernel and the setting of regularization parameters [18].

5 Methodology

In preparation for training the SVM model on the input data, a series of crucial
preprocessing steps are undertaken. Firstly, the data undergoes z-score normalization,
a pivotal procedure that ensures each feature within the dataset exhibits a mean of
zero and a standard deviation of one. Subsequently, the data is randomly divided into
two distinct subsets: a development dataset and a validation dataset, thereby laying
the foundation for rigorous model evaluation.

To construct multiple SVM models, a set of hyperparameters is defined, encom-
passing the regularization parameter, denoted as C, the hyperparameter Gamma, and
a selection of diverse kernel functions. These kernels encompass linear, Radial Basis
Function (RBF), and polynomial variations.C ranges from0.01 to 100,whileGamma
spans from 0.001 to 1. This parameter space facilitates the creation of diverse SVM
models, each offering unique combinations of C, Gamma, and kernel functions.

A grid search algorithm is employed to fit these SVMmodels to the training data,
utilizing the development dataset for this purpose. In this grid search process, we
employ k-fold cross-validation to assess the performance of the classifiermodels. The
input dataset is often divided into k subgroups for k-fold cross-validation, ensuring
that each subgroup has roughly the same amount of samples. Each subgroup acts as
the testing subgroup and the training subgroup k−1 times throughout the training
phase. In essence, k classification models are created using k−1 subgroups for
training and the remaining one for testing when using k-fold classification vali-
dation. The results from these k classification models are averaged to determine how
well the final classification performed.

In this study, the k folds are generated using a stratified sampling strategy. In order
to retain the same proportion of samples of different classes as the original dataset,
every subgroup is created to have a balanced distribution of data points across various
labels. Thismethod guarantees that the subgroups that are produced accurately reflect
the statistical distribution within the original dataset.
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The methodology revolves around the construction of multiple SVM models
through the grid search algorithm, culminating in the identification of the optimal
model for classifier fitting. To achieve this, we first evaluate all estimators gener-
ated by the grid search algorithm using testing data generated through k-fold cross-
validation. Subsequently, these estimators are ranked based on their performance
accuracy scores. A predefined threshold accuracy is established, serving as a filter to
retain estimatorswith performance scores above this threshold.Theultimate selection
of the fastest-fitting model is deemed the optimal SVM model.

This chosen optimal SVM model undergoes a refinement phase, where it is
retrained using the complete development dataset and subsequently employed for
classification tasks. Following this training, the fine-tuned model is rigorously tested
using the separate hold-out validation dataset, which was initially partitioned from
the overarching dataset.

A visual representation of this optimization process is illustrated in Fig. 1,
providing a clear overview of the steps involved in the approach.

Fig. 1 Methodology for SVM model selection
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6 Results

The grid search strategy yields multiple SVM models, each with distinct hyper-
parameters. These models undergo thorough training and testing through a k-fold
cross-validation approach. Accuracy scores, derived from hold-out test data folds,
are computed for each model, subsequently leading to their ranking based on perfor-
mance. Table 2 provides a listing of the top 10 ranked models, complete with their
associated hyperparameters, kernel and mean accuracy scores.

Notably, all of these models exhibit performance accuracy exceeding the prede-
fined threshold of 97%. Following ranking, the optimal model is determined as the
fastest among them, characterized by the lowest prediction time. The model which
gives good mean accuracy score and quickest prediction time is found as RBF kernel
SVM with hyperparameters C = 10 and γ = 0.1.

The identified best model, established through the aforementioned strategy, is
subject to further refinement by fitting it to the entirety of the development dataset
before being deployed for predictive purposes on the validation dataset. Figure 2
presents performance plots showcasing the optimalmodel’s behavior across different
hyperparameters, specifically C and Gamma within the RBF kernel.

To evaluate the model’s performance for each transient, we derive the confusion
matrix of the SVM classifier. The matrix serves as a vital tool for assessing the
classification algorithm’s effectiveness. It represents data instances based on actual
class labels in rows and predicted labels in columns, as presented in Fig. 3.

Assessment of the SVM classifier model’s performance under the validation
dataset is tabulated in Table 3, including class-specific performance. The model
performs well in identifying the individual transient with good precision & recall. A
good measure combining precision and recall is the F1 Score which is the harmonic
mean of both the metrics. It can be seen that for all the classes, the F1 metric of the
model is close to1 which is a very good score. Overall validation accuracy of the
optimal SVM model is found to be 96.87%.

Table 2 Top 10 SVM models obtained by Grid-search strategy

Rank C γ Kernel Mean accuracy score

1 100 0.01 RBF 0.972948

2 10 0.1 RBF 0.972248

3 10 0.01 RBF 0.971549

4 1 0.1 RBF 0.971549

5 100 0.001 RBF 0.971316

6 1 1 RBF 0.971082

7 100 0.1 Polynomial 0.971082

8 0.1 1 Polynomial 0.971082

9 10 0.1 Polynomial 0.970616

10 100 0.1 Polynomial 0.970149
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Fig. 2 SVM model classification accuracy versus hyperparameter C for different γ

Fig. 3 Confusion matrix for
the SVM model

Table 3 Performance
metrics for the SVM model Class F1 score/accuracy

NO Event 0.92

LOFA1 1.00

LOFA2 1.00

LOHS 1.00

LOCA 0.94

Overall accuracy 96.87%
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Furthermore, the impact of noise on the classifier model is investigated by intro-
ducing random Gaussian noise, corresponding to a Signal-to-Noise Ratio (SNR) of
20 dB, into the dataset. Notably, the SVM model retains its ability to classify a
majority of samples, albeit with a marginal reduction in the overall classification
accuracy, which settles at 94.5%.

7 Conclusion

This paper addresses the crucial task of early transient identification within the
context of safe nuclear reactor operation. This study leverages a Support Vector
Machine (SVM) model to detect and classify transients in a research reactor of pool
type. A technique for selecting the optimal SVM model from a diverse set of candi-
dates, generated through grid search optimization is proposed. This approach has
yielded a classification model characterized by good performance. Throughout the
study, simulated transient dataset, comprising 16 critical plant parameters, served as
the input for data-driven modeling. The results showcase the efficacy of the proposed
methodology. The selection of the optimal model was based on both accuracy and
computational efficiency, ensuring faster prediction of events. Assessment of model
performance across various transients, was done using confusion matrix and F1
scores. This comprehensive evaluation provides valuable insights into the classi-
fier’s effectiveness across classes. Lastly, the study explored the model’s robustness
by introducing random Gaussian noise. Despite the noise, the SVM model main-
tained its ability to accurately classify a majority of samples with marginally reduced
accuracy. With inclusion of additional parameters and with more data the accuracy
can further be improved even when the number of events to be predicted becomes
large. In summary, this work contributes to the growing field of early transient detec-
tion in research reactors, offering a data-driven approach that helps decision-making
processes thus enhancing reactor safety.
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Reinforcement Learning for Mission
Reliability Based Selective Maintenance
Optimization

Ram S. Mohril , Tarun S. Kudali , Bhupesh K. Lad ,
and Makarand S. Kulkarni

1 Introduction

In numerous engineering applications, it is necessary for systems to execute missions
in a continuous manner, punctuated by a maintenance break that occurs between
two consecutive missions. The feasibility of conducting maintenance on all system
components is hindered by the short period of the maintenance break, as well as
several other constraints. In such situations, the decision-maker needs to decide on a
subset of components to perform maintenance. This maintenance strategy is called
Selective Maintenance (SM), and it is defined as a policy of determining a subset of
maintenance actions to perform when given a set of limited maintenance resources
such as time, cost, spares, and crew [1]. Irrespective of the complexity involved, it is
necessary to solve the SM problem in the minimum possible duration. As the limited
availablemaintenance duration is itself a constraint in the problem, any approach that
requires higher computation time is undesirable since the decision-making process
itself will consume most of the maintenance duration.

The initial research on SM Optimization (SMO) was mostly centered around
using the enumeration approach. However, it was shown that this approach was not
viable when applied to problems characterized by larger solution space. This led
to the development of the next generation of methods coupled with heuristics, like
tabu search [2], genetic algorithm [3, 4], particle swarm optimization [5], differential
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