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Foreword 

Machine learning techniques serve as powerful tools in bioinformatics, specifically 
for predicting the structure and function of proteins, identifying disease causing 
mutations, biomarkers, potential drug-like molecules, and so on. However, it is not 
straightforward to relate the features with performance. On the other hand, a simple 
statistical analysis can provide insights to understand the relationship; for example, 
increase in long-range contacts slows down the folding of proteins, positive charged 
residues tend to dominate in DNA binding domains, etc. Hence, linear algebra has 
the capability to reveal complicated genomic structures in a more direct manner than 
machine learning. 

Almost 10 years ago, Prof. Taguchi and I published a paper on predicting protein 
folding types using principal component analysis (PCA), one of the liner algebra 
methods. He has continued his research to investigate the applications of PCA on 
various biological problems. Recently, he successfully moved to tensors. These 
methods provide insights to understand the concepts due to the fact that the data 
are easily interpreted, and “trace back” the output from input features. It is amazing 
that such a simple strategy can be applied to a wide range of biological problems 
discussed in this book. 

Prof. Taguchi has elegantly designed the book to understand the concepts easily. 
He has provided mathematical foundations on all important aspects followed by 
feature extractions. At the end of the book, he shows that PCA and tensors are 
powerful tools, which perform similar to machine learning techniques in the study 
of biological problems, namely, biomarker identification, gene expression, and 
drug discovery, evidenced with his numerous high-quality publications in reputed 
international journals. 

In essence, this book is a valuable resource for students, research scholars 
and faculty members to simultaneously grasp the fundamentals and applications 
of PCA and tensors. Although the applications listed in this book are limited to
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viii Foreword

bioinformatics, the approach is extendable to other fields as well since they are 
general linear methods, which are easily understandable. 

With these appreciations, I recommend this well-written book to the readers. 

Chennai, India M. Michael Gromiha 
25 March, 2019 



Preface to the Second Edition 

Magic is most fun when you’re looking for it. 
Frieren, Frieren, Season 1, Episode 21 

Since the publication of the first edition, we drastically improved the methods 
described in the first edition. The sections added are 5.7, 5.8, 5.9, 7.10, 7.11, 7.12, 
7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 8.1, 8.2, 8.3. In the sections added in Chaps. 5 
and 7, we described newly proposed strategy that enables us to treat with more 
complicated integration of multiple profiles. In the sections added in Chap. 8, we  
have discussed why proposed method can work well. Based upon the theoretical 
discussion, we proposed the new strategy where we optimized the standard deviation 
used in Gaussian distribution by which P values are attributed to the features and 
the features associated with significant P values are selected. These methods are 
also implemented in the form of R packages as described in the Appendix C. We 
hope that this book can help many people who need to solve the problems described 
in this book. 

Tokyo, Japan Y-h. Taguchi 
March, 2024 
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Preface to the First Edition 

He  stole  something  unexpected. . . ,  your  heart.  
Inspector Zenigata, Lupin III: The castle of Cagliostro, movie, 
Episode 1 

This is a book about very classical mathematical techniques: principal component 
analysis and tensor decomposition. Because these two are essentially based upon 
linear algebra, one might think that these are no more than text book level matters. 
Actually, when I started to make use of them for the cutting-edge researches, many 
reviewers who reviewed my manuscripts complained about the usage of these old-
fashioned techniques. They said, for example, “Why not using more modernized 
methods, e.g., kernel tricks?” or “Principal component analysis is a very old method 
for which no new findings can exist.” In spite of these criticisms, I have continuously 
published numerous papers where I discussed how principal component analysis or 
tensor decomposition can be used for data science in a completely new way. 

The principal reason why such old techniques can work pretty well is because 
of the topic targeted: feature selection in large p small n problem. Large p small 
n problem means that there are huge number of variables of which very small 
number of observations are available. In such situations, it is of course difficult 
to know what has happened in the system, because there are not enough number of 
points that cover the whole state space. This situation is also known as “the curse of 
dimensionality” which means the lack of enough number of observations compared 
with the number of dimensions. This problem remains unsolved over long period. 

In this book, I apply principal component analysis and tensor decomposition 
in order to tackle this difficult problem. There are several reasons why these 
two can work well in this difficult problem. At first, these two are unsupervised 
methods. In contrast to the conventional supervised methods, unsupervised methods 
are more robust. Especially, it is free from overfitting that can easily occur when 
supervised methods are applied to small number of samples with large number of 
dimensions, because unsupervised methods do not learn from labeling from which 
supervised methods must learn. Second, unsupervised methods are more stable than 
supervised methods, because unsupervised methods are independent of labeling. 
Another advantage of principal component analysis and tensor decomposition is that 
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xii Preface to the First Edition 

they consider the interaction between variables not after the features are selected but 
before they are selected. 

The main purpose of this book is feature selection, which means selecting small 
or limited number of critical variables among huge number of variables. Although 
there have been numerous proposals for feature selection, there are very few fitted to 
apply to the large p small n problems. One typical approach among those not fitted 
to large p small n problems is a statistical test. When we would like to find features 
that satisfy some required properties, statistical test can compute the probability 
that the desired property can appear by chance. If some features are associated with 
small enough probability, we can regard that the feature is truly associated with this 
property. In large p small n problem, this strategy often fails. Smaller number of 
samples can increase the probability that the desired property can happen by chance. 
On the other hand, if the number of features are large, small probability can happen 
by chance; if the number of features is as many as . 104, features associated with 
the probability as small as .10−4 can appear with the probability of 1 (i.e., almost 
always). Because of the same reason, even if we try to find the features best fitted 
with the desired property, it might be simply accidental. 

The basic idea to resolve these difficulties using principal component analysis 
and tensor decomposition is as follows. First, before features are selected, whole 
data set is embedded into lower dimensional space. Because feature selection 
is performed within this lower dimensional space, it is not a large p small n 
problem any more. Thus, it is also free from “The curse of dimensionality.” Then 
the dimension in which feature selection is performed is selected with variety of 
methods fitted to desired properties. As can be seen in the later parts of this book, 
this simple idea works surprisingly well. 

In Chap. 1, I re-introduce basic concepts including scalar, vector, matrix, and 
tensor, from data science point of views. Chapters 2 and 3 introduce two embedding 
methods by which dimensions are reduced, principal component analysis as a part 
of matrix factorization and tensor decomposition, respectively. The following two 
chapters explain how we can make use of these two for the feature selection by 
applying them to synthetic data sets. The last two chapters are dedicated to the 
applications of two methods to bioinformatics where large p small n problems are 
very usual. 

Although the application of the proposed methods is limited to genomic science, 
because general workframe of the methodologies is very universal, readers are 
expected to apply these two to their own problems in data science. I am happy to 
hear from their achievements when the methods proposed in this book are applied 
to various problems. 

Tokyo, Japan Y-h. Taguchi 
March, 2019 
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Part I 
Mathematical Preparations 

In this part, we briefly introduce mathematical basics required for understanding 
the content of this book. Most of the part is usually taught in the first grade of 
undergraduate course of university. Thus, some reader might skip this part. It is tried 
to reintroduce basic mathematical concept from the data science point of views.



Chapter 1 
Introduction to Linear Algebra 

None can extinguish souls! 
Momo Minamoto, Release the Spyce, Season 1, Episode 12 

1.1 Introduction 

Linear algebra is composed of simple arithmetic operations: addition, subtraction, 
multiplication, and division. In spite of their simpleness, it is often powerful enough 
to represent some complicated data set. In some sense, linear algebra is something 
like scissors. Although scissors can do only one thing, cutting, it can be used for 
various purposes if it is used by skilled persons. A piece of paper can be a beautiful 
art called as a cutting picture that looks like a very complicated sculpture. A skilled 
hairdresser can use scissors to change a female outlook so beautiful. Likewise, linear 
algebra can be used to understand very complicated data set that is difficult to 
understand otherwise, if you can make use of it so as to let it to demonstrate the 
maximum power. In this chapter, we prepare the knowledge that can be used in the 
later chapters for the application as data science technology. 

1.2 Scalars 

1.2.1 Scalars 

Scalars are numbers that take real values. In the data science context, scalars are 
usually numbers that describe samples. Here samples correspond to some objects 
that will be targeted under the investigation. The examples of pairs of samples and 
associated scalars are: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
Y-h. Taguchi, Unsupervised Feature Extraction Applied to Bioinformatics, 
Unsupervised and Semi-Supervised Learning, 
https://doi.org/10.1007/978-3-031-60982-4_1
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4 1 Introduction to Linear Algebra

• Person and weight 
• Food and price 
• Star and brightness 

Thus, in contrast to the generic algebra, scalars are not always able to be added 
with each other; brightness cannot be added to price, price cannot be added to 
weight, and so on. Not only addition, but also division, multiplication, or subtraction 
are not always possible, either. Arithmetic is possible only between same scalars: 
brightness plus brightness, weight plus weight. In this sense, data science algebra is 
more restricted than usual algebra. 

In the data science, it is critically important to remember that all scalars analyzed 
have origins in the real world; no scalars are purely ideal numbers. This is primarily 
distinct from simple mathematical numbers that do not always have counterpart in 
the real world. Scalars in data science always represent something that exists in the 
real world. 

Exercise 
1.1 List ten pairs of samples and associated scalars. 

1.2.2 Dummy Scalars 

In contrast to scalars that describe samples, samples are often associated with 
features that cannot be described with real values. Such examples are color. 
Although it is possible to artificially attribute real values to colors, e.g., using 
RGB (red, green, and blue) color model, it is empirically useless. In RGB color 
system, colors are represented as combinations of three scalars. For example, red 
corresponds to (1,0,0) and blue corresponds to (0,0,1). Formal addition of distinct 
colors, e.g., red plus blue, results in completely distinct third colors, (1,0,1), which 
corresponds to pink. Thus, it does not make sense. More severely, there are generally 
no ways to add distinct features. What comes if American is added to Japanese (in 
this case, feature is nationality)? In order to avoid this difficulty, dummy scalars 
are usually introduced. All features that cannot be described using real values are 
converted into 1 or 0. If a sample has the feature, corresponding dummy scalar takes 
1 otherwise 0. In the example of colors, the number of scalars is as many as the 
number of colors. If all samples under the investigation can take one hundred colors, 
we have to prepare same number of dummy scalars and add 1 or 0 to them dependent 
on color association with each sample. All samples with red have dummy scalar, 
to which red color is attributed, of 1. Introduction of dummy scalars is critically 
important since its introduction enables us to deal with any features that cannot be 
easily represented by real values. 

Exercise 
1.2 List ten features that must be treated as dummy scalars.
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1.2.3 Generating New Features by Arithmetic 

Although distinct scalars cannot be added with each other, in the real application we 
need to generate new features from scalars. In order to perform arithmetic between 
distinct scalars, multipliers are introduced. Suppose that there are three distinct 
scalars, .x, y and z. In order to enable addition among these, multipliers .α, β and 
. γ are multiplied to scalars as . αx, . βy, and . γ z. Now, it is possible to add them as 
.αx + βy + γ z. Multipliers have two functions. The first function is to make scalars 
nondimensional. Nondimensional scalars mean those without unit. For example, if 
one would like to add weight, price, and brightness, the multipliers of these should 
have unit of inverse of weight, price, and brightness. Then products of scalars and 
associated multipliers are nondimensional. In order to perform arithmetic between 
scalars, introduction of multipliers is essential. The second function of multipliers is 
to equalize the amount of scalars. If weight is measured in kg, it has values between 
0 and 100. If price is defined in Japanese currency, yen, it typically has values 
between 0 and 1,000,000. Brightness can be measured by various units. If lumen 
is employed as unit, brightness typically takes values as large as several thousands. 
Without multipliers, individual contributions of distinct scalars to newly generated 
feature cannot be balanced. Thus, the introduction of multipliers is required in order 
to control contributions of scalars to generated feature. Once scalars are multiplied 
with multipliers, the product of scalars and multipliers can be arguments of any 
arithmetic functions, e.g., . sin and . log. Thus, new features can be generated not only 
by arithmetic but also using functions, e.g., .log(αx + βy + γ z). 

In this context, dummy scalars can also be combined with usual scalars that 
take real values. In this sense, any of .x, y and z can also be dummy scalars. Since 
dummy scalars are nondimensional, multipliers associated with dummy scalars are 
also nondimensional. 

Exercise 
1.3 Generate ten new features using three scalars .x, y and z as well as three 
associated multipliers .α, β and . γ . 

1.3 Vectors 

1.3.1 Vectors 

Vectors are composed of a set of scalars. For convenience, the elements of vectors 
are represented by adding suffix to scalars, e.g., . xj , where x is scalar and j is suffix 
that spans integers. By employing these notations, we are free from introducing the 
numerous characters to represent a set of many scalars. 

In order to be free from representing vectors as a set of many scalars with suffix, 
we can introduce a vector notation, . x,
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Table 1.1 An example of 
vector: foods vs. prices 

Foods Prices 

Bread 100 Yen 

Beef 1000 Yen 

Pork 300 Yen 

Fish 200 Yen 

Table 1.2 Another example 
of vector: foods vs. weights 

Foods Weights 

Bread 200 g 

Beef 300 g 

Pork 100 g 

Fish 150 g 

0 100 200 300 1000 

1 24 3 

prices 

Bread BeefPorkFish samples 

500 

suffix 

Fig. 1.1 A geometrical interpretation of vector .x = (100, 1000, 300, 200). Individual components 
of the vector that correspond to prices of four samples are considered to be four coordinates of 
four points aligned along a line. Prices considered to be coordinates are displayed above the line, 
while suffix that corresponds to four samples is displayed below the line. A red point represents an 
imaginary sample with the price of 500 yen 

.x = (x1, x2, . . . , xM), (1.1) 

where M is the number of samples. In short, it is often represented as .x ∈ RM . This  
says that there are M samples, each of which a scalar . xj is attributed to. A typical 
example of . x is that there are M foods, each of which prices are attributed to, e.g., 
(Table 1.1) where .M = 4 and .x = (100, 1000, 300, 200). 

Exercise 
1.4 Generate some vectors that represent a set of samples. 

It is very usual that samples are accompanied with more than one scalar. For 
example, we can attribute weights to foods (Table 1.2). 

Then, a set of foods is accompanied with additional vector, .y = (200, 300, 100, 150). 

1.3.2 Geometrical Interpretation of Vectors: One Dimension 

It is often very useful to interpret the vectors geometrically. For example, . x =
(100, 1000, 300, 200) can be considered to be coordinates of four points aligned 
along a line (Fig. 1.1). 

There are several advantages of the geometrical representation of vectors. At 
first, it can give samples the order that can be easily visually recognized. By simply
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glancing the sequence of scalars, it is hard to recognize the rank order of scalars. 
Second, the distances between samples can be introduced. Then, from the prices, 
we can say that two pairs of samples, the pair of bread and fish and the pair of pork 
and fish, are equally separated. If we specifically define measure of distance, say 
Euclid distance, we can compute the distance between samples numerically as 

.distance between bread and beef =
√

(100 − 1000)2 = 900. (1.2) 

distance between bread and fish =
√

(100 − 200)2 = 100, (1.3) 

where Euclid distance between two points j and . j ' having coordinates of . xj and 
. xj ' , respectively, can be defined as 

.

/(
xj − xj '

)2
. (1.4) 

Using the numerical distances, we can quantitatively compare two pairs of samples 
on how far they are apart from each other. In this case, bread is nine times apart 
from beef than fish. These two points, the definition of rank order of samples and 
numerical distances between pairs of samples, will turn out to be critical for data 
science analysis. 

An additional advantage of geometrical interpretation is that any points along the 
line automatically have prices. For example, if a point is placed on the line with the 
coordinate of 500 yen (a red point in Fig. 1.1), this point represents a sample with the 
price of 500 yen. This allows us to think about an imaginary sample with this price 
without specifying what it is. This is also a great advantage for data science, which 
must predict something unknown. With geometrical representation, we can discuss 
about samples with arbitrary scalars without specifying what it is. This abstraction 
is very important as can be seen later. 

Exercise 
1.5 Draw geometrical representation of Table 1.2. 

1.3.3 Geometrical Interpretation of Vectors: Two Dimensions 

As denoted in the Sect. 1.3.2, samples can be associated with more than one scalar 
(Tables 1.1 and 1.2). In this case, geometrical representation must also be altered 
from a line to a plane. Figure 1.2 shows geometrical representation of four foods 
according to the scalars shown in Tables 1.1 and 1.2. 

Now, using two scalars simultaneously, the relationship among four foods 
becomes clearer. Beef is apart from other three, because it has the largest weight 
and highest price. As in the one dimension, any points in the plane are automatically 
associated with pairs of scalars: prices and weight. A red point in Fig. 1.2 represents 
an imaginary sample associated with a price of 500 yen and a weight of 250 g.
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Fig. 1.2 A geometrical 
interpretation of Tables 1.1 
and 1.2. Horizontal axis and 
vertical axis correspond to 
prices (Table 1.1) and weights 
(Table 1.2), respectively. A 
red point represents an 
imaginary sample with the 
price of 500 yen and the 
weight of 250 g 

price 

weight 

100 300 1000 

100 

200 

300 

1(Bread) 

2(Beef) 

3(Pork) 

4(Fish) 

Table 1.3 Foods vs. prices 
with using dollar as price 

Foods Prices 

Bread 1 dollar 

Beef 10 dollars 

Pork 3 dollars 

Fish 2 dollars 

If one thinks that there are nothing unclear, one might miss an important point: 
scale. In Fig. 1.2, length that corresponds to 100 yen does differ from length that 
corresponds to 100 g. Nevertheless, there are no reasons to make them equal to each 
other. When length of 100 yen is made to be equal to 100 g, the plot will be elongated 
toward horizontal direction. The problem is that there are no criteria to decide scale, 
since prices can never be related to weight. 

One may wonder that it is not a problem, since numerical distance can be defined 
independent of scale. For example, the Euclidean distance between fish and pork in 
the plane shown in Fig. 1.2 can be defined as 

.

√
(200 − 300)2 + (150 − 100)2 ≃ 111 (1.5) 

that is independent of scale. 

Exercise 
1.6 Compute Euclidean distances of any pairs of samples (points) in Fig. 1.2. 

Although it apparently seems to work, it actually does not. Suppose that we use 
dollar instead of yen for prices. For example, if we can assume that 1 dollar costs 
100 yen, Table 1.1 now becomes Table 1.3. 

Then, the Euclidean distance between fish and pork is not about 111 but 

.

√
(2 − 3)2 + (150 − 100)2 ≃ 50. (1.6) 

Now it is clear that there are many problems in two dimensional representations. 
At first, the distance cannot be determined independent of the unit of scalars. As 
soon as the foods are imported from Japan to the USA, the distances between foods
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Fig. 1.3 An alternative 
geometrical interpretation of 
two vectors 
. x = (100, 1000, 300, 200)
for prices and 
.y = (200, 300, 100, 150) for 
weights. Because of the 
limitation of the spatial 
dimension that we can 
recognize (up to three), the 
fourth scalars in . x and . y that 
represent Fish are omitted Bread 

Beef 

Pork 

200 

1000300 

300 

100 

Price 

Weight 
100 

might change. It does not make sense. In addition to this, in the system of dollar-
gram unit, the prices are almost ignored on the computing distances. It also does not 
make sense. 

Unfortunately, there are no definite ways to address this problem uniquely. How 
we should scale different scalars must be decided dependent upon what we would 
like to know from the data given. It is highly context dependent. Thus, we have to 
postpone this discussion later when we apply mathematics to real data set. 

1.3.4 Geometrical Interpretation of Vectors: Features 

In the previous sections, geometrical representations were applied to samples, i.e., 
four foods. In the Sect. 1.3.1, two vectors .x = (100, 1000, 300, 200) for prices 
and .y = (200, 300, 100, 150) for weights were defined, respectively. These two 
vectors can also be interpreted as a geometrical representation of two features, price 
and weight (Fig. 1.3). Excluding the omission of fish for easier visual recognition, 
Figs. 1.2 and 1.3 are mathematically equivalent. In spite of the mathematical 
equivalence, it is not very popular to interpret vectors as geometrical representation 
of not samples but features. This is primarily because we have to plot different 
scalars, i.e., prices and weights, on the common axes. In the Sect. 1.3.3, the  
ambiguity of scale was pointed out. The problem of scale is more visible in the 
geometrical interpretation of vectors for features (Fig. 1.3) than that for samples 
(Figs. 1.1 and 1.2). In the third (vertical) axis in Fig. 1.3 that corresponds to pork, 
300 yen is more distant from origin than 100 g. It is apparent that this spatial 
relationship between price and weight of bread is not informative at all, since as 
soon as we use dollar (Table 1.3) instead of yen, the price (now it is “only” three 
dollars) becomes closer to the origin than the weight (100 g). Second, it is not 
recommended to plot distinct units (in this case, price and weight) along the same 
axis in physical sciences where this kind of coordinate representation was firstly 
developed (for example, energy and force can never be plotted on the same axis).
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In spite of these difficulties, the emphasis of the equivalence between two 
geometrical representations (either that of samples or that of features) will turn out 
to be practically very useful for the main topics of this book. 

Exercise 
1.7 Draw geometrical representations of prices and weights using combinations of 
samples distinct from those used in Fig. 1.3, e.g., beef, pork, and fish. 

1.3.5 Generating New Features by Arithmetic 

As has been down in scalars (Sect. 1.2.3), new features can be generated from 
vectors, too, e.g., .αx + βy + γ z, where .α, β, and . γ are multipliers similar to the 
cases in scalars and .x, y, and . z are vectors. One distinction from generations of new 
features using scalars is that function must be applied to individual new features 
generated from scalars. Then, generating new feature with applying a function to 
vector should be denoted as like .log(αxi +βyi + γ zi), which corresponds to the ith 
scalar that consists of new features in the form of vectors. 

Exercise 
1.8 Generate new features in the vector form, using scalars shown in Tables 1.1 
and 1.2 with arbitrary multipliers (and if possible, with applying functions to 
scalars). 

1.3.6 Dummy Vectors 

As features that cannot be described with real values were treated as dummy scalars, 
vectors can also be composed of dummy scalars. In some sense, dummy scalars 
themselves could be interpreted as vectors. For examples, three colors in RGB 
representation, .(1, 0, 0), (0, 0, 1) and .(1, 1, 0), can be now geometrically interpreted 
in three dimensional vectors that consist of three integer scalars. They are also 
geometrical representations of features introduced in Sect. 1.3.4. Thus, from this 
point of views, i.e., unified treatment of dummy scalars with usual scalars that 
can be treated as real numbers, introduction of geometrical vector representation of 
features is critical, although it is rarely emphasized in the text books that introduce 
data science. 

In the later part of this book, we try to select a part of features from all features 
for the practical reasons. Colors represented in geometrical vector representation are 
very useful for this purpose, since these allow us to select, for example, only the first
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scalars of RGB representations. Such a decomposition of colors never be possible 
without vector representations.1 

On the other hand, in contrast to vector representation of scalars that can be 
represented as real values, dummy vectors can be placed only at grid points whose 
coordinates are composed of integer. Of course, as can be seen in RGB representa-
tion of colors, dummy scalars are often allowed to be extended to take real values as 
well (.(0.5, 0.5, 0) can make sense in RGB representation of colors), it is not always 
true. For example, if the dummy scalars represent whether sample is book, chair, 
or stick, although dummy scalars can be represented as .(1, 0, 0), (0, 1, 0), (0, 0, 1), 
.(0.5, 0.5, 0) does not make sense at all, since .(0.5, 0.5, 0)means a sample associated 
with a feature composed of 50% book and 50% chair. 

In contrast to vectors that can be represented as real numbers, e.g., prices and 
weights, not all points in the geometrical representation of dummy scalars do not 
have anything real. For example, the dummy vector that represents if a sample is 
book, chair, or stick cannot take .(1, 1, 0) since no samples cannot be book and chair 
simultaneously. 

Exercise 
1.9 Think about dummy vectors assuming some. 

1.4 Matrices 

As vectors are composed of scalars, matrices, X, are composed of vectors, as 

.X =
⎛
xT
1 , xT

2 , . . . , xT
M

⎞
, (1.7) 

where M is the number of features, e.g., price, weight, and color. . xT represents 
transposition of a vector . x where 

.xj = (
x1j , x2j , . . . , xNj

)
(1.8) 

corresponds to the vector of ith feature (M is the number of samples). When 
prices in Table 1.1 and weights in Table 1.2 are represented as matrix, it should 
be Table 1.4. In this case, a matrix X is 

.X =
⎛
100 1000 300 200
200 300 100 150

⎞
(1.9)

1 Practically, employing only the first scalars in RGB representation is equivalent to the usage of 
red sunglass through which only red color can penetrate. Now, colors are transformed to real values 
that describe red color intensity of colors, although in this example only integers are allowed since 
colors are treated as example dummy scalars. 


