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A Comparative Study of Machine
Learning Algorithms for Predicting

Cardiovascular Disease

Anu Lohachab(B) and Kuldeep Kumar

Department of Computer Engineering, National Institute of Technology,
Kurukshetra, Kurukshetra, India

anulohachab@gmail.com, kuldeepkumar@nitkkr.ac.in

Abstract. Cardiovascular diseases (CVDs) are one of the primary
causes of global morbidity and mortality, presenting significant health-
care challenges. The critical need for accurate prediction of CVD risk is
paramount for timely and proactive intervention, yet it remains a chal-
lenge. To enhance CVD risk prediction, this study delves into a range
of machine learning algorithms, encompassing supervised, and ensem-
ble algorithms. Furthermore, recognizing the literature’s limitations, our
focus has been on enhancing model performance through hyperparame-
ter tuning, implementing robust feature selection methods, and conduct-
ing thorough model evaluations. Besides, for feature selection, we utilize
chi-squared tests and correlation analysis to ensure the relevance and sig-
nificance of the features. Moreover, our comprehensive evaluation, span-
ning three diverse datasets, assesses both supervised and ensemble learn-
ing algorithms for their accuracy and generalizability. The results indi-
cate that the K-Nearest Neighbors-based model excels, achieving 97.82%
accuracy. By enhancing predictive accuracy and model robustness, our
study not only contributes to improved patient-specific interventions but
also aids in shaping more effective and efficient public health strategies
in cardiovascular care.

Keywords: Machine Learning in Healthcare · Predictive Modeling for
CVD · Supervised Learning Algorithms · Ensemble Learning Models ·
Healthcare Data Analysis · Patient Care Strategies

1 Introduction

Cardiovascular disease (CVD), one of the leading causes of morbidity and mor-
tality worldwide, poses significant challenges in healthcare [2]. The complexity
of CVD stems from its multifactorial nature, where factors such as age, gender,
smoking habits, and genetic predispositions interplay to influence an individual’s
risk. Indeed, recent advances in data mining and neural network applications
have paved the way for more sophisticated assessments of CVD risks [1,3]. How-
ever, accurate risk quantification is complicated by the heterogeneity of these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Pastor-Escuredo et al. (Eds.): ICDLAIR 2023, LNNS 1001, pp. 1–11, 2024.
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contributing factors, underscoring the need for more nuanced and robust predic-
tive models that can integrate and analyze a broad spectrum of risk indicators.

Nevertheless, building upon the intricate dynamics of cardiovascular disease,
the emphasis on early detection and the creation of predictive models is piv-
otal in reducing CVD-related fatalities. To this, employing artificial intelligence,
particularly in cardiac disease detection systems, significantly bolsters the effi-
cacy of established models for CVD detection and prediction [15]. For instance,
longitudinal studies using multivariate regression analysis are instrumental in
constructing these risk prediction models [13]. Furthermore, in the literature
(e.g., [6,10,12,14]), numerous studies have explored various classification tech-
niques, spanning supervised, unsupervised, hybrid, and deep learning method-
ologies for CVD prediction. Despite these, a critical analysis reveals significant
areas for improvement, particularly concerning hyperparameter optimization,
the implementation of more effective feature selection strategies, and the thor-
oughness of model evaluation processes. These underlying issues are key contrib-
utors to the reduced accuracy observed in existing predictive models, underscor-
ing a need for methodological enhancements in this domain. Specifically, such
improvements are essential for achieving higher precision in CVD risk prediction
and advancing the overall effectiveness of these models.

Accordingly, in this study, a variety of machine learning algorithms are uti-
lized to predict CVD risk from historical data. To ensure the robustness and
generalizability of our findings, our analysis includes three distinct datasets: the
Statlog Heart Disease Database [11], the UCI Cleveland Database [5], and the
Kaggle Database. The selection of each dataset is based on its unique attributes
and relevance to CVD risk factors, facilitating a thorough evaluation of the
predictive capabilities of our models in diverse clinical contexts. The primary
contributions of this paper are delineated as follows:

– This paper presents a comparative study that evaluates a diverse range of
machine learning algorithms across three distinct datasets. Such a holistic
approach aims to provide insights into the strengths and weaknesses of each
algorithm in different clinical contexts and suggest an approach for relatively
more robust CVD risk prediction models.

– This study addresses the complexities of CVD risk factors, resulting in an
enhancement of the accuracy of the underlying algorithms; specifically, with
the K-Nearest Neighbors (KNN)-based model, we achieved an accuracy of
97.82%, a relatively better performance.

The remainder of this paper is organized as follows: Sect. 2 reviews literature
in the field of cardiovascular disease prediction. Section 3 details the methodol-
ogy and study design for CVD prediction. In Sect. 4, we discuss experimental
outcomes, highlighting the significant improvements achieved in model accuracy
and, subsequently, predictive capabilities. Finally, Sect. 5 concludes the paper
and outlines potential future directions.
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2 Related Works

This section briefly discusses some of the existing works dealing with CVD pre-
diction, encompassing supervised, unsupervised, and hybrid approaches. A brief
comparison is provided in Table 1.

2.1 Supervised Machine Learning-Based Approaches

Supervised machine learning algorithms have been widely employed for heart dis-
ease prediction, demonstrating promising results. Shah et al. [12] investigated the
effectiveness of various supervised learning algorithms, including Random For-
est, KNN, Decision Trees, and Naive Bayes, using the Cleveland database from
the UCI Machine Learning Repository and selected a subset of 14 attributes.
Among the employed algorithms, KNN exhibited the highest accuracy rate of
90.78%. Katarya et al. [6] summarized supervised machine learning algorithms,
including Naive Bayes, Random Forest, Support Vector Machines (SVMs), and
Decision Trees, and emphasized feature selection before prediction. In another
study, Tasnim et al. [14] employed two datasets, the UCI Cleveland dataset,
and the Statlog Hungarian dataset, to evaluate the performance of supervised
machine learning algorithms. They implemented Principal Component Analysis
(PCA) and Chi-Square feature selection techniques to reduce the dimensionality
of the data. The combination of the Random Forest Classifier and PCA yielded
the most favorable accuracy, reaching 92.85%. Mohan et al. [8] investigated the
performance of supervised machine learning algorithms. They applied a range of
algorithms, including K-Nearest Neighbors, Random Forest, Naive Bayes, and
Logistic Regression(LR). LR emerged as the relatively better algorithm, achiev-
ing an accuracy rate of 90.2%.

2.2 Unsupervised Machine Learning-Based Approaches

Though notable unsupervised machine learning-based approaches for CVD pre-
diction exist, limited accessibility restricts our review to a select few. In their
work, Islam et al. [4] addressed the challenge of dataset dimensionality reduc-
tion using PCA and further enhanced their approach by incorporating Genetic
Algorithms with unsupervised k-means clustering. Their experimentation, con-
ducted on the UCI Machine Learning heart disease dataset, yielded an accu-
racy of 94.06% . In a separate study, Rajalakshmi et al. [10] proposed a novel
approach to cardiovascular disease prediction. Their methodology combined K-
Means Clustering, Weighted Associative Classifier, and Decision Tree C5.0 algo-
rithms applied to a carefully curated dataset containing 11 features. The out-
come of their research demonstrated a high accuracy of 94.54% in predicting
cardiovascular disease.

2.3 Hybrid Machine Learning-Based Approaches

Several studies have explored hybrid machine learning approaches for cardio-
vascular disease prediction. Kavitha et al. [7] implemented machine learning
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Table 1. A Brief Comparative Analysis of ML Approaches for CVD Prediction

Reference Dataset Algorithms Feature Selec-
tion/Engineering

No. of
Features

Accuracy

Shah et al. [12] UCI
Cleveland

Random Forest,
KNN, Decision
Trees, Naive
Bayes

Not specified 14 90.78%,

Tasnim et al. [14] UCI
Cleveland,
Statlog

NB, KNN, SVM,
LR, DT,
Xgboost

PCA, Chi-Square 14 & 12
respectively

92.85%

Islam et al. [4] UCI heart
disease

Hybrid Genetic
algorithm with
K-Means

PCA 2(after trans-
formation)

94.06%

Rajalakshmi et al. [10] UCI
Cleveland

K-Means with
Decision Tree
C5.0 and
Weighted
Associative
Classifier

Not specified 11 94.54%

Kavitha et al. [7] UCI
Cleveland

Random Forest,
Decision Tree
and a Hybrid
Model

Not specified 14 88.7%

S.Mohan et al. [9] UCI
Cleveland

HRFLM
(Random Forest
and Linear
Model)

Not specified 13 88.7%

Our Study UCI
Cleveland,
Statlog &
Kaggle

Supervised
Models(Random
Forest, KNN,
Logistic
Regression,
Decision Tree) &
Ensemble Mod-
els(AdaBoost,
CatBoost)

Correlation
Analysis& Chi
Square test

13, 11 & 11
clinical
feautures
respectively

97.82%

algorithms using the UCI Cleveland dataset, employing decision trees, random
forests, and a hybrid model combining random forests and decision trees. The
hybrid model exhibited an accuracy rate of 88.7% in predicting cardiovascular
disease. Mohan et al. [9] also employed machine learning-based models on the
UCI Cleveland dataset, utilizing a hybrid HRFLM approach that combines ran-
dom forest (RF) and linear model (LM). This hybrid approach demonstrated an
accuracy of 88.7% in predicting heart disease.

Nevertheless, a brief review of the selected works suggests that there is poten-
tial for further exploration in various aspects, including hyperparameter opti-
mization, more effective feature selection techniques, and more comprehensive
model evaluation.
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3 Methodology and Study Design

In this section, we elaborate on the essential phases of our study, as depicted in
Fig. 1. These phases align with the typical stages found in machine learning-based
research. However, our study features distinct adaptations, notably in hyperpa-
rameter tuning, dataset diversity, and a wide range of algorithm considerations,
making it distinctive from the highlighted existing works (Table 1).

1. Data Acquisition: In this phase, we collect datasets from various sources,
including the UCI Cleveland dataset [5], Statlog heart disease datasets [11],
and the Kaggle database.

2. Data Preprocessing: In this phase, the datasets undergo preprocessing.
The Interquartile Range (IQR) method is utilized for outlier detection and
removal. This method segments the data into quartiles. The first quartile
(Q1) indicates the value below which 25% of the data lies, while the third
quartile (Q3) marks the value below 75% of the data. The IQR is calculated
as:

IQR = Q3 − Q1 (1)

Subsequently, the lower and upper bounds for identifying outliers are com-
puted using Eqs. 2 and 3, respectively.

Fig. 1. Overview of Study Methodology Phases
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Lower limit = Q1 − 1.5 × IQR (2)

Upper limit = Q3 + 1.5 × IQR (3)

For feature selection, correlation analysis, and the Chi-Square test are
employed. These methods assess the dependency between attributes and the
output class label. A higher Chi-Square value suggests a stronger association.
The most relevant features are selected based on these methods.

3. Data Partitioning: The typical 80:20 split ratio is chosen to provide a
substantial amount of data for training while reserving a significant portion
for model validation. Ensuring this representative split helps mitigate the
risks of overfitting and underfitting, thus enhancing the model’s ability to
generalize to unseen data.

4. Model Training: The training phase involves instructing machine learn-
ing algorithms-based models, which include both supervised and ensemble
learning methods, to learn from the training data. The supervised methods
employed include:

– Random Forest (RF): An ensemble of decision trees, employing bagging
to enhance model robustness against overfitting.

– K Nearest Neighbours (KNN): A non-parametric method that classifies
data points based on the majority vote of their neighbors, with k repre-
senting the number of neighbors considered.

– Logistic Regression (LR): A regression model where the dependent vari-
able is categorical, ideal for binary classification tasks.

– Decision Trees (DT): A model that segments the data into subsets based
on feature values, forming a tree-like structure of decisions.

Similarly, ensemble learning algorithms such as AdaBoost and CatBoost are
included. These methods aggregate multiple base models to enhance predic-
tive performance, often resulting in improved accuracy and stability. A typical
formulation of an ensemble-based model can be written as follows:

Ensemble Model =
N∑

i=1

αi × Base Modeli (4)

where αi are the weights assigned to each base model, determined through
the ensemble learning algorithm. These weights reflect the importance or
confidence of each base model within the ensemble.

5. Performance Evaluation: The evaluation phase is critical in assessing the
effectiveness of the trained models. This involves analyzing various metrics,
each providing different insights into the model’s predictive capabilities. The
metrics employed in this study are:
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Table 2. Attributes Availability Across Datasets

Attribute Cleveland
Dataset

Statlog
Dataset

Kaggle
Dataset

ID (Patient’s ID) × × �
Age (Patient’s Age) � � �
cp (Chest Pain Type) � � ×
Sex (Patient’s Gender) � � �
Hypertension (presence of Hypertension) × × �
oldpeak (Exercise induced ST Depression) � � ×
Heart Disease (History of Heart Disease) × × �
trestbps (Blood Pressure while Resting) � � ×
Ever married (marital status) × × �
thalach (Maximum Heart Rate attained) � � ×
work type (Employement status) × × �
chol (Serum Cholesterol) � � ×
exang (Exercise-Induced Angina) � � ×
Residence type (Rural or Urban) × × �
restecg (Resting Electrocardiographic Results) � � ×
avg glucose level (average glucose level in blood) × × �
fbs (Blood Sugar Level in the time of Fasting) � � ×
thal (Blood Disorder i.e. Thalassemia) � × ×
bmi (body mass index) × × �
Slope (ST segment’s slope during peak exercise) � � ×
smoking status × × �
ca (Major Vessel’s count) � × ×
Target/Class/Stroke (CVD Prediction) � � �

– Precision: It is calculated as the proportion of correctly predicted positive
observations (TP) to the total predicted positives (TP + FP).

– Recall (Sensitivity): Recall quantifies the fraction of TP that the model
successfully identifies from all actual positive cases (TP + FN).

– Accuracy: It assesses the overall accuracy of the model by comparing
the sum of correct predictions (TP and TN) with the total number of
predictions made.

– F1-Score: It is the harmonic mean of precision and recall and becomes
particularly insightful for datasets with imbalanced class distributions or
when the impact of false positives and negatives is distinct.
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Table 3. Performance Metrics of Supervised and Ensemble ML Models on Various
Datasets

Dataset Model Type Model Used Accuracy Recall Precision F1-Score

UCI Cleveland Supervised KNN 0.978 0.94 0.97 0.98

UCI Cleveland Supervised DT 0.82 0.94 0.96 0.83

UCI Cleveland Supervised RF 0.87 0.87 0.93 0.87

UCI Cleveland Supervised LR 0.86 0.87 0.93 0.87

UCI Cleveland Ensemble AdaBoost 0.89 0.94 0.96 0.89

UCI Cleveland Ensemble CatBoost 0.80 0.94 0.93 0.91

Statlog Heart Supervised KNN 0.95 0.95 0.94 0.95

Statlog Heart Supervised DT 0.94 0.94 0.94 0.94

Statlog Heart Supervised RF 0.96 0.97 0.96 0.97

Statlog Heart Supervised LR 0.92 0.92 0.89 0.92

Statlog Heart Ensemble AdaBoost 0.932 0.95 0.92 0.93

Statlog Heart Ensemble CatBoost 0.938 0.94 0.94 0.94

Kaggle Supervised KNN 0.95 0.95 0.96 0.95

Kaggle Supervised DT 0.93 0.94 0.93 0.94

Kaggle Supervised RF 0.96 0.96 0.98 0.97

Kaggle Supervised LR 0.92 0.92 0.96 0.92

Kaggle Ensemble AdaBoost 0.92 0.93 0.95 0.93

Kaggle Ensemble CatBoost 0.93 0.94 0.94 0.94

Overall, our approach in this study begins with the meticulous collection
of data, followed by its systematic partitioning. We then train a diverse range
of machine learning-based models, emphasizing both accuracy and robustness.
Finally, these models are rigorously evaluated using established metrics, ensuring
their reliability and effectiveness.

4 Experiments and Discussions

4.1 Experiments: Setup and Datasets

Due to resource limitations, we utilized Google Colab notebooks for our exper-
imental setup. Besides, as stated before, our study focuses on analyzing three
distinct datasets, each aimed at detecting cardiac disease. For a comparison
of attribute distribution and availability, refer to Table 2, which provides an
overview of each dataset’s attributes. Basically, we employed the UCI Cleveland
Dataset, which comprises 13 clinical features and a binary target variable, to
signify the presence (1) or absence (0) of cardiac disease. Similarly, the Statlog
Heart Disease Dataset utilizes 11 clinical attributes, along with a binary target
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variable that follows the same coding scheme as the UCI dataset. Finally, the
dataset sourced from Kaggle also employs 11 clinical features and a binary target
variable, consistent with the previous datasets.
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Fig. 2. Comparison of Machine Learning Models: F1 Score, Recall, Precision, and
Accuracy Across Multiple Datasets

4.2 Discussions: Performance Evaluation

The metrics considered for evaluating the performance of our study are detailed
in Sect. 3. Based on these metrics, Table 3 presents the results of our analysis. A
key finding is that the KNN-based model, specifically configured with a leaf size
of 45, Minkowski distance metric (with p = 1), uniform weights, and consider-
ing 5 neighbors, achieved the highest accuracy in the UCI Cleveland Dataset.
This suggests that for this dataset, the KNN-based model’s specific configura-
tion plays a crucial role in its predictive performance. In contrast, the Random
Forest Model initialized with a random seed value of 760, demonstrated superior
accuracy on the Statlog and Kaggle Heart Disease datasets. This highlights the
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model’s robustness and effectiveness in handling different types of heart disease
data. Further, in the realm of Ensemble Learning Models, the AdaBoost-based
model, with a base Random Forest Classifier consisting of 100 trees, achieved an
89% accuracy rate on the UCI Cleveland dataset. However, it was the CatBoost-
based model, trained with a learning rate of 0.9, that outperformed AdaBoost,
reaching an impressive accuracy rate of 93.8% on the Statlog and 93% on the
Kaggle dataset. This indicates that CatBoost’s advanced algorithms and learn-
ing rate optimization offer significant advantages in predictive accuracy. Figure 2
provides the comparative analysis of the various Machine Learning Models under
consideration. According to our results, KNN-based model achieves the highest
accuracy for the UCI Cleveland Dataset. Additionally, this model also demon-
strates the best precision for the same dataset. The highest F1 Score in the UCI
Cleveland dataset context is also attributed to the KNN-based model. On the
other hand, the Random Forest-based model shows its strength in the Statlog
Heart Disease dataset by achieving the highest recall value. To sum up, it can
be said that these findings provide important insights into the performance of
different models across various datasets, highlighting the need for careful model
selection based on specific performance metrics.

5 Conclusion

In this paper, we conducted a thorough analysis of CVD prediction, leveraging
widely accepted machine learning models. Our study encompassed three diverse
datasets, enabling a detailed assessment of the robustness and generalizability of
our predictive models. Among the various machine learning-based models tested,
the KNN-based model demonstrated notable effectiveness, achieving an accuracy
rate of 97.82%. From the Ensemble Learning Models standpoint, the CatBoost-
based model also exhibited significant efficacy, with an accuracy rate of 93.8%.
These results underscore the potential of our models as highly effective tools in
supporting clinical decision-making, contributing valuable insights to the field
of CVD prediction. However, it is also important to acknowledge that our study
was conducted under certain assumptions and with relatively clean data sets.
While the findings indicate a promising direction, they may not fully capture
the complexities encountered in more realistic clinical scenarios. Therefore, fur-
ther investigation might be needed. Future research should aim to explore more
diverse and less curated datasets and consider the impact of real-world variables
and conditions on the performance of these models. Additionally, future efforts
may focus on feature engineering and the integration of additional clinical data
sources to enhance model performance and utility. This approach will not only
validate the effectiveness of the algorithms in practical settings but also refine
their applicability in predicting CVD with greater accuracy and reliability. Our
study, therefore, serves as an exploratory step towards more nuanced and com-
prehensive cardiovascular disease prediction research, acknowledging the ongoing
journey toward achieving truly robust and generalizable models.
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Abstract. Deep neural networks (DNN) have recently been utilized to
recognize saliency in images and movies. Various models have been put
forth to anticipate spatial, temporal, and spatiotemporal saliency. This
paper proposes a new approach for estimating spatial saliency in video
frames. Our suggested approach, which achieves excellent results on var-
ious measuring parameters, is inspired by U-net architecture. We tested
our model using video frame extracts and achieved satisfactory outcomes.
Results on data sets with still imagery are also examined. The proposed
model does not utilize any transfer learning approaches during any part
of training or testing.

Keywords: U-net · Spatial saliency · Video data sets · Transfer
learning · Deep Neural Network

1 Introduction

Video saliency is identifying the area that draws human attention for observa-
tion. While some pixels are in the background, most conspicuous components
are concentrated in foreground regions. In image/video compression, analysis,
summarization, Etc., traditional image/video saliency prediction/ recognition is
utilized. While visual saliency varies on the area of the subject and may some-
times be different for everyone, detecting it in films and images has proven
difficult.

Our work presents a DNN trained on frame level using a range of datasets.
The model receives an associated frame for each frame. The classic U-Net archi-
tecture utilized for medical image segmentation served as an inspiration for this
work’s architecture. The notion of U-net architecture was intended to be applied
to border domain [1,2]. To improve the precision and efficiency of video saliency
detection in dynamic and complex visual environments, our work is motivated by
the need to understand and model human visual attention using deep learning,
as well as to advance various multimedia applications, improve user experiences,
and contribute to advancements in fields like autonomous systems, security, and
healthcare.

The paper is structured as follows. In Sect. 2, related works are reviewed. The
proposed architecture is explained in Sect. 3. The experimental findings and data
sets used for the training and testing portion are given in Sect. 4. The conclusion
is presented in Sect. 5.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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2 Related Work

For still pictures, a method for predicting saliency by comparing a multi-scale
center-surrounding feature comparison with color, orientation, and intensity was
developed by Itti et al. [3]. Harel et al. [4] applied graph theory to forecast pic-
ture saliency, following Itti et al. Background and foreground clues are crucial
for predicting saliency. Yang et al. [5] employed graph-based manifold ranking
to determine how comparable different image elements were using background
and foreground signals. Their connection to the seed determined the saliency. It
is advantageous to use image details and region-based attributes to determine
picture saliency. Zhang et al. employed a model based on a multiple graph where
the graph was constructed using picture attributes, and visual rarity was calcu-
lated for saliency assessment [6]. Zhang et al. [7] a model in which a local tree-
structured low-rank representation technique obtained background. To improve
salient object detection, some studies attempt to create universal frameworks
from frameworks that already exist [8]. Wang et al. [9] mention where attention
stimuli were utilized to examine saliency in stereoscopic images using fixation
maps to identify salient objects.

Video saliency prediction considers motion information compared to saliency
prediction in still images. Liu et al. created a super pixel-based model, also
known as a saliency tree for video sequences [10]. According to Leboran et al.
[11] computational approach, sensitive traits can be described by high-order sta-
tistical structure. Fang et al. proposed a video saliency prediction model that
combined spatial and temporal saliency utilizing statistical uncertainty indica-
tors [12]. To determine spatiotemporal saliency, Kin et al. used a steady-state
distribution of walkers to represent random walks [13]. Li et al. [14] calculated
the video saliency in videos by calculating the multivariate Gaussian data’s lossy
encoding length. Seo et al. employed a space-time local steering kernel to extract
features from a video sequence [15]. Motion and spatial edges were considered
by Wang et al. [16] for saliency assessment and treated as characteristics. Using
object segmentation, Tu et al. model [17] included the object signature they
discovered.

There are two aspects to the video saliency challenge: semantic segmentation
and salient object identification. Semantic segmentation finds numerous things
in videos and treats each equally, but salient object detection only finds one
object in a video. Shen et al. [18] introduced a trajectory clustering approach
employing sub-modular optimization for video saliency prediction; later, Shen
et al. [19] employed Taylor expansion to create a lower-order function for seg-
menting images.

Many studies have been conducted due to the rapid progress of deep learning
techniques in computer vision. Zhao et al. [20] created a multi-context DNN
that considered local and global context information and used them to model
a unified network. A fully convolutional neural network-based multitask deep
learning network was proposed by Li et al. [21]. By extending their technique
for films with handcrafted low-level features and deep contrast characteristics,
Li et al. [22]. A DNN model that learned from both local and global features was
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proposed by Wang et al. [23]. Zang et al. [24] developed an approach by expressly
penalizing the inaccuracy of the localization. For segmenting videos, Li et al.
presented a neighborhood reversible flow and a complementary convolutional
neural network [25]. The author of [26] introduced a methodology for employing
visual saliency to address the issue of photo cropping. Wang et al. [27] employed
hierarchical saliency information to address the saliency prediction issue.

2.1 Recent Work

A DNN was introduced by Wong et al. [28] to account for spatial and temporal
saliency. Using an auto-encoder, Li et al. [29] suggested a DNN framework. RNN
with ConvolutionalLSTM was utilized by Song et al. [30] to learn spatiotemporal
information. The authors of [31] suggested an RNN that is flow-guided for video
saliency detection. Saliency identification in images utilizing object proposal and
omitting long-term temporal information was introduced by Guo et al. [32]. Shi
et al. [33] mention a bi-directional method for extracting context information.
Yang et al. [34] presented a bi-directional FCN to gather skeleton context infor-
mation. W-Net architecture proposed by [35] resembles the English alphabet
“W” and it uses a multi layer encoder and decoder for spatial saliency detec-
tion. The proposed model’s idea and these investigations significantly differed
based on diverse tasks. Our study suggests a Deep W-Net architecture influ-
enced by conventional U-net architecture to determine spatial saliency in video
frames. To learn spatial saliency, we created multi-layer encoders and decoders.
In the first layer, all of the frame’s pixels were used as features, and transfer
learning was not used. In Sect. 4, experimental findings demonstrated that our
model performs satisfactorily over various measuring parameters and data sets.

3 Proposed Model

This Section outlines the proposed Deep W-Net for predicting spatial saliency in
videos. The proposed architecture is based on U-net [1] and W-Net [35]; never-
theless, we made several structural adjustments and evaluated the experimental
findings to develop the proposed model. Google Colab is used for implementa-
tion, while Python was used on a local machine for frame extraction, resizing,
and renaming of videos and image processing. Without applying transfer learn-
ing, every video frame pixel was considered input in our model. On any testing
frame, no training has been conducted. Before modeling, testing videos were
manually segregated.

3.1 Proposed Architecture

We employ an encoder and decoder to down-sample and up-sample the frames
under U-net [1]. In contrast to U-net’s concatenation, which has been per-
formed between up-sampling and second down-sampling, multiple steps of down-
sampling and up-sampling are performed similarly. Two stages of down-sampling
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Fig. 1. Proposed Architecture (Deep W-Net)

and two of up-sampling make up the suggested model. E1, E2, and so on stand
for encoder blocks, and the D series stands for decoder blocks, as seen in Fig. 1.
Bridge1 is the convolution of the output of the E4 encoder performed by con-
vBlock, as seen in Fig. 2. The convolution performed by E4’s encoder is Bridge2.
Convolutional transpositions of Bridges 1 and 2 are taken by D4 and D4’, respec-
tively. The convolution results of convBlock’s (Fig. 2) output are concatenated
to the convolution transpose output of D blocks; convolution from D blocks are
concatenated to convolution from E1’–E4’.

Fig. 2. Encoder Block
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3.2 Encoder Block

Six encoder blocks are present in the suggested model. Four convolution layers
and a normalizing layer follow each convolution in the encoder block. Figure 2
shows a convolution block. Each convBlock is followed by a Maxpooling layer to
downsample. The input for the first convolution layer, C1, is 224 × 224 pictures
(frames), and the kernel size is 2 × 2. C2 receives input from C1 and has a 3× 3
kernel. Using a 4× 4 kernel size in C3, the output of C2 is used as the input.
C4 accepts the features from C3 as input. In C4, the kernel measures 5 × 5. The
ability to extract low-level to high-level features is aided by kernel size variation.
For all convolutional layers, padding is the same, but the stride is 1. Bridge1 is
accomplished from E4; however, there is no Maxpooling. Similarly, Bridge2 is
produced by E4’s output. In various phases of our model, 2 × 2 kernel size max
pooling is performed.

3.3 Decoder Block

The up-sampling decoder component is shown in Fig. 3. Convolutional transpo-
sition layer, concatenation, and convBlock are included in this block. ConvBlock
is the encoder block’s convBlock. Concatenation is used to map feature informa-
tion from the subsequent convolutions of the encoder block when convolutional
transpose is used for up-sampling. Convolutional transposition uses a 2 X 2 pixel
kernel with a 2 pixel stride.

3.4 Training Process

The proposed model was trained using the DAVSOD, SegTrack, and ViSal data
sets. 80 % data is used for training, while 20 % is used for testing. Learning
parameters involves minimizing the loss function. The loss function is the binary
cross entropy. The proposed model, Deep W-Net, uses the Adam optimizer to
identify the optimized network parameter while minimizing the loss function.
End-to-end training is conducted using a batch size of 3 and a learning rate
0.001.

4 Experimental Results

4.1 Evaluation Methodology

We conducted experiments on DAVSOD [36], SegTrack [37], and ViSal [38]
datasets to assess the performance of our model Deep W-Net. Two hundred
twenty-six videos with 23938 frames can be found in the DAVSOD data set.
1000 frames make up SegTrack, while 17 videos from various sources are found
in ViSal. F-measure, S-measure, and Mean Absolute Error (MAE) are utilized
for performance comparison. F-measure is calculated as in Eq. 1.

F − measure = 2 × P × R ÷ (P + R) (1)
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Fig. 3. Decoder Block

Fig. 4. Visual Comparison

where Precision is calculated as in Eq. 2.

Precision(P ) = TP/(TP + FP ) (2)

where FP stands for false positive and TP for true positive. Recall is calculated
as in Eq. 3.

Recall(R) = TP/(TP + FN) (3)

where FN stands for false negative and TP for true positive. The region-aware
structural similarity (S-measure) metric is calculated as:

Sr =
K∑

k=1

wk ∗ ssim(k) (4)

wk is the weight assigned to each block, K is the total number of blocks in the
sub-image, and ssim is the structural similarity metric. MAE is calculated as,

MAE = 1/n
n∑

i=1

|xi − x| (5)

where n is number of samples(frames) and absolute error is
|xi − x| where x and xi are ground truth and model’s result respectively.
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Table 1. Quantitative Comparisons Between Our Model and Other Sota Vsod Models
Using The F-Max, S-Measure, and Mae Metrics. The Top Three Results are Respec-
tively Highlighted in RED, GREEN, and BLUE.

Dataset SegTrackV2 ViSal DAVSOD

Metric

Model
F-Max S-Measure MAE F-Max S-Measure MAE F-Max S-Measure MAE

Ours 0.871 0.901 0.015 0.892 0.924 0.021 0.688 0.762 0.066

ESTI 2021 0.860 0.891 0.017 0.952 0.952 0.013 0.651 0.746 0.086

MGA 2019 0.821 0.865 0.030 0.933 0.936 0.017 0.640 0.738 0.084

CPD 2019 0.778 0.841 0.023 0.941 0.94 0.016 0.608 0.724 0.092

DLVS 2018 - - - 0.851 0.881 0.048 0.521 0.657 0.121

SCOM 2018 0.764 0.815 0.030 0.831 0.762 0.122 0.464 0.599 0.220

SFLR 2017 0.745 0.804 0.037 0.779 0.814 0.062 0.478 0.624 0.132

SGSP 2017 0.673 0.681 0.124 0.677 0.706 0.165 0.426 0.577 0.207

STBP 2017 0.640 0.735 0.061 0.622 0.629 0.163 0.410 0.568 0.160

MSTM 2016 0.526 0.643 0.114 0.673 0.749 0.095 0.344 0.532 0.211

GFVM 2015 0.592 0.699 0.091 0.683 0.757 0.107 0.334 0.553 0.167

SAGM 2015 0.634 0.719 0.081 0.688 0.749 0.105 0.370 0.565 0.184

MB+M 2015 0.554 0.618 0.146 0.692 0.726 0.129 0.342 0.538 0.228

RWRV 2015 0.438 0.583 0.162 0.440 0.595 0.188 0.283 0.504 0.245

SPVM 2014 0.618 0.668 0.108 0.700 0.724 0.133 0.358 0.538 0.202

TIMP 2014 0.573 0.644 0.116 0.479 0.612 0.170 0.395 0.563 0.195

SIVM 2010 0.581 0.605 0.251 0.522 0.606 0.197 0.298 0.486 0.288

4.2 Comparative Research Employing Techniques that Are Already
Proposed

The proposed model is contrasted with other cutting-edge models in this section.
Comparison with ESTI [50], MGA [49], CPD [39], DLVS [28], SCOM [40],
SFLR [41], SGSP [42], STBP [43], MST [44], GFVM [38], SAGM [16], MB+M
[45], RWRV [13], SPVM [46], TIMP [47], SIVM [48] is shown in Table.1. In
this work, F-measure, S-measure, and MAE are used to compare experimen-
tal results. Figure 4 presents our results for comparison between prediction and
ground truth. The proposed model Deep W-Net performs best on DAVSOD and
SegTrack Dataset with F-Max as 0.688 and 0.871, S-Measure as 0.762 and 0.901,
and MAE as 0.066 and 0.015, respectively. Overall, the effectiveness of the pro-
posed model, Deep W-net, is convincingly evidenced by the F-Max, S-measure,
and MAE values shown in Table 1.

5 Conclusion

This paper presented a novel approach (Deep W-Net) for detecting salient video
objects. The proposed model uses an encoder and decoder block to map informa-
tion from the encoder to the decoder and from the decoder to the encoder. We
used each pixel from the normalized frames as a feature to train the proposed
model. Extensive experiments have been done on three benchmark datasets, and


