Atomistic Modeling of Materials Failure

Markus J. Buehler

Atomistic Modeling of Materials Failure

Markus J. Buehler Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 1-235A&B Cambridge, MA 02139 USA mbuehler@mit.edu

ISBN 978-0-387-76425-2 e-ISBN 978-0-387-76426-9 DOI: 10.1007/978-0-387-76426-9

Library of Congress Control Number: 2008927204

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

To my wife, for inspiration and loving support

Preface

This book has evolved from lecture notes of undergraduate and graduate level subjects as well as review articles and journal papers. The book provides a review of atomistic modeling techniques that successfully link atomistic and continuum mechanical methods. It intended to be a reference for engineers, materials scientists, and researchers in academia and industry. The writing of this book was motivated by the desire to develop a coherent set of notes that provides an introduction and an overview into the field of atomistic-based computational solid mechanics, with a focus on fracture and size effects.

The book covers computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model the dynamics of cracks and other deformation mechanisms. A description of molecular dynamics as a numerical modeling tool covers the use of interatomic potentials (pair potentials such as the Lennard-Jones model, embedded atom method (EAM), bond order potentials such as Tersoff's and Brenner's force fields, as well as the first principles based ReaxFF Reactive force field) in addition to the general philosophies of model building, simulation, interpretation, and analysis of simulation results. Example applications for specific materials (such as silicon, nickel, copper, carbon nanotubes) are provided as case studies for each of the techniques, areas, and problems discussed. Readers will find a physics-motivated discussion of the numerical techniques along with a review of mathematical concepts and code implementation issues. Using specific examples such as investigations of crack dynamics in brittle materials or deformation mechanics of nanomaterials, this volume conveys how atomistic studies have helped to advance developing new theories, or provided insight into the molecular deformation mechanisms, explaining or supplementing experimental results. Many of the examples are adapted from studies carried out by the author of this book, and some of the discussion should therefore not be considered as a comprehensive and inclusive review with respect to the wider range of available results. Rather, they represent a set of specific examples to illustrate the application of the atomistic simulation techniques reviewed here.

Completing this book would not have been possible without the help and support of numerous people. The author is most greatly indebted to all who have contributed to this book in some way. In particular, sincere gratitude goes to those individuals from whom he had the opportunity to learn from over the years, in particular his graduate advisor Huajian Gao and postdoctoral advisor William A. Goddard III. The author is deeply humbled by the many contributions that have pioneered the development of this research field over the past decades. The author would also like to thank the Editor Mrs. Elaine Tham of Springer and her staff for the continuous support for this project. The efforts by the reviewers of the manuscript are greatly acknowledged, as they provided valuable suggestions for revisions in the final manuscript.

The study of materials failure using atomistic simulation has been a rewarding journey that continues to bring so much joy, excitement, and inspiration. The author hopes to convey some of the excitement about this research field in this book.

Cambridge, MA July 14, 2008 Markus J. Buehler

Contents

\mathbf{List}	of Figure	es	 	 	 	 •••	 	 	 	. XVII
List	of Tables	8	 	 	 	 •••	 	 	 	. LXIII
Non	nenclatur	е	 	 	 	 •••	 	 	 	. LXV

Part I Introduction

1	Intr	oduction	3
	1.1	Materials Deformation and Fracture Phenomena:	
		Why and How Things Break	5
	1.2	Strength of Materials: Flaws, Defects, and a Perfect	
		Material	6
		1.2.1 Crystal Structures and Molecular Packing	8
		1.2.2 Cracks	10
		1.2.3 Dislocations	10
		1.2.4 Other Defects in Crystals and Other Structures	12
	1.3	Brittle vs. Ductile Material Behavior	12
	1.4	The Need for Atomistic Simulations	15
	1.5	Applications: Experimental and Computational Mechanics	18
		1.5.1 Experimental Techniques	18
		1.5.2 Example Applications: The Significance	
		of Mechanics	20
	1.6	Outline of This Book	27

Part II Basics of Atomistic, Continuum and Multiscale Methods

2	Bas	ic Atomistic Modeling	31		
	2.1	Introduction	31		
	2.2 Modeling and Simulation				
		2.2.1 Model Building and Physical Representation	34		

	2.2.2	The Concept of Computational Experiments	35
2.3	Basic	Statistical Mechanics	36
2.4	Formu	lation of Classical Molecular Dynamics	37
	2.4.1	Integrating the Equations of Motion	39
	2.4.2	Thermodynamic Ensembles and Their Numerical	
		Implementation	40
	2.4.3	Energy Minimization	43
	2.4.4	Monte Carlo Techniques	44
2.5	Classe	s of Chemical Bonding	46
2.6	The Ir	nteratomic Potential or Force Field: Introduction	48
	2.6.1	Pair Potentials	50
	2.6.2	Multibody Potentials: Embedded Atom Method	
		for Metals	54
	2.6.3	Force Fields for Biological Materials and Polymers	56
	2.6.4	Bond Order and Reactive Potentials	59
	2.6.5	Limitations of Classical Molecular Dynamics	68
2.7	Nume	rical Implementation	69
	2.7.1	Periodic Boundary Conditions	70
	2.7.2	Force Calculation	71
	2.7.3	Neighbor Lists and Bins	72
2.8	Proper	rty Calculation	73
	2.8.1	Temperature Calculation	73
	2.8.2	Pressure Calculation	74
	2.8.3	Radial Distribution Function	74
	2.8.4	Mean Square Displacement Function	75
	2.8.5	Velocity Autocorrelation Function	76
	2.8.6	Virial Stress Tensor	76
2.9	Large-	Scale Computing	78
	2.9.1	Historical Development of Computing Power	79
	2.9.2	Parallel Computing	80
	2.9.3	Discussion	82
2.10	Visual	lization and Analysis Methods	83
	2.10.1	Energy Method	85
	2.10.2	Centrosymmetry Parameter	86
	2.10.3	Slip Vector	88
	2.10.4	Measurement of Defect Speed	89
	2.10.5	Visualization Methods for Biological Structures	89
	2.10.6	Other Methods	90
2.11	Disting	guishing Modeling and Simulation	90
2.12	Applic	cation of Mechanical Boundary Conditions	90
2.13	Summ	ary	93

3	Bas	ic Continuum Mechanics	95
	3.1	Newton's Laws of Mechanics	95
	3.2	Definition of Displacement, Stress, and Strain	97
		3.2.1 Stress Tensor	99
		3.2.2 Equilibrium Conditions	100
		3.2.3 Strain Tensor	103
	3.3	Energy Approach to Elasticity	105
	3.4	Isotropic Elasticity	107
	3.5	Nonlinear Elasticity or Hyperelasticity	108
	3.6	Elasticity of a Beam	110
		3.6.1 Reduction Formulas	110
		3.6.2 Equilibrium Equations	111
		3.6.3 Example: Solution of a Simple Beam Problem	112
		3.6.4 Calculation of Internal Stress Field	113
		3.6.5 Differential Beam Equations	116
	3.7	The Need for Atomistic Elasticity: What's Next	119
4	Ato	mistic Elasticity: Linking Atoms and Continuum	121
	4.1	Thermodynamics as Bridge Between Atomistic	
		and Continuum Viewpoints	121
	4.2	The Atomic and Molecular Origin of Elasticity:	
		Entropic vs. Energetic Sources	122
	4.3	The Virial Stress and Strain	123
	4.4	Elasticity Due to Energetic Contributions	124
		4.4.1 Cauchy–Born Rule	124
		4.4.2 Elasticity of a One-Dimensional String of Atoms	126
		4.4.3 Elasticity and Surface Energy	
		of a Two-Dimensional Triangular Lattice	128
		4.4.4 Elasticity and Surface Energy	
		of a Three-Dimensional FCC Lattice	142
		4.4.5 Concluding Remarks	149
	4.5	Elasticity Due to Entropic Contributions	149
		4.5.1 Elasticity of Single Molecules: Worm-Like-Chain	
		Model	150
		4.5.2 Elasticity of Polymers	152
	4.6	Discussion	154
5	Mu	ltiscale Modeling and Simulation Methods	157
	5.1	Introduction	157
	5.2	Direct Numerical Simulation vs. Multiscale	
		and Multiparadigm Modeling	158
	5.3	Differential Multiscale Modeling	159
	5.4	Detailed Description of Selected Multiscale Methods	
		to Span Vast Lengthscales	160
		5.4.1 Examples of Hierarchical Multiscale Coupling	160

	5.4.2	Concurrent Integration of Tight-Binding,	
		Empirical Force Fields and Continuum Theory	162
	5.4.3	The Quasicontinuum Method	
		and Related Approaches	165
	5.4.4	Continuum Approaches Incorporating Atomistic	
		Information	168
	5.4.5	Hybrid ReaxFF Model: Integration of Chemistry	
		and Mechanics	169
5.5	Advar	nced Molecular Dynamics Techniques to Span Vast	
	Times	scales	175
5.6	Discu	ssion	180

Part III Material Deformation and Failure

6	Def	ormat	ion and Dynamical Failure of Brittle Materials .	185
	6.1	The N	Nature of Brittle Fracture	186
	6.2	Basic	s of Linear Elastic Fracture Mechanics	189
		6.2.1	Energy Balance Considerations: Griffith's Model	
			of Fracture	189
		6.2.2	Asymptotic Stress Field and Stress Intensity Factor	194
		6.2.3	Crack Limiting Speed in Dynamic Fracture	196
	6.3	Atom	istic Modeling of Brittle Materials	197
	6.4	A On	e-Dimensional Example of Brittle Fracture:	
		Joint	Continuum-Atomistic Approach	201
		6.4.1	Introduction	202
		6.4.2	Linear-Elastic Continuum Model	204
		6.4.3	Hyperelastic Continuum Mechanics Model	
			for Bilinear Stress–Strain Law	207
		6.4.4	Molecular Dynamics Simulations	
			of the One-Dimensional Crack Model:	
			The Harmonic Case	211
		6.4.5	Molecular Dynamics Simulations	
			of the One-Dimensional Crack Model:	
			The Supersonic Case	217
		6.4.6	Discussion and Conclusions	219
	6.5	Stress	s and Deformation Field near Rapidly Propagating	
		Mode	I Cracks in a Harmonic Lattice	223
		6.5.1	Stress and Deformation Fields	225
		6.5.2	Energy Flow near the Crack Tip	227
		6.5.3	Limiting Velocities of Mode I Cracks	
			in Harmonic Lattices	229
		6.5.4	Summary	230

6.6	Crack	Limiting Speeds of Cracks: The Significance	
	of Hyp	perelasticity	234
	6.6.1	Modeling	236
	6.6.2	Crack Speed and Energy Flow	238
	6.6.3	Hyperelastic Area	239
	6.6.4	How Fast can Cracks Propagate?	242
	6.6.5	Characteristic Energy Length Scale in Dynamic	
		Fracture	244
	6.6.6	Summary	248
6.7	Crack	Instabilities and Hyperelastic Material Behavior	249
	6.7.1	Introduction	251
	6.7.2	Design of Computational Model	252
	6.7.3	Computational Experiments	255
	6.7.4	Discussion and Conclusion	258
6.8	Sudde	enly Stopping Cracks: Linking Atomistic Modeling.	
	Theor	v. and Experiment	260
	6.8.1	Introduction	260
	6.8.2	Theoretical Background of Suddenly	
		Stopping Cracks	262
	6.8.3	Atomistic Simulation Setup	264
	6.8.4	Atomistic Simulation Results of a Suddenly	
		Stopping Mode I Crack	268
	6.8.5	Atomistic Simulation Results of a Suddenly	
		Stopping Mode II Crack	278
	6.8.6	Discussion	286
6.9	Crack	Propagation Along Interfaces of Dissimilar	
	Mater	ials	287
	6.9.1	Mode I Dominated Cracks at Bimaterial Interfaces	289
	6.9.2	Mode II Cracks at Bimaterial Interfaces	294
	6.9.3	Summary	297
6.10	Dvnar	mic Fracture Under Mode III Loading	299
	6.10.1	Atomistic Modeling of Mode III Cracks	300
	6.10.2	Mode III Cracks in a Harmonic Lattice –	
	0.20.2	The Reference Systems	300
	6.10.3	Mode III Crack Propagation in a Thin Stiff	
	012010	Laver Embedded in a Soft Matrix	301
	6.10.4	Suddenly Stopping Mode III Crack	303
	6.10.5	Discussion	303
6.11	Brittle	e Fracture of Chemically Complex Materials	304
0.11	6 11 1	Introduction	305
	6.11 2	Hybrid Atomistic Modeling of Cracking	000
	0.11.2	in Silicon: Mixed Hamiltonian Gormulation	307
	6 11 3	Atomistic Model	307
	6 11 4	Simulation Results	308
	0.11.4		000

		6.11.5 Dynamical Fra 6.11.6 Reactive Chen	acture Mechanisms	311
		Initiation		316
		6 11 7 Summary		317
	6 12	Summary: Brittle Fra	cture	320
	0.12	6 12 1 Hyperelasticity	z can Govern Dynamic Fracture	323
		6.12.2 Interfaces and	Geometric Confinement	326
7	Def	ormation and Fract	ure of Ductile Materials	327
	7.1	Introduction		327
	7.2	Continuum Theoretic	al Concepts of Dislocations	
		and Their Interaction	S	328
		7.2.1 Properties of I	Dislocations	329
		7.2.2 Forces on Disl	ocations	331
		7.2.3 Rice-Thomson	Model for Dislocation Nucleation	332
		7.2.4 Rice–Peierls M	Iodel	337
		7.2.5 Link with Ato	mistic Concepts	338
		7.2.6 Generalized St	acking Fault Curves	338
		7.2.7 Linking Atomi	stic Simulation Results	
		to Continuum	Mechanics Theories of Plasticity	339
	7.3	Modeling Plasticity U	Jsing Large-Scale	
		Atomistic Simulation	5	341
	7.4	Case Study: Deforma	tion Mechanics of Model FCC	
		Copper – LJ Potentia	ıl	343
		7.4.1 Model Setup.		343
		7.4.2 Visualization I	Procedure	345
		7.4.3 Simulation Re	sults	345
		7.4.4 Summary		355
	7.5	Case Study: Deform	ation Mechanics	
		of a Nickel Nanocryst	al – EAM Potential	357
	7.6	Case Study: Multi-Pa	aradigm Modeling of Chemical	
		Complexity in Mecha	nical Deformation of Metals	359
		7.6.1 Atomistic Mod	lel and Validation	360
		7.6.2 Example Appl	ication: Modeling Hybrid	
		Metal–Organie	c Systems	364
8	Defe	ormation and Frac	ture Mechanics	
	of G	eometrically Confi	ned Materials	373
	8.1	Introduction		373
	8.2	Thin Metal Films and	l Nanocrystalline Metals	381
		8.2.1 Constrained D	iffusional Creep in Ultra-Thin	
		Metal Films .		385
		8.2.2 Single Edge D	islocations in Nanoscale Thin Films	390
		0 - ~0~ -		•

	8.2.3	Rice–Thompson Model for Nucleation of Parallel	
		Glide Dislocations	393
	8.2.4	Discussion and Summary	396
8.3	Atom	istic Modeling of Constrained Grain Boundary	
	Diffus	ion in a Bicrystal Model	396
	8.3.1	Introduction and Modeling Procedure	397
	8.3.2	Formation of the Diffusion Wedge	400
	8.3.3	Development of the Crack-Like Stress Field	
		and Nucleation of Parallel Glide Dislocations	402
	8.3.4	Discussion	404
	8.3.5	Summary	408
8.4	Disloc	cation Nucleation from Grain Triple Junction	408
	8.4.1	Atomistic Modeling of the Grain Triple Junction	409
	8.4.2	Atomistic Simulation Results	410
	8.4.3	Discussion	414
8.5	Atom	istic Modeling of Plasticity of Polycrystalline Thin	
	Films		414
	8.5.1	Atomistic Modeling of Polycrystalline Thin Films	415
	8.5.2	Atomistic Simulation Results	416
	8.5.3	Plasticity of Nanocrystalline Bulk Materials	110
	0.010	with Twin Lamella	422
	854	Modeling of Constrained Diffusional Creep	122
	0.0.1	in Polycrystalline Films	426
	855	Discussion	428
	856	Summary: Results of Modeling of Thin Films	430
86	Use o	f Atomistic Simulation Results in Hierarchical	100
0.0	Multi	scale Modeling	432
	861	Mechanisms of Plastic Deformation of Illtra-thin	402
	0.0.1	Uncapped Copper Films	434
	862	Deformation Map of Thin Films	434
	863	Vield Stress in Illtra-Thin Copper Films	435
	864	The Bole of Interfaces and Geometric Confinement	436
87	Dofor	mation and Fracture Mechanics of Carbon	400
0.1	Nanot	tubos	138
	871	Mesoscale Modeling of CNT Bundles	400
	0.7.1	Mesoscale Simulation Degulta	441
	0.1.2	Discussion	444
00	5.7.5 Flour	Talevant Nanomatoriala Pull Evacture	440
0.0	Flaw-	lolerant Nanomaterials: Duik Fracture	116
		Strongth of Drittle Nenoporticles	440
	0.0.1	Strength of Drittle Nanoparticles	440
0 0	0.0.2 No	Simulation Results	450
8.9	Nanos	Scale Adnesion Systems	452
	8.9.1	Strength of Fibriliar Adnesion Systems	453
	8.9.2	I neoretical Considerations of Shape	1
		Optimization of Adhesion Elements	455

	8.9.3	Atomistic Modeling	456
	8.9.4	Simulation Results	457
	8.9.5	Summary	460
Referen	ces		463
Index			483

List of Figures

1.1	Illustration of how the characteristic material scales of technological eras have been reduced from the scales of meters to the scales of individual molecules and atoms.	
	The current technological frontier is the development of	
	molecular and atomistic structures at the interface of	
	physics, biology and chemistry, leading to a new bottom-up	
	approach in creating and characterizing materials	4
1.2	The plot shows simple, schematic stress–strain diagrams	
	characteristic for a brittle and a ductile material. Similar	
	curves are found for other materials, including polymers or	
	rubber-like materials. The cross symbol $(``x")$ indicates the	
	point of material failure [1]	5
1.3	Homogeneous material (subplot (\mathbf{a})) and material with	
	elliptical hole (subplot (b), length of elliptical hole is $2a$).	
	The presence of the elliptical void leads to a magnification	
	of the stress in the vicinity of the tip of the defect (see	
	schematic illustration of stress profile)	7
1.4	Schematic illustration of a failure process by crack extension	
	in a brittle material. The <i>inlay</i> in the center shows how	
	chemical bonds rupture continuously, leading to formation	
	of new fracture surfaces	8
1.5	Overview of different crystal structures, showing the SC,	
	FCC, and BCC crystal structure	9
1.6	Dislocations are the discrete entities that carry plastic	
	(permanent) deformation; measured by a "Burgers vector."	
	The snapshots illustrate the nucleation and propagation of	
	an edge dislocation through a crystal, leading to permanent	
	deformation	11

XVIII List of Figures

1.7	Schematic of brittle (a) vs. ductile (b) materials behavior. In brittle fracture, the crack extends via breaking of atomic bonds. In ductile fracture, the lattice around the crack tip is sheared, leading to nucleation of crystal defects called dislocations. Which one the two mechanisms is more likely to occur determines whether a material is brittle or ductile; this distinction is closely related to the atomic structure	
1.8	and the details of the atomic bonding Brittle (a) vs. ductile (b) materials behavior observed in atomistic computer simulations. In brittle materials failure, thousands of gradies break the material. In ductile failure	13
	material is plastically deformed by motion of dislocations	14
1.9	Overview over timescales and lengthscales associated with various problems and applications of mechanical properties	
	(adapted from [2])	19
1.10	Experimental techniques for conducting mechanical tests in single cell and single molecule biomechanics. Reprinted from <i>Materials Science and Engineering C</i> , Vol. 26, C.T. Lim, E.H. Zhou, A. Li, S.R.K. Vedula and H.X. Fu, Experimental techniques for single cell and single molecule biomechanics, pp. 1278–1288, copyright © 2006, with permission from	
	Elsevier	20
1.11	Nanomechanical experiments of bending deformation of 200-nm gold nanowires. Subplot (a) depicts a schematic of a fixed wire in a lateral bending test with an AFM tip. Subplots (b–e) depict AFM snapshots of the mechanical deformation the nanowire. Subplot (b) depicts results after elastic deformation, subplots (c) and (d) shows results after successive plastic manipulation, and subplot (e) shows an SEM image following the bending test. The SEM picture agrees in detail with the AFM image shown in subplot (d). All scale bars are 1 um. Reprinted with permission from	
	Macmillan Publishers Ltd, <i>Nature Materials</i> [3] © 2005	21

Mechanical deformation of a red blood cell (RBC) with 1.12optical tweezers. Subplot (a) depicts a schematic of the experimental approach. Subplot (b) depicts optical images of a healthy RBC and a RBC in the schizont stage of malaria, in PBS solution at 25°C. The *left column* depicts results prior to stretching, the *middle column* depicts results at a constant force of 68 ± 12 pN, and the *right column* plots results at a constant force of 151 ± 20 pN. The *P. falciparum* malaria parasite can be seen inside the infected RBCs. Reprinted from Acta Biomaterialia, Vol. 1, S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein, Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, pp. 15–30, copyright © 2005, with permission from Elsevier 23Images of an RBC being stretched from 0 to 193 pN. Subplot 1.13(a) shows images obtained from experiment, while subplots (b) and (c) depict a top view and a three-dimensional view of the half-model corresponding to the large deformation finite element simulation of the RBC, respectively. The contours of shades of grey in the middle column shows the distribution of constant maximum principal strains. Reprinted from Materials Science and Engineering C, Vol. 26, C.T. Lim, E.H. Zhou, A. Li, S.R.K. Vedula and H.X. Fu, Experimental techniques for single cell and single molecule biomechanics, pp. 1278–1288, copyright © 2006, with permission from Elsevier 24Change of cellular mechanical properties in cancer cells. 1.14 Subplot (a) depicts an optical image demonstrating the round, balled morphology of visually assigned tumor cells, and the large, flat morphology of presumed benign mesothelial, normal cells. Subplots (**b**–**d**) show histograms of the associated Youngs modulus E for cytological samples collected from patients with suspected metastatic cancer. Subplot (**b**) shows the histogram of E for all data collected from seven different clinical samples, indicating that there exist two peaks in the distribution. Subplot (c) shows a Gaussian fit for all tumor cells, and subplot (d) shows a log-normal fit for all normal cells. The analysis suggests that the presence of tumor cells leads to a sharp peak due to a lower Young's modulus. This method might be used to diagnose cancer based on a mechanical analysis. Reprinted with permission from Macmillan Publishers Ltd, Nature Nanotechnology [4] (c) 2007 25

XIX

XX List of Figures

- 1.17 Large deformation of a protein, here an example of unfolding of the enzyme lysozyme, result of a reactive force field simulation. The distance between the ends of the protein $(C_{\alpha}$ -atom of the terminal residues) is continuously increased by applying a continuously increasing force [7]. As the force is increased, the protein molecule undergoes significant structural changes relative to its initial folded configuration . 28

2.2	This figure illustrates the concept of model building. Panel (a) on the left shows the physical situation of a map of the subway lines. This representation makes it quite difficult	
	to determine a strategy to use the subway system to travel from the cities of Braintree to Revere for instance	
	The model representation depicted in panel (b) on the	
	right enables one to determine quite easily which subway	
	line to take, where to change the subway line, and how	
	many subway stops there are in between. This example	
	illustrates that even though the model representation on	
	the right misrepresents the actual distances and directions,	
	it elegantly displays the connectivity. This figure was	
	created based on a snapshot from the Massachusetts	
	Bay Transportation Authority (MBTA) web site (URL:	
	http://www.mbta.com/), reprinted with permission from	
	the the Massachusetts Bay Transportation Authority	34
2.3	Molecular dynamics generates the dynamical trajectories of	
	a system of N particles by integrating Newton's equations of	
	motion, with suitable initial and boundary conditions, and	
	proper interatomic potentials, while satisfying macroscopic	
	thermodynamical (ensemble-averaged) constraints, leading	
	to atomic positions $\mathbf{r}_i(t)$, the atomic velocities $\mathbf{v}_i(t)$, and	
	their accelerations $\mathbf{a}_i(t)$, all as a function of time, for all	
0.4	particles $i = 1 \dots N$, each of which has a specific mass $m_i \dots$	38
2.4	Schematic of the atomic displacement field as a function	
	of time. The atomic displacement field consists of a $(((C - n)))$	41
0.5	low-frequency ("coarse") and high frequency part ("fine")	41
2.5	Example of harmonic oscillator with spring constant $h_{\mu} = \frac{H}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	
	$k = \phi^{(r)}(r = r_0)$, used to extract information about the time	
	step required for integration of the equations of motion. The	
	aushea the snows the (nonlinear) realistic potential function	

XXII List of Figures

2.8	Summary of the Metropolis–Hastings Monte Carlo algorithm. Please see Figure 2.7 for an illustration of how	
	state B is generated based on a random perturbation	
	from state A. The procedure is repeated N_A times, the	
	number of iterations. The number of steps is chosen so that	
	convergence of the desired property is achieved	46
2.9	Schematic of the typical characteristic of a chemical bond, showing repulsion at small distances below the equilibrium	-
	showing repulsion at small distances below the equilibrium separation r_{0} and attraction at larger distances	17
2 10	Atoms are composed of electrons, protons, and neutrons	41
2.10	Electrons and protons are negative and positive charges of	
	the same magnitude. In classical molecular dynamics, the	
	the same magnitude. In classical molecular dynamics, the	
	mass point	40
9 1 1	Overview over different simulation tools and associated	49
2.11	longthscale and timescale	40
9 1 9	Pair interaction approximation. The upper part shows all	43
2.12	pair interactions of atom 1 with its neighbors, atoms 2, 3	
	4 and 5. When the bonds to atom 2 are considered the	
	4, and 5. When the bonds to atom 2 are considered, the	
	(bond marked with thicker line). This is accounted for by	
	adding a factor $1/2$ in (2.27)	51
2.13	Replacing a full-electron representation of atom-atom	01
	interaction by a potential function that only depends on the	
	distance r between the particles	52
2.14	Plot of the LJ potential and its derivative (for interatomic forces) in a parametrization for copper as reported in [9]	53
2.15	Difference in bond properties at a surface. Pair potentials	
	(<i>left panel</i>) are not able to distinguish bonds in different	
	environments, as all bonds are equal. To accurately	
	represent the change in bond properties at a surface, one	
	needs to adapt a description that considers the environment	
	of an atom to determine the bond strength, as shown in the	
	right panel. The bond energy between two particles is then	
	no longer simply a function of its distance, but instead a	
	function of the positions of all other particles in the vicinity	
	(that way, changes in the bond strength, for instance at	
	surfaces, can be captured). Multibody potentials (e.g.,	
	EAM) provide such a description	54
2.16	This plot illustrates how an EAM-type multibody potential	
	can represent different effective pair interactions between	
	bonds at a surface and in the bulk	56

2.17	Chemical complexity in proteins involves a variety of chemical elements and different chemical bonds between them. The snapshot shows a small alpha-helical coiled coil protein domain	57
2.18	Schematic of the contributions of the different terms in the potential expressions given in (2.36), illustrating the contributions of bond stretching, angle bending, bond rotations, electrostatic interactions, and vdW interactions	57
2.19	The plot shows the cohesive energy per atom (upper plot, in eV) and the bond length (lower plot, in Å), for several real and hypothetical polytypes of carbon, comparing the predictions from the Tersoff potential [10] for C with experimental and other computational results. The structures include a C ₂ dimer molecule, graphite, diamond, simple cubic, BCC, and FCC structures. The squares correspond to experimental values for these phases and calculations for hypothetical phases [11]. The circles are the results of Tersoff's model [10]. The continuous lines are spline fits to guide the eye. Reprinted from: J. Tersoff, Empirical interatomic potentials for carbon, with applications to amorphous carbon, Physical Review Letters, Vol. 61(25), 1988, pp. 2879–2883. Copyright \bigcirc 1988 by the	
2.20	American Physical Society An example to demonstrate the basic concept of the ReaxFF potential. It has been developed to accurately describe	61
2 21	transition states in addition to ground states	62
2.21	Subplot (a) shows how the bond order potential allows for a more general description of chemistry, since all energy terms are expressed dependent on bond order. In contrast, conventional potentials (such as LJ, Morse) express the energy directly as a function of the bond distance as shown in subplot (b). Subplot (c) illustrates the concept for a C–C single, double, and triple bond, showing how the bond distance is used to map to the bond order, serving as the basis for all energy contributions in the potential formulation defined in (2.47)	65
2.22	Results of a ReaxFF study of water formation, comparing the production rate with and without a Pt catalyst. The presence of the Pt catalyst significantly increases the water production rate (results taken from [12])	66

2.23	Water production at varying temperature, for constant pressure. Subplot (\mathbf{a}) depicts the water production rate.	
	Subplot (b) shows an Arrhenius analysis, enabling us to	
	process of 12 kc2/mol. This result is close to DET level	
	calculations of the energy barrier [12]	67
2.24	The BeavEE force field fills a gap between quantum	01
2.21	mechanical methods (e.g. DFT) and empirical molecular	
	dynamics	68
2.25	Schematic of the numerical scheme in carrying out molecular	00
	dynamics simulations	69
2.26	Schematic of the numerical scheme in carrying out molecular	
	dynamics simulations	70
2.27	Schematic of force calculation scheme in molecular	
	dynamics, for a pair potential. To obtain the force vector \mathbf{F}	
	one takes projections of the magnitude of the force vector F	
	into the three axial directions x_i (this is done for all atoms	
	in the system)	71
2.28	Use of neighbor lists and bins to achieve linear scaling ${\sim}N$	
	in molecular dynamics. Panel (\mathbf{a}) : Example of how neighbor	
	lists are used. The four neighbors of the central atom (in the	
	circle) are stored in a list so that force calculation can be	
	done directly based on this information. This changes the	
	numerical problem to a linear scaling effort. Panel (b): The	
	computational domain is divided into bins according to the	
	physical position of atoms. Then, atomic interactions must	
	only be considered within the atom's own bin and atoms in	79
2 20	Method to calculate the radial distribution function $a(r)$	12 74
2.29	Badial distribution function $g(r)$ for various atomistic	14
2.00	configurations including a solid (crystal) a liquid and a gas	75
2.31	Velocity autocorrelation function (VAF) for a gas liquid	10
2.01	and solid	77
2.32	Relating the continuum stress with the atomistic stress. The	• •
-	<i>left</i> shows a continuum system in which $\sigma_{ii}(\mathbf{r})$ is defined at	
	any point r . In contrast, in the atomistic system the stress	
	tensor is only defined at discrete points where atoms are	
	located	77
2.33	Example of how to calculate the stress tensor in a	
	1D system	78
2.34	Increase in computer power over the last decades and	
	possible system sizes for classical molecular dynamics	
	modeling. The availability of PFLOPS computers is	
	expected by the end of the current decade, which should	
	enable simulations with hundreds of billions of atoms	80

2.35	Summary of top 10 of the TOP500 supercomputer list, as of Spring 2008	81
2.36	Modern parallelization scheme. Subplot (a) depicts the schematic of the tunable hierarchical cellular decomposition scheme (THCD). The physical volume is subdivided into process groups, PG^{γ} , each of which is spatially decomposed into processes, P_{π}^{γ} . Each process consists of a number of computational cells (e.g., linked-list cells in molecular dynamics). Subplot (b) shows the total execution (<i>circles</i>) and communication (<i>squares</i>) times per molecular dynamics time step as a function of the number of processors for the F-ReaxFF molecular dynamics algorithm with scaled workloads (in a 36,288P atom RDX systems on <i>P</i> processors ($P = 1, \ldots, 1920$) of Columbia [Columbia is a supercomputer at NASA]). Reprinted from <i>Computational Materials Science</i> , Vol 38(4), A. Nakano, R. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. van Duin, W.A. Goddard III, R. Biswas and D. Srivastava, A divide-and-conquer/cellular-decomposition framework for million-to-billion atom simulations of chemical reactions, pp. 642–652, copyright © 2007, with permission	
2.37	from Elsevier	82
2.38	reactions, pp. 642–652, copyright (c) 2007, with permission from Elsevier Analysis of a dislocation network using the energy filtering method in nickel with 150,000,000 atoms [13, 14]. Subplot (a) shows the whole simulation cell with two cracks at the surfaces serving as sources for dislocations, and subplot (b) shows a zoom into a small subvolume. Partial dislocations appear as wiggly lines, and sessile defects appear as straight lines with slightly higher potential energy	84 85

XXVI List of Figures

2.39	Application of the energy method to visualize fracture	
	surfaces in a computational fracture experiment. Only high	
	energy atoms are shown by filtering them according to their	
	potential energy. This enables an accurate determination	
	of the geometry of cracks, in particular of the crack tip.	
	Typically, the analysis is confined to a search region (shown	
	as a <i>dashed line</i>) to avoid inclusion of effects of free surfaces .	86

- 2.42 Analysis of a simple alpha-helix protein structure, with different visualization options, plotted using VMD [148] 90

- 2.45 Steered molecular dynamics simulations of I27 extensibility under constant force. Subplot (a) shows snapshots of the structure of the I27 module simulated at a force of 50 pN (I, at 1 ns) and 150 pN (II, at 1 ns). At 50 pN, the hydrogen bonds between strands A and B are maintained, whereas at 150 pN they are broken. Subplot (b) displays the corresponding force–extension relationship obtained from the simulations. The discontinuity observed between 50 and 100 pN corresponds to an abrupt extension of the module by 4–7 Å caused by the rupture of the AB hydrogen bonds, and the subsequent extension of the partially freed polypeptide segment. Reprinted with permission from Macmillan Publishers Ltd., *Nature* [6] © 1999 94

3.1	Axial tensile loading of a beam and schematic force– extension response. Beversible deformation denotes	
	the elastic regime: upon unloading of the sample the	
	displacement returns to the initial point. Irreversible	
	deformation denotes the plastic regime: upon unloading	
	(indicated in the graph) the displacement does not return to	
	the initial point. (It is noted that the specific shape of the	
	force-extension curve may vary significantly depending on	
	the type of material)	96
3.2	Example for deformation of a beam due to mechanical	
	loading of a distributed force q_z . The structure responds	
	to the mechanical forces by a change in shape. Continuum	
	mechanical theory enables us to derive a relationship	
	between applied forces and displacements, strains,	
	and stresses.	98
3.3	The beam problem as multiscale problem. The goal of	
	solving this problem is to connect the global scale (scale	
	on the order of L where boundary conditions are applied,	
	for instance, load P, N , prescribed displacements) with the	
	local scale (section of the beam, e.g., the stress variation	
~ .	σ_{xx} , across the section)	99
3.4	Cross-sectional view of a body. Subplot (a) free body with	
	representative internal forces. Subplot (b) enlarged view	0.0
0 5	with components of the force vector split up	99
3.5	The most general state of stress acting on a infinitesimal	
	material element. All stresses shown in the figure have	100
26	Infinitesimal element with stresses and hadr ferres for esting	100
3.0	infinitesimal element with stresses and body forces f_i acting	101
37	This schematic explains the condition that $\sigma_{ii} = \sigma_{ii}$ so that	101
0.7	there is no moment on the infinitesimal element since it	
	cannot rotate	101
38	Schematic to illustrate the definition of the deformation	101
0.0	tensor	103
3.9	Schematic to illustrate the difference between rotational and	100
	deformation part of the deformation tensor	104
3.10	Illustration of the concept of nonlinear elasticity or	-
	hyperelasticity. Subplot (\mathbf{a}) shows the stress-strain	
	relationship, and subplot (\mathbf{b}) depicts the tangent modulus	
	as a function of strain. Linear elasticity is based on the	
	assumption that the modulus is independent of strain.	
	However, most real materials do not show this behavior.	
	Instead, they show a stiffening effect (e.g., rubber, polymers,	
	biopolymers) or a softening effect (e.g., metals, ceramics)	109
3.11	Geometry of the beam	110

XXVIII List of Figures

3.12	Solution field for a simply supported beam under dead load ρg , showing the shear force Q_y , bending moment M_y ,	
3.13	rotation ω_y , and the beam axis displacement u_z Demonstration of the concept of the Navier–Bernouilli	112
3.14	assumption Solution field for a simply supported beam under a point load P applied at the end of the beam, showing the shear force Q_y , bending moment M_y , rotation ω_y , and the beam axis displacement u_z	114 119
4.1	Example to illustrate Cauchy–Born rule in a one-dimensional	196
4.2	Subplot (a) rectangular cell in a uniformly deformed triangular lattice; subplot (b) the geometrical parameters	120
4.3	Elastic properties of the Lennard-Jones solid (<i>continuous</i> <i>line</i>) and elastic properties associated with the harmonic potential (<i>dashed line</i>). The <i>dash-dotted lines</i> in the <i>upper</i> <i>plots</i> show Poisson's ratio. The <i>lower plots</i> show the tangent modulus for this case. This plot is an actual material law	128
4.4	representing the schematic shown in Fig. 3.10 Elastic properties associated with the tethered LJ potential, and in comparison, elastic properties associated with the harmonic potential (<i>dashed line</i>). Unlike in the softening case where Young's modulus softens with strain (Fig. 4.3)	131
4.5	here Young's modulus stiffens with strain Elastic properties of the triangular lattice with harmonic interactions, stress vs. strain (<i>left</i>) and tangent moduli E_x and E_y (<i>right</i>). The stress state is uniaxial tension, that is the stress in the direction orthogonal to the loading is	132
4.6	relaxed and zero Illustration of the shape of the harmonic potential, comparing the one defined in (2.34) (panel (a)) and the one defined in (4.43) with the bond snapping parameter r_{break}	134
4.7	(panel (b)) The figure shows the stretching of the triangular lattice in	135
4.8	two different directions The figure plots the elastic properties under uniaxial loading with Poisson relaxation for the harmonic potential. In the plot, stress vs. strain, Poisson's ratio as well as the number of nearest neighbors are shown. The lower two subplots	135
	show Young's modulus	137

4.9	The figure plots the elastic properties under uniaxial loading without Poisson relaxation for the harmonic potential. In the plot, stress vs. strain, as well as the number of nearest neighbors are shown. The lower two subplots show Young's	
	modulus	138
4.10	Illustration of the parameters used in the biharmonic	100
	potential defined in (4.44). The plot defines $r, k_0, k_1, r_{on}, r_{break}$, as well as the "atomic" strain	139
4.11	Elastic properties of the triangular lattice with biharmonic interactions, stress vs. strain in the x-direction (a) and in the y-direction (b). The stress state is uniaxial tension, that is the stress in the direction orthogonal to the loading is	
	relaxed and zero	140
4.12	Bond breaking process along the fracture plane and calculation of fracture surface energy for (a) direction of high fracture surface energy and (b) direction of low	
	fracture surface energy	141
4.13	Elastic properties associated with the harmonic potential.	
_	[100] crystal orientation, with Poisson relaxation. Poisson ratio is $\nu \approx 0.33$ and is approximately independent of the applied strain. The plot shows the electic properties as a	
	function of strain	144
4.14	Elastic properties associated with the harmonic potential, [100] crystal orientation, without Poisson relaxation. The	
	plot shows the elastic properties as a function of strain	145
4.15	Elastic properties associated with the harmonic potential, [100] crystal orientation, triaxial loading. The plot shows	4.40
1.10	the elastic properties as a function of strain	146
4.16	Elastic properties associated with the harmonic potential,	
	(a) $[110]$ and (b) $[111]$ crystal orientation, uniaxial leading with Deisson relevation. The plot shows the electic	
	properties as a function of strain	147
4 17	Elastic properties associated with (a) LI potential and (b)	147
1.11	an EAM potential for nickel [15] uniaxial loading in [100]	
	[110] and [111] with Poisson relaxation	148
4.18	This plot depicts a series of snapshots of a single molecule	0
	with increasing length L , at constant temperature. The	
	longer the molecule, the more wiggly the geometrical shape	150

XXX List of Figures

4.19	Entropy controlled molecular elasticity. Subplot (a) Coiled, entangled state of a molecule with contour length much	
	larger than the persistence length. The end-to-end distance	
	is measured by the variable x . Subplot (b) Response of	
	the molecule to mechanical loading. As the applied force	
	is increased, the end-to-end distance x increases until	
	the molecule is fully entangled. Clearly, the continued	
	disentanglement leads to a reduction of entropy in the	
	system, which induces a force that can be measured as	
	an elastic spring. Once the molecule is fully extended, the	
	change in entropy due to increased force approaches zero,	
	and the elastic response is controlled by changes in the	
	internal potential energy of the system, corresponding to	
	the energetic elasticity	151
4.20	This plot depicts the entropic response $(F < 14 \mathrm{pN})$ of a	
	single tropocollagen molecule, obtained by direct molecular	
	dynamics simulation using a multi-scale model [17]. This	
	plot also depicts experimental results [16] obtained for	
	TC molecules with similar contour lengths, as well as the	
	prediction of the WLC model with persistence length of	
	approximately 16 nm [17]. The force-extension curve shows	
	a strong hyperelastic stiffening effect (see also Fig. 3.10)	152

5.1	A summary of a hierarchical multiscale scheme that can be used to develop an understanding of the behavior of	
	materials across scales in length and time	158
5.2	Overview over the process of predictive multiscale modeling.	
	Quantitative predictions are enabled via the validation	
	of key properties, which then enables to extrapolate and	
	predict the behavior of systems not included in the initial	
	training set	159
5.3	Example for implementation of a hierarchical multiscale	
	method, where parameters are passed through various	
	lengthscales	161

Hierarchical modeling of Cybersteel [18]. Subplot (a) 5.4shows quantum mechanical calculations that provide the traction-separation law. Subplot (b) depicts concurrent modeling of the submicron cell based on the tractionseparation law. Subplot (c) illustrates concurrent modeling of the microcell with the embedded constitutive law of the submicron cell. Subplot (d) shows results of modeling the fracture of the Cybersteel with embedded constitutive law of the microcell. Subplot (e) depicts the fracture toughness and the yield strength of the Cybersteel as a function of decohesion energy, determined by geometry of the nanostructures. Subplot (f) shows snap-shots of the localization induced debonding process. Subplot (\mathbf{g}) summarizes experimental observations. Reprinted from [18], Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 1529–1578, W.K. Liu, E.G. Karpov, S. Zhang, and H.S. Park, An introduction to computational nanomechanics and materials, copyright (c) 2004, with permission from Elsevier 162 5.5This plot shows a multiscale analysis of a 15-walled CNT by a bridging scale method. Subplot (a) illustrates the multiscale simulation model. It consists of ten rings of carbon atoms (with 49,400 atoms each) and a meshfree continuum approximation of the 15-walled CNT by 27,450 nodes. Subplot (**b**) shows the global buckling pattern captured by meshfree method, whereas the detailed local buckling of the ten rings of atoms are captured by a concurrent bridging scale molecular dynamic simulation. Reprinted from [18], Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 1529–1578, W.K. Liu, E.G. Karpov, S. Zhang, and H.S. Park, An introduction to computational nanomechanics and materials, copyright Results of a simulation of a crack in a thin film constrained 5.6by a rigid substrate, exemplifying a study using a concurrent multiscale simulation method, the quasicontinuum approach [20] 167

XXXII List of Figures

5.7	Application of the quasicontinuum method in the simulation of a nanoindentation experiment. Subplots (\mathbf{a}) and (\mathbf{b})	
	depicts a cross-sectional view of the test sample used in	
	the nanoindentation simulations for increasing indenter	
	penetration (part of the indenter is also shown). Subplot (\mathbf{c})	
	plots the dislocation structure at the indenter penetration	
	corresponding to the indentation depth shown in subplot	
	(b). Subplot (d) shows a load vs. displacement curve	
	predicted by full atomistic (LS) and quasicontinuum (QC)	
	simulations, illustrating that the two methods show excellent	
	agreement. Reprinted from Journal of the Mechanics and Physics of Solids Vol 40(0) I Knop and M Ortig Ap	
	<i>Physics of Solidas</i> , vol. $49(9)$, J. Kliap and M. Oftiz, All	
	with permission from Elsevier	168
5.8	The interpolation method for defining a mixed Hamiltonian	100
	in the transition region between two different paradigms.	
	As an alternative to the linear interpolation we have also	
	implemented smooth interpolation function based on a	
	sinusoidal function. This enables using slightly smaller	
	handshake regions thus increasing the computational	
	efficiency	171
5.9	Example of the energy landscape of two force fields, a	
	ReaxFF reactive force field and a nonreactive force field.	
	The plot illustrates that the two models yield a similar	
	energy landscape for small deviations from the minimum	
	of this effect specifically for silicon is shown in Fig. 6 108	172
510	Example CMDF script (<i>upper part</i>) and schematic of the	112
0.10	structure of CMDF (<i>lower part</i>)	175
5.11	Study of a nanoscale elliptical penny-shaped crack in	
	nickel, filled with O_2 , illustrating the hybrid ReaxFF-EAM	
	approach (crystal is loaded in tension, in the horizontal	
	direction)	176
5.12	Atomistic model to study surface diffusion of a single	
	adatom on a flat [100] copper surface	178
5.13	Study of atomic mechanisms near a surface step at a	
	[100]copper surface. The living time (or temporal stability)	
	from stap) as a function of temperature. The higher the	
	temperature the closer the living times of states A	
	and B get	178
5.14	Snapshots of states A (perfect step) and B (single atom	
	hopped away from step)	179