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Preface

The maritime operation is very demanding. These operations can be especially
complex and dangerous when effective coordination between different maritime
vessels and several maritime operators is required naturally and necessarily. Although
the safety and efficiency of maritime operations have been improved significantly
due to the unitizing of modern technology, human operators are still an indispensable
factor of maritime operations and have direct impacts on the quality and safety of
such complex operations. With the development of ship intelligence, human opera-
tors start to be transferred from vessels to onshore control centers slowly. However,
the impact of human operators in maritime operations will still be significant. It is
not likely that humans are completely removed from the maritime operational loop.

A poor performance in a critical moment can lead to disastrous results, including
near misses, economic and environmental losses, and fatalities. Several human
factors can lead to poor performance, including incorrect, incomplete, or nonex-
istent following of procedures; lack of situational awareness; and physical or mental
fatigue. Among these issues, mental fatigue is responsible for reducing cognitive
capabilities, situational awareness, and decision-making skills. Early detection and
assessment of mental fatigue (MF) can be used to reduce the number of causalities,
to benefit crew members, ship owners, and the maritime environment. How to assess
MF objectively in real-time maritime operations is still a challenging and unan-
swered question. As a conclusion, it is important to develop and implement methods
to monitor the decrement of performance from operators, aiming to increase safety
in demanding maritime scenarios.

This book will try to investigate how MF can be objectively measured during
demanding maritime operations so as to improve the operation safety. Based on the
physiological characterization of MF, the best approach to quantify this phenomenon
is through the use of physiological sensors. Different sensors such as ECG, EMG,
EEG, temperature sensor, and eye tracker can be applied, individually or in conjunc-
tion, in order to collect relevant data that can be mapped to an MF scale. More than
simpler sensor fusion, this book will bridge the gap between relevant sensor data and
a quantifiable MF level using both data-driven and model-based approaches. Data-
driven part investigates the use of different Neural Networks (NNs) combined for the
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MEF assessment (MFA) task. Among the different architectures tested, Convolutional
Neural Networks (CNN) showed the best performance when dealing with multiple
physiological data channels. Optimization was used to improve the performance of
CNN in the cross-subject MFA task. Testing different combinations of physiological
sensors indicated a setup consisting of EEG sensor only was the best option, due to
the trade-off between assessment precision and sensor framework complexity. These
two factors are of great importance when considering an MFA system that could be
implemented in real-life scenarios. The model-based discussion applies the current
knowledge about the use of EEG data to characterize MF to develop an MF approach
to quantify the progression of MF in maritime operators.

More importantly, for all research results presented in this book, realistic vessel
simulators were used as a platform for experimenting with different operational
scenarios and sensors’ setups.

The research work presented in this book is supported by the Centers for Research-
based Innovation project (SFI) “Offshore Mechatronics”, under the grant from the
Research Council of Norway. Special thanks should be given to Dr. Charlotte Skourup
from ABB AS in Norway for the technical support and cooperation. Many colleagues
from the intelligent systems lab at the Department of Ocean Operations and Civil
Engineering in NTNU Alesund campus also give great support to this research. In
the end, the authors would like to thank Dr. Guoyuan Li and Dr. Henrique Murilo
Gaspar for their support with testing and experiments.

Alesund, Norway Thiago Gabriel Monteiro
Houxiang Zhang
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