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Preface

Fractional-order calculus, which has a historical memory capacity can be viewed as
the generalization of its traditional integer-order counterpart. Due to its special prop-
erties, considerable physical systems can be modeled by fractional-order calculus,
such as viscoelastic systems, polymeric chemistry systems, biomedical systems,
and electrode processes, and even the electromagnetic theory can be modeled by the
fractional-order calculus. Various researchers have been dedicated to fractional-order
control theory in recent years. Compared with the integer-order control, fractional-
order control preserves several advantages. One is that it is more suitable for flexible
structures, especially for structures with viscoelastic characteristics. Another lies in
that the robustness of the system can be effectively improved. The last owes to the
faster response to input and the smaller overshoots, simultaneously. On the other
hand, sliding mode control, an effective nonlinear control method, has attracted
much attention and is widely applied to practical applications. To make full use of
the advantages of fractional-order control and sliding mode control, fractional-order
sliding mode control has been proposed by introducing fractional-order operation in
sliding mode control. Such a control scheme has been applied to real engineering
systems described by Lagrangian mechanics, such as the linear motor system and
space tethered system, just to name a few. However, there still exist some problems
to be solved for this kind of system. For example, since existing continuous sliding
mode control strategies are not suitable for linear motor equipped with discrete
digital controller and communication network, the discrete counterpart needs to be
designed. Fractional-order sliding mode control schemes for the deployment of space
tethered systems are still seldomly reported. To solve such problems, this monograph
attends to introduce the fractional-order control theory and discusses how to design
fractional-order sliding mode control schemes for linear motors and space tethered
systems, respectively.

The fractional-order control and fractional-order sliding mode control problems of
the linear motor and the deployment of space tethered system are thoroughly investi-
gated in this work. Several novel fractional-order control schemes and fractional-
order sliding mode control strategies including adaptive fractional-order sliding
mode control, fractional-order terminal sliding mode control, and fractional-order



vi Preface

fuzzy sliding mode control are proposed to improve the performance of the system.
This monograph consists of three parts. One focuses on the problems of fractional-
order control for rigid-flexible coupling space structures and space tethered systems.
Another is concerned with the problems of fractional-order sliding mode control for
linear motor systems. The last studies the problems of fractional-order sliding mode
control for the deployment of space tethered systems.

Specifically, the brief view of fractional-order control strength in modeling and
control includes the following:

1. Fractional-order dynamics and control of rigid-flexible coupling space structures,
2. Fractional-order controller of space tethered system.

The main contents of fractional-order sliding mode control for linear motor systems
are as follows:

1. Practical tracking control of linear motor via discrete-time fractional-order
sliding mode control,

2. Practical tracking control of linear motor by adaptive fractional-order Terminal
sliding mode control,

3. Discrete-time fractional-order terminal sliding mode control for the tracking
control of linear motor,

4. Fractional-order sliding mode contouring error control for multidimensional
systems.

The main contents of fractional-order sliding mode control for space tethered systems
are as follows:

1. Fractional-order fuzzy sliding mode control for the deployment of tethered
satellite system under input saturation,

2. Fractional-order terminal sliding mode control for the deployment of tethered
satellite system,

3. Fractional-order sliding mode control for the deployment of tethered spacecraft
systems,

4. Fractional-order adaptive sliding mode control for the deployment of space
tethered systems with input limitation.

Among these topics, both simulations and experiments are conducted to validate
the effectiveness and advantages of the proposed fractional-order control schemes
and fractional-order sliding mode control strategies in this monograph.

Harbin, China Guanghui Sun
Harbin, China Chengwei Wu
Harbin, China Xiaolei Li
Xi An, China Zhigiang Ma
Nanjing, China Shidong Xu
Harbin, China Xiangyu Shao

February 2024
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Chapter 1 ®)
Introduction Check for

FO calculus has a long history which can be traced back to 300 years ago [77]. It can
not only describe the objects better than integer-order calculus in natural environment
[56], but also has an effect of memory which means that it contains both the present
and the past information.

To quickly understand the relationship between FO calculus and classical calculus,
Let us review the definition process of classical calculus. Considering a continuous
function y = f(x), the well-known calculus definition can be defined by

g df . f@) = ft—h)
=~ = Jim (1.1)

h—0

Applying the rules twice gives the second-order derivative

2f i £ = f1@ =)

'@ = = lim p
— 1 f@)—2f@t—h)+ f@ —2h)
= lim .
h—0 h2

Similarly, we can get
3 " "
f SO = e —h
" —
S0 =G =

i SO =3fC =R +3FC =20 + e~ 3h)
_h—>0 h3

Moreover, we can obtain

=2 T —h' Oh,,Z( 1 ( > f—rh,
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where

n nn—1Hn-2)..(n—r+1)

r) r! '

In the last equation, the parameters n and r are integer number. Assuming that the
step size is small and the order n is generalized to any rational fractional number.
Then, a less rigorous definition for FO differentiation can be stated as follows.

1 « .
HOES» Z(;(—l)’ (’l.’)f(r —ih).

Of course, the above process is unscientific and non-causality, but useful for us
to understand the definition process. What’s more, we can use it in engineering
application because the discrete form is more suitable for modern digital controller.
The equation is famously called Griiunwald-Letnikov FO definition (abbreviate as
G-L definition). A more rigorous and mathematical process can be found in [77].

The above section is just a first view of FO calculus. In fact the concept of FO
calculus has been widely implemented in controller design [58, 111], which attracts
attention from researchers in academia and industry. In the past decades, researchers
applied FO calculus to SMC schemes and conducted them in industrial fields [100],
such as the hydraulic manipulators [91], permanent magnet synchronous motors
[106] and so on, which have proved that these control schemes are more effective
than their integer-order counterparts. In what follows, preliminaries of FO calculus
are provided, and its applications in the linear motor and space tethered system are
discussed.

1.1 The Definition of Fraction Order Calculus

The history of FO calculus, which is deemed as the generalization of traditional
integer-order calculus, can go back to 1690s. Many great mathematician have con-
tributed to the field, such as Euler, Lagrange, Riemann and so on. Liouville expanded
the functions in series of exponentials and defined the nth-order derivative. Riemann
proposed a different definition that involved a definite integral and was applicable to
power series with non-integer exponents. Griiunwald definite generalized derivative,
as stated above, from the starting point of the integer derivative. Several centuries
have been past. FO calculus has been slowly developed in the field of mathemat-
ics society. The main reason for limiting in engineering applications is the lack of
physical meaning. Until now, There are three kinds of common used definitions of
FO derivative, which are Riemann-Liouville, Griinwald-Letnikor, and Caputo defi-
nitions. More details about the FO calculus can be found in [41, 71, 77]. Here, both
the Riemann-Liouville definition and Caputo definition used in this monograph are
given.



1.2 Realization of Fractional-Order Calculus in Engineering 3

e The Riemann-Liouville (R-L) definition is addressed as

L d" [ fe)

A _ _ s
tth f(t) - F(l’t _ ﬁ) dr o (l _ E)B—n-‘rl &

(1.2)

where n — 1 < 8 < n, nis an integer, f(¢) is a continuous function with respect to
t,and I"(-) is a Gamma function.

The Laplace transform of the FO derivative based on Riemann-Liouville definition
is expressed as

n—1

2D fo} =57 Fs) = 34D F Ol

k=0

where n — 1 < § < n and s is the Laplace operator. The Oustaloup’s discretization
algorithm shown in [75] is used to approximate s” in numerical simulations. For
notational simplicity, in what follows, on is simplified as D”.

e The Caputo definition of the FO derivative is as follows.

PN

F(n _ a) 0 (l _ T)(y—n-&-l

dr,n—1 < a < n, (1.3)

D f(t) =

where a is areal number, # is a given integer number and " (-) is the Gamma function
defined as I'(x) = [~ t*le~d1.

It is noted that the FO derivative of a function is related to not only the current
state f(#,) but also the previous states f(#;),i < n. It indicates the FO derivative
possesses histroical memory capacity. The stability of FO calculus is very important
to its application in dynamics and control. Matignon pioneered in this area [67] by
checking the condition of FO system stability by the poles of FO system in the
complex plane of its pseudo-state space. Subsequently, many stability conditions
have been derived [19, 73], for instance, the LMI condition for linear time-delay
systems [19, 73], Mittag-Leffler stability for nonlinear FO systems [50] and so on.

1.2 Realization of Fractional-Order Calculus in
Engineering

In order to obtain a FO calculus in engineering application, there are two kinds of
methods which are called the discrete numerical method and approximation method
in Laplace domain. A natural approach for computing can be got by using the G-
L definition which has the discrete form. Using the commonly used integer-order
transfer function to approximate the fraction order operators in a given frequency
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range is the main feature for the approximation method in Laplace domain. Some
results have been summarized in Vinagre’s work [89].

In this book, considering the discussion background mainly focusing on the con-
trol science and engineering, the FO differential equation can be written as

Dly(t) = f(t, y(®). (1.4)

For the common sense linear control system, the above equation can be also rewritten
as
an D" y(O)+an D" y(@) + - -+ ag DV y(1) =

1.5
by D" f(8) + by D" f () + -+ + b D™ £ (1), o

or by a continuous transfer function of the form

b sPn b O oo 4 bps
Gls) = 2 Fomoas T 00 (1.6)
Ay s +an_ls n—1 +"'+a()SO'0

It’s clear that for the above equation, the first and most important thing is how to solve
the equation. Therefore, in this section, we will introduce two kinds of realization
examples to compute the FO calculus in our applications.

1.2.1 Discrete Numerical Methods

o G-L definition based discrete method

Based on the Griinwald-Letnikov FO definition, for a given FO operator D f(¢),
we can use the following approximation

D f(t) ~ A, f(1), (1.7)
k ' o
AR FOlimen =Y (=1) ( j )f(kh — jh). (1.8)
j=0

As we can see in the former equation, as the step ¢t = kh — 00, more and more items
will be computed to solve the equation. In other words, as the time/step grows, more
and more memories are needed to store every step value (from r = 0 — kh) to get
current solution. It is unpractical to require infinite memories in our application no
matter engineering or numerical simulation. To solve this problem, the short memory
principle or finite term truncation method is the natural way for computing. Before
introducing the principle, define the coefficient parameter as follows
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wd = (=1)/ <3“) (1.9)

It’s clearly that the difference equation (1.8) can be viewed as a weighted sum of
the values at all time f(t — jh), j =0, 1, 2, ... with the coefficient equation (1.9).
We can observe that the values of the w{ near 7 = 0 (or any other time step ¢ = 1o
as initial step) have little influence for the current t = kh — oo. What’s more, the
initial value will influence the current value more and more small as the current time
t — 00. Thus, The short memory principle or finite term truncation method allows
us to approximate the numerical solution by using the information of the “recent
past”. By using the time interval [t — L, ¢] instead of the long history [0, 7] to get
the given length of memory, a window function liked method is easily proposed to
compute the FO derivatives. Some results for the error of the approximation can be
found in Monje’s work [71].

e Generalized Adams-Bashforth-Moulton method

Another effective discretization method can be viewed as generalized method from
the classical integer-order Adams-Bashforth-Moulton method [21]. Considering the
FO differential (1.4) in the time interval 0 < ¢ < T with initial value y® (0) = y(k)
[20, 22, 77], the equivalent Volterra integral is:

m—1
y(r>=Zyé“,i, X f (t =) f(r, y()dr. (1.10)
k=0

Defineh = T/N,t, =nh,n=0,1, .- N € Z*,thefollowing Adams-Bashforth
predictive formula is firstly used.

m—1

t
W) =D 2y + e )Zb, VLG AGNE (1.11)
k=0

where the parameterb; ,1 = h*((n + 1 — j)* — (n — j)*)/a, and then the Adams-
Moulton correction formula is introduced,

m—1 _k
1, he
Yr(tnt1) = Z k_+!1yék)+mf(t”“’ Y (tas1))
- (1.12)
L=y F(Ol + 2) Zal Vl+1f(tj1 yh(tj))

where the parameter a; ,1 can be stated as
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nt—(n— )+ D" =0

Ajn1 =y n—j+2 M+ n— N2 —j+ D 1< j<n (1.13)
1 ,j=n+1

And the error is
max | [y(t) = (1] = Oh”), (1.14)

.....

where p = min(2, 1 + o) [21]. We can find that the generalized Adams-Bashforth-
Moulton method has the same disadvantage in computing, which means that infinite
memories are needed as the time/step grow. Thus, the same finite term truncation
method to get “recent past” effect is also important.

1.2.2 Approximations Method in Laplace Domain

The above discrete methods are very useful in numerical computing. However, many
of the engineering problems can be indeed well expressed by transfer functions. Many
engineers in the control field are familiar with the transfer function. Considering the
FO transfer function (1.6), many researchers have proposed approximation methods
in Laplace domain based on the classical transfer function. The main feature is using
the classical integer-order transfer function to approximate FO operator s for a
given frequency range. This kind of approximation method can be roughly divided
into two categories. One is the approximation method based on continued fraction
expansions (CFE) [16] and interpolation techniques, such as Carlson method [9]
and Matsuda’s algorithm [68]. The other is the approximate method based on Curve
fitting or Identification techniques, such as Oustaloup’s and Chareft’s algorithms [11,
75].

e Continued fraction expansions and interpolation method

The CFE is a very famous method for evaluation of functions, which frequently
converges much more rapidly than power series expansions, and converges in a
much larger domain in the complex plane. The result of such approximation for an
irrational function G(s), can be expressed in the form,

bi(s)

ba(s)
aps — e
O T (1.15)

bis) ba(s) bys)
al($)+ ax()+ az(s)+

G(s) ~ ao(s) +

= ap(s) +

where a;(s) and b; (s) are rational functions of the variable s, or are constant. The
application of the method yields a rational function G(s), which is an approxima-
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tion of the irrational function G (s). Based on this principal, three brief methods are
presented

(M

2)

3)

Piecewise linear approximation: In Laplace domain, FO operator s~*, 0 <
« < 1 can be approximated by following rational function

1

T

(1.16)

Gils) = (1 + ;) , (1.17)

where G, (s) is the approximation for high frequencies (w > 1), and G;(s) is
the approximation for low frequencies (w < 1).

Carlson’s method [9]: This method is an iterative approximation algorithm.
Derive regular Newton iterative process to approximate the a-th root. The starting
point of the method is the statement of the following relationships:

(Hs)Y* = G(s) =0; H(s) = G(s)°. (1.18)

Defining o = 1/q, m = /2, in each iteration, starting from the initial value
Hy(s) = 1, an approximated rational function is obtained in the form

(g —m)(H;—1(s))* + (g + m)G(s)
(q +m)(Hi—1(s))* + (g — m)G(s)

Hi(s) = Hi—1(s) (1.19)

Matsuda’s method [68]: This method is based on the approximation of an
irrational function by a rational one, obtained by CFE and fitting the original
function in a set of logarithmically spaced points. Assuming that the selected
points are s, k = 0, 1, 2, the approximation takes on the form:

S —808—S851 85—

H(s) =ap+
) 0 a+ @t a+

(1.20)

S—S8;
vi(s)—a; *

where a; = v;(s;), vo(s) = H(s), viy1(s) =

e Curve fitting based method

The curve fitting and identification method is based on the response of fractional
integral operator in the frequency domain, and the curve fitting method is adopted
to ensure that the following cost function is minimum in the sense of least square
criterion:

J= / W(w)‘G(w) — Gw) L. (1.21)
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where W (w) is a weighting function, G (w) is the original frequency response, and
G (w) is the frequency response of the approximated rational function. There are two
important methods in applications.

(D

2)

Oustaloup’s method [75]: This method is a proposed by CRONE research
group in France. Its highlight is to approximate fractional integral operators in
the frequency band of interest through the following approximation formula
H(s) = s*.

N
1+ s/wy
H(s)~C _ 1.22
(s) k:I_IN s/ (1.22)

where

/ -0.5 0.5
wo=« Wy, Wy = Q7 Wy, Wy = /Why,

Wil _ Wit o Wik g W
o o = TS : (1.23)
_log(wy/wg)  loga

) M —_— )
log(am) log(amn)

where w, is the unit gain frequency and the central frequency of a band of
frequencies geometrically distributed around it. wj, w, are the high and low
transitional frequencies, respectively.

Chareff’s method [11]: This method is very similar with Oustaloup’s method.
The difference is using the following approximation function instead of fractional
operator s°. |

ST

(1.24)

In the frequency domain, above H (s) can be instead by a quotient of polynomials
in s in a factorized form:

n—1

Ma+s

(O o —— (1.25)
I+
i=0

where the coefficients are computed for obtaining a maximum deviation from
the original magnitude response in the frequency domain of y dB. Given the
break frequency Pr and frequency range[wiin, Wmnax ], define

a = 10°/100-) ', — 10/10a (1.26)



