Studies in Systems, Decision and Control 532

Guanghui Sun · Chengwei Wu · Xiaolei Li · Zhiqiang Ma · Shidong Xu · Xiangyu Shao

Fractional-Order Sliding Mode Control: Methodologies and Applications

Studies in Systems, Decision and Control

Volume 532

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Editorial Board

Dmitry A. Novikov, Institute of Control Sciences (Director), Russian Academy of Sciences, Moscow, Russia Peng Shi, School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, Australia Jinde Cao, School of Mathematics, Southeast University, Nanijing, China Marios Polycarpou, KIOS Research Center, University of Cyprus, Nicosia, Cyprus Witold Pedrycz^D, Faculty of Engineering, University of Alberta, Alberta, Canada The series "Studies in Systems, Decision and Control" (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control-quickly, up to date and with a high quality. The intent is to cover the theory, applications, and perspectives on the state of the art and future developments relevant to systems, decision making, control, complex processes and related areas, as embedded in the fields of engineering, computer science, physics, economics, social and life sciences, as well as the paradigms and methodologies behind them. The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the worldwide distribution and exposure which enable both a wide and rapid dissemination of research output.

Indexed by SCOPUS, DBLP, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

Guanghui Sun · Chengwei Wu · Xiaolei Li · Zhiqiang Ma · Shidong Xu · Xiangyu Shao

Fractional-Order Sliding Mode Control: Methodologies and Applications

Guanghui Sun School of Astronautics Harbin Institute of Technology Harbin, China

Xiaolei Li School of Astronautics Harbin Institute of Technology Harbin, China

Shidong Xu College of Aerospace Engineering Nanjing University of Aeronautics and Astronautics Nanjing, China Chengwei Wu School of Astronautics Harbin Institute of Technology Harbin, China

Zhiqiang Ma School of Astronautics Northwestern Polytechnical University Xi An, China

Xiangyu Shao School of Astronautics Harbin Institute of Technology Harbin, China

ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems, Decision and Control ISBN 978-3-031-60846-9 ISBN 978-3-031-60847-6 (eBook) https://doi.org/10.1007/978-3-031-60847-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

Fractional-order calculus, which has a historical memory capacity can be viewed as the generalization of its traditional integer-order counterpart. Due to its special properties, considerable physical systems can be modeled by fractional-order calculus, such as viscoelastic systems, polymeric chemistry systems, biomedical systems, and electrode processes, and even the electromagnetic theory can be modeled by the fractional-order calculus. Various researchers have been dedicated to fractional-order control theory in recent years. Compared with the integer-order control, fractionalorder control preserves several advantages. One is that it is more suitable for flexible structures, especially for structures with viscoelastic characteristics. Another lies in that the robustness of the system can be effectively improved. The last owes to the faster response to input and the smaller overshoots, simultaneously. On the other hand, sliding mode control, an effective nonlinear control method, has attracted much attention and is widely applied to practical applications. To make full use of the advantages of fractional-order control and sliding mode control, fractional-order sliding mode control has been proposed by introducing fractional-order operation in sliding mode control. Such a control scheme has been applied to real engineering systems described by Lagrangian mechanics, such as the linear motor system and space tethered system, just to name a few. However, there still exist some problems to be solved for this kind of system. For example, since existing continuous sliding mode control strategies are not suitable for linear motor equipped with discrete digital controller and communication network, the discrete counterpart needs to be designed. Fractional-order sliding mode control schemes for the deployment of space tethered systems are still seldomly reported. To solve such problems, this monograph attends to introduce the fractional-order control theory and discusses how to design fractional-order sliding mode control schemes for linear motors and space tethered systems, respectively.

The fractional-order control and fractional-order sliding mode control problems of the linear motor and the deployment of space tethered system are thoroughly investigated in this work. Several novel fractional-order control schemes and fractionalorder sliding mode control strategies including adaptive fractional-order sliding mode control, fractional-order terminal sliding mode control, and fractional-order fuzzy sliding mode control are proposed to improve the performance of the system. This monograph consists of three parts. One focuses on the problems of fractionalorder control for rigid-flexible coupling space structures and space tethered systems. Another is concerned with the problems of fractional-order sliding mode control for linear motor systems. The last studies the problems of fractional-order sliding mode control for the deployment of space tethered systems.

Specifically, the brief view of fractional-order control strength in modeling and control includes the following:

- 1. Fractional-order dynamics and control of rigid-flexible coupling space structures,
- 2. Fractional-order controller of space tethered system.

The main contents of fractional-order sliding mode control for linear motor systems are as follows:

- 1. Practical tracking control of linear motor via discrete-time fractional-order sliding mode control,
- 2. Practical tracking control of linear motor by adaptive fractional-order Terminal sliding mode control,
- 3. Discrete-time fractional-order terminal sliding mode control for the tracking control of linear motor,
- 4. Fractional-order sliding mode contouring error control for multidimensional systems.

The main contents of fractional-order sliding mode control for space tethered systems are as follows:

- 1. Fractional-order fuzzy sliding mode control for the deployment of tethered satellite system under input saturation,
- 2. Fractional-order terminal sliding mode control for the deployment of tethered satellite system,
- 3. Fractional-order sliding mode control for the deployment of tethered spacecraft systems,
- 4. Fractional-order adaptive sliding mode control for the deployment of space tethered systems with input limitation.

Among these topics, both simulations and experiments are conducted to validate the effectiveness and advantages of the proposed fractional-order control schemes and fractional-order sliding mode control strategies in this monograph.

Harbin, China Harbin, China Harbin, China Xi An, China Nanjing, China Harbin, China February 2024 Guanghui Sun Chengwei Wu Xiaolei Li Zhiqiang Ma Shidong Xu Xiangyu Shao

Acknowledgements

There are numerous individuals without whose help this book will not have been completed. Special thanks go to Prof. Zheng-Hong Zhu from York University, Prof. Ligang Wu, Prof. Jianxing Liu, and Prof. Huijun Gao from Harbin Institute of Technology for their valuable suggestions, constructive comments, and support. Thanks also go to my graduates, Baizheng Huan and Zhihao Cheng, for their collaboration. The authors are especially grateful to their families for their encouragement and never-ending support when it was most required. Finally, we would like to thank the editors at Springer for their professional and efficient handling of this project.

The writing of this book was supported in part by the National Natural Science Foundation of China (Nos. U23A20346, 62173107, 62033005, 62320106001, 62303139) and in part by the Key R&D Program of Heilongjiang Province (No. 2022ZX01A18).

Harbin, China Harbin, China Harbin, China Xi An, China Nanjing, China Harbin, China February 2024 Guanghui Sun Chengwei Wu Xiaolei Li Zhiqiang Ma Shidong Xu Xiangyu Shao

Contents

1	Intro	duction	1
	1.1	The Definition of Fraction Order Calculus	2
	1.2	Realization of Fractional-Order Calculus in Engineering	3
		1.2.1 Discrete Numerical Methods	4
		1.2.2 Approximations Method in Laplace Domain	6
		1.2.3 Some Stability Criteria for Fractional-Order	
		System	9
	1.3	Brief Introduction of Sliding Mode Control Theory	11
		1.3.1 The Historical Development of Sliding Mode	
		Control	11
		1.3.2 Fundamentation of Sliding Mode Control	12
	1.4	Applications of Fractional-Order Sliding Mode Control	19
		1.4.1 Fractional-Order Sliding Mode Control of Linear	
		Motor System	20
		1.4.2 Fractional-Order Sliding Mode Control of Space	
		Tethered System	23
	1.5	Publication Contribution	26
	1.6	Publication Outline	27
	Refere	ences	31
Par	t I Bi	rief View of Fractional-Order Control Strength in	
	Μ	odelling and Control	
2	Fract	ional-Order Dynamics and Control of Rigid-Flexible	
	Coup	ling Space Structures	39
	2.1	Introduction	39
	2.2	Fractional-Order Constitutive Law for Viscoelastic Material	40
	2.3	Fractional-Order Dynamics of Rigid-Flexible Coupling	
		Structures	42
		2.3.1 Dynamics of Rigid-Flexible Coupling Structures	42
		2.3.2 Fractional-Order Transfer Function	43

Frac	tional-O	rder Tension Control for Tethered Satellite
Syste	ems	
3.1	Introdu	iction
3.2	Dynam	nics Behaviors of Tethered Satellite System
	3.2.1	Dynamics of Space 3D Tethered Satellite System
	3.2.2	Simplified 2D in-Plane Dynamic of Tethered
		Satellite System
3.3	Fractio	nal-Order Controller for Space Tethered Satellite
	Retriev	7al
	3.3.1	PID-Liked Simple Tension Control Law
		for Retrieval
	3.3.2	Improved Fractional-Order Tension Control Law
		for Retrieval
3.4	In-Plan	ne Controller for Deployment of Tethered Satellite
	3.4.1	Simple In-Plane Tension Control Law
		for Deployment
	3.4.2	Improved In-Plane Fractional-Order Tension
		Control Law for Deployment
3.5	Conclu	ision

Part II Fractional-Order SMC of Linear Motor Systems

Prac	tical Tra	acking Control via Discrete-Time
Frac	tional-O	rder SMC
4.1	Introdu	iction
4.2	Plant M	Iodeling of X-Y Servo Platform
4.3	Prelimi	naries of Fractional-Order Calculus
4.4	Fractio	nal-Order Sliding Mode Controller Design
	4.4.1	Sliding Surface
	4.4.2	Discrete-Time Fractional-Order Sliding Mode
		Controller
	4.4.3	Tracking Error Analysis
4.5	Simula	tions and Experiments
	4.5.1	Simulations
	4.5.2	Experiments
4.6	Conclu	sion
Refe	rences .	

5	Prac	tical Tra	cking Control via Adaptive Fractional-Order	
	Tern	ninal SM	IC	103
	5.1	Introdu	action	103
	5.2	Model	Review of X-Y Servo Platform	103
	5.3	Contro	ller Design	104
		5.3.1	Preliminaries	104
		5.3.2	Adaptive Fractional-Order Terminal Sliding Mode	
			Control	106
		5.3.3	Sliding Mode Disturbance Observer Design	113
	5.4	Experi	ments	114
		5.4.1	Experimental Results Without Load	116
		5.4.2	Experimental Results with Extra 30% Load	117
		5.4.3	Summary and Statistics of Experimental Data	122
	5.5	Conclu	ision	123
	Refe	rences .		123
6	Disc	rete.Tim	e Fractional-Order Terminal Sliding Mode	
U I	Trac	king Co	ntrol	125
	61	Introdu	iction	125
	6.2	Model	Review of X-Y Servo Platform	125
	6.3	Discret	te-Time Fractional-Order Terminal Sliding Mode	120
	0.0	Contro	ller Design	126
		631	Preliminaries	126
		632	Control System Design	128
	64	Experi	ments	135
	0.1	6.4.1	Experimental Setup	135
		6.4.2	Controller Parameter Selections	135
		6.4.3	Experimental Results	135
		6.4.4	Summary and Statistics of Experimental Results	139
	6.5	Conclu	Ision	140
	Refe	rences .		141
_	Б			1.42
7	Frac	tional-O	rder Sliding Mode Contouring Error Control	143
	7.1	Introdu	Iction	143
	1.2	Discret	te Time Freetienel Order Sliding Mode Contouring	144
	1.5	Discret	le-Inne Fractional-Order Stiding Mode Contouring	146
			Direct Madalian	140
		7.3.1	Cantral Sustan Design	140
		7.3.2	Control System Design	14/
	74	1.3.3 E	Contouring Effor Analysis	155
	1.4	Experii	E-menis	157
		1.4.1	Experimental Setup and Parameters	15/
	75	1.4.2	Experimental Results	159
	7.3 D.f	Conclu	ISION	164
	Kefe	rences .		104

Par	t III	Fractional-Order SMC for the Deployment of Space Tethered System	
8	Frac	tional-Order Fuzzy SMC for the Deployment of TSS	169
	8.1	Introduction	169
	8.2	System Description and Preliminaries	170
		8.2.1 Tethered Satellite System Description	170
		8.2.2 Control Objective	171
	8.3	Control Strategy	172
		8.3.1 Fractional-Order Fuzzy Sliding Mode Control8.3.2 Fractional-Order Fuzzy Sliding Mode Control	172
		in the Presence of Input Saturation	178
	8.4	Simulations	180
	8.5	Conclusion	184
	Refe	rences	185
9	Frac	tional-Order Nonsingular Terminal SMC	
-	for t	he Deployment of STS	187
	91	Introduction	187
	9.2	Mathematical Description and Preliminaries	187
	2.2	9.2.1 Mathematical Formulation	187
		9.2.2 Preliminaries of Fractional-Order Calculus	189
	9.3	Control Scheme	191
	2.0	9.3.1 Integer-Order Nonsingular Terminal Sliding	
		Mode Control	191
		9.3.2 Fractional-Order Nonsingular Terminal Sliding	
		Mode	193
	9.4	Simulations	200
	9.5	Conclusion	205
	Refe	rences	206
10	Free	tional Order SMC for the Deployment of STS	207
10	10 1	Introduction	207
	10.1	Dynamics and Control	207
	10.2	10.2.1 Integral Sliding Mode Controller Design	207
		10.2.2 Fractional-Order Sliding Mode Controller Design	214
	10.3	Simulations	223
	10.5	Conclusion	228
	Refe	rences	228
	_		
11	Frac	tional-Order Adaptive SMC for the Deployment of STS	231
	11.1		231
	11.2	Mathematical Model	231
	11.3	Fractional-Order Sliding Mode Control	235
		11.3.1 Preliminaries	235
		11.3.2 Fractional-Order Adaptive Sliding Mode Control	0.40
		Subject to Input Limitation	240

Contents

	11.4	Simulations	245
		11.4.1 Case 1: $e = 0.0027$	245
		11.4.2 Case 2: $e = 0.17$	249
	11.5	Conclusion	251
	Refer	ences	252
12	Conc	lusion and Further Work	253
	12.1	Conclusion	253
	12.2	Further Work	254

Notations and Acronyms

·	Euclidean norm
$\ \cdot\ _1$	1-norm
$\ \cdot\ _2$	2-norm
$\ \cdot\ _{\infty}$	∞ -norm
∈	Belongs to
\mathcal{L}_1	$\mathcal{L}_1 = \{ f(t) : \ f(t) \ _1 < \infty \}$
\mathcal{L}_2	$\mathcal{L}_2 = \{ f(t) : \ f(t) \ _2 < \infty \}$
\mathcal{L}_{∞}	$\mathcal{L}_{\infty} = \{ f(t) : \ f(t) \ _{\infty} < \infty \}$
N^+	Set of positive integers
$sgn(\cdot)$	Sign function
\mathbb{R}	Field of real numbers
\mathbb{R}^{n}	Space of <i>n</i> -dimensional real vectors
$\mathbb{R}^{n \times m}$	space of $n \times m$ real matrices
CSMC	Continuous-time sliding mode control
DSMC	Discrete-time sliding mode control
FNTSM	Fast nonsingular terminal sliding mode
FO	Fractional order
LMI	Linear matrix inequality
SMC	Sliding mode control
SMDO	Sliding mode disturbance observer
STS	Space tethered systems
TSS	Tethered satellite system

List of Figures

Fig. 1.1	The typical stable and unstable regions of a FO system	10
Fig. 1.2	The phase trajectories of the system (1.35). Left:	
	when $\varphi = \beta$. Right: when $\varphi = -\beta$ with parameter $\beta > 0$	12
Fig. 1.3	The phase trajectories of the system (1.35)	
	under the sliding mode controller	13
Fig. 1.4	Main contents of this publication	28
Fig. 2.1	Magnitude of the frequency response of normalized	
	constitutive laws	41
Fig. 2.2	Simplified fundamental model	42
Fig. 2.3	Bode magnitude plot for different ratios of I_2/I_1	45
Fig. 2.4	Bode magnitude plot for different natural frequencies ω_{nf}	45
Fig. 2.5	Bode magnitude plot for different material viscosity	
	with $0 < \beta < 1$	46
Fig. 2.6	Closed-loop control of the disc-shaft coupling structures	47
Fig. 2.7	Bode diagram for the FO controller	49
Fig. 2.8	Bode diagram of the compensated open-loop transfer	
	function	50
Fig. 2.9	Bode diagram of the closed-loop transfer function	50
Fig. 3.1	The local orbital reference frame of TSS	55
Fig. 3.2	A kind of air-bearing workbench platform on the ground	58
Fig. 3.3	Time history of dimensionless tether length and velocity	
	in retrieval	61
Fig. 3.4	Time history of in-plane libration angle and velocity	
	of retrieval. Note that the unit for the libration velocity is	
	degree per dimensionless time (τ)	61
Fig. 3.5	Trajectory of subsatellite in the orbital plane	
	in the retrieval process	62
Fig. 3.6	Time history of out-of-plane libration angle and velocity	
	of retrieval. Note that the unit for the libration velocity is	
	degree per dimensionless time (τ)	62

Fig. 3.7	Time history of out-of-plane libration angle and velocity	
	of retrieval. Note that the unit for the libration velocity is	61
Eig 29	Time history of out of plane libration and a solution (7)	04
Fig. 5.8	of notice and velocity	
	degree new dimensionless time (=)	65
E:- 2.0	degree per dimensionless time (τ)	03
Fig. 5.9	of notice and velocity	
	degree per dimensionless time (7)	65
$E_{2} = 2.10$	degree per dimensionless time (τ)	03
Fig. 5.10	filme instory of out-of-plane inbration angle and velocity	
	degree per dimensionless time (7)	"
E 2 11	Time history of out of plane libration and a solution (7)	00
Fig. 5.11	of notice and velocity	
	degree per dimensionless time (7)	"
Eig 2 12	degree per dimensionless time (τ)	00 60
Fig. 3.12	Time history of tother length with different fractional	09
Fig. 5.15	orders	71
Fig 2.14	Time history of nitch angle with different fractional orders	71
Fig. 3.14	Tension of different fractional orders with the same initial	/1
Fig. 5.15	condition	72
Fig. 3.16	Deployment dynamics of tether length	12
1 Ig. 5.10	with $k_1 = 5.4$, $k_2 = 3.5$ and $\alpha = 0.1$	73
Fig 3 17	Tension control input with $k_1 = 5.4$, $k_2 = 3.5$ and $\alpha = 0.1$	73
Fig. 3.18	Deployment dynamics of pitch angle	15
119.0.10	with $k_1 = 5.4$, $k_2 = 3.5$ and $\alpha = 0.1$	73
Fig. 4.1	Experimental facility for linear-motor-based motion	
0	control system	80
Fig. 4.2	The position of z_0 on the complex plane and the state	
0	of $\check{\mathbf{p}}(k)$. (a·) The position of z_0 ; (b·) The state of $\check{\mathbf{p}}(k)$; (·1)	
	Test 1; (·2) Test 2; (·3) Test 3.	94
Fig. 4.3	Switching function and region ξ of a Test 4; b Test 5;	
U	c Test 6	95
Fig. 4.4	Performances of tracking a cosinoidal reference signal	
C	when no extra payload is applied. a Position tracking	
	responses; b Tracking errors; c Control inputs	97
Fig. 4.5	Performances of tracking a cosinoidal reference signal	
-	when 3.3 kg extra payload is applied. a Position tracking	
	responses; b Tracking errors; c Control inputs	98
Fig. 4.6	Performances of tracking a slope-varying triangular	
-	reference signal when no extra payload is applied.	
	a Position tracking responses; b Tracking errors;	
	c Control inputs	99

xviii

List of Figures

Fig. 4.7	Performances of tracking a slope-varying triangular	
	reference signal when 3.3 kg extra payload is applied.	
	a Position tracking responses; b Tracking errors;	
	c Control inputs	100
Fig. 4.8	Tracking error comparison between experiments (Case	
C	1: without payload. Case 2: with 3.3 kg extra payload).	
	a Root-mean-square errors when cosinoidal reference is	
	tracked; b Maximum errors when cosinoidal reference is	
	tracked: c Root-mean-square errors when slope-varving	
	triangular reference is tracked: d Maximum errors	
	when slope-varving triangular reference is tracked	101
Fig. 5.1	Block diagram of control strategy	105
Fig. 5.2	Case 1a: tracking trajectories of cosinusoidal reference	100
1.8.0.2	without extra load	117
Fig 53	Case 1a: tracking errors of AFOTSM FOTSM FNTSM	,
1 19. 0.0	and PID	118
Fig 54	Case 1b: tracking trajectories of triangular reference	110
1 19. 0. 1	without extra load	118
Fig 55	Case 1b: tracking errors of AFOTSM FOTSM FNTSM	110
115.0.0	and PID	119
Fig 56	Case 2a: tracking errors of AFOTSM FOTSM FNTSM	117
1 15. 5.0	and PID	120
Fig 57	Case 2b: tracking errors of AFOTSM FOTSM FNTSM	120
1 15. 5.7	and PID	121
Fig 5.8	Control inputs in Case 1a and Case 2a	121
Fig. 5.0	Tracking error with $\lambda = 0.2, 0.5$ and 0.9	121
Fig. 5.10	Average absolute error and RMSe	122
Fig. 6.1	Expl with the cosinoidal reference: tracking trajectories	136
Fig. 6.2	Exp1 with the triangle reference: tracking trajectories	137
Fig. 6.3	Exp1: a tracking errors of Case1A h tracking errors	157
1 Ig. 0.5	of Case1B	138
Fig 64	Exp2: a tracking errors of Case2A h tracking errors	150
1 Ig. 0.4	of Case2B	130
Fig 6.5	Control inputs: a Case1A b Case2A c Case1B d Case2B	140
Fig. 6.6	Average errors and RMSes	141
Fig. 7.1	Contouring error of 3-dimensional systems	145
Fig. 7.1 Fig 7.2	Simplified Newton based CEE for multidimensional	145
11g. 7.2	systems	146
Fig 73	Block diagram of the experiments	158
Fig. 7.3 $\operatorname{Fig.} 7.4$	Diock diagram of the experiments	150
Fig. 7.4	Errors of the performances a Estimated contouring	139
1 ⁻¹ g. 7.3	errors: b Actual contouring arrors: a Estimated contouring	160
Eig 76	Contouring error comparison among strategies	100
Fig. 7.7	Derformance of treaking a fast estraid contour	101
1'ig. /./		102

Fig. 7.8	Errors of the performances. a Estimated contouring	
	errors; b Actual contouring errors; c Error of the estimators	163
Fig. 7.9	Contouring error comparison among strategies	163
Fig. 8.1	The illustration of tethered satellite system	170
Fig. 8.2	Membership functions $\mu_{M_i^i}(\cdot)$	181
Fig. 8.3	Root distribution of sliding surface $s_1(\tau)$ with various β	181
Fig. 8.4	Time responses of tether length λ	182
Fig. 8.5	Time responses of tether length rate $\dot{\lambda}$	183
Fig. 8.6	Time responses of in-plane angle θ	183
Fig. 8.7	Time responses of in-plane angular rate $\dot{\theta}$	184
Fig. 8.8	Time responses of tension	184
Fig. 9.1	Dimensionless length of tether	201
Fig. 9.2	Dimensionless length rate of tether	202
Fig. 9.3	Dimensionless angle of in-plane libration	203
Fig. 9.4	Dimensionless angular velocity of in-plane libration	203
Fig. 9.5	Dimensionless tension in tether	204
Fig. 9.6	Disturbance and FO disturbance observer	204
Fig. 10.1	Mittag-Leffler function	218
Fig. 10.2	Trajectories of dimensionless tether length compared	
	with nonlinear SMC	224
Fig. 10.3	Trajectories of in-plane angle compared with nonlinear	
	SMC	225
Fig. 10.4	Trajectories of dimensionless tether length	225
Fig. 10.5	Trajectories of dimensionless tether length rate	226
Fig. 10.6	Trajectories of in-plane angle	227
Fig. 10.7	Trajectories of in-plane angular rate	227
Fig. 10.8	Trajectories of dimensionless tension	228
Fig. 11.1	STS geometric representation	232
Fig. 11.2	Tether length of the deployment ($e = 0.0027$)	246
Fig. 11.3	Tether length rate of the deployment ($e = 0.0027$)	247
Fig. 11.4	In-plane angle of the deployment ($e = 0.0027$)	247
Fig. 11.5	Out-of-plane angle of the deployment ($e = 0.0027$)	248
Fig. 11.6	Tether tension using FDA-SMC ($e = 0.0027$)	248
Fig. 11.7	Tether length of the deployment ($e = 0.17$)	250
Fig. 11.8	In-plane angle of the deployment ($e = 0.17$)	250
Fig. 11.9	Out-of-plane angle of the deployment ($e = 0.17$)	251
Fig. 11.10	Tether tension using FDA-SMC ($e = 0.17$)	251

Chapter 1 Introduction

FO calculus has a long history which can be traced back to 300 years ago [77]. It can not only describe the objects better than integer-order calculus in natural environment [56], but also has an effect of memory which means that it contains both the present and the past information.

To quickly understand the relationship between FO calculus and classical calculus, Let us review the definition process of classical calculus. Considering a continuous function y = f(x), the well-known calculus definition can be defined by

$$f'(t) = \frac{df}{dt} = \lim_{h \to 0} \frac{f(t) - f(t-h)}{h}.$$
 (1.1)

Applying the rules twice gives the second-order derivative

$$f''(t) = \frac{d^2 f}{dt^2} = \lim_{h \to 0} \frac{f'(t) - f'(t-h)}{h}$$
$$= \lim_{h \to 0} \frac{f(t) - 2f(t-h) + f(t-2h)}{h^2}.$$

Similarly, we can get

$$f'''(t) = \frac{d^3 f}{dt^3} = \lim_{h \to 0} \frac{f''(t) - f''(t-h)}{h}$$
$$= \lim_{h \to 0} \frac{f(t) - 3f(t-h) + 3f(t-2h) + f(t-3h)}{h^3}$$

Moreover, we can obtain

$$f^{n}(t) = \frac{d^{n} f}{dt^{n}} = \lim_{h \to 0} \frac{1}{h^{n}} \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} f(t-rh),$$

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 G. Sun et al., *Fractional-Order Sliding Mode Control: Methodologies and Applications*, Studies in Systems, Decision and Control 532, https://doi.org/10.1007/978-3-031-60847-6_1 where

$$\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{r!}$$

In the last equation, the parameters n and r are integer number. Assuming that the step size is small and the order n is generalized to any rational fractional number. Then, a less rigorous definition for FO differentiation can be stated as follows.

$$f_h^n(t) = \frac{1}{h^p} \sum_{i=0}^n (-1)^i {\binom{p}{i}} f(t-ih).$$

Of course, the above process is unscientific and non-causality, but useful for us to understand the definition process. What's more, we can use it in engineering application because the discrete form is more suitable for modern digital controller. The equation is famously called Griunwald-Letnikov FO definition (abbreviate as G-L definition). A more rigorous and mathematical process can be found in [77].

The above section is just a first view of FO calculus. In fact the concept of FO calculus has been widely implemented in controller design [58, 111], which attracts attention from researchers in academia and industry. In the past decades, researchers applied FO calculus to SMC schemes and conducted them in industrial fields [100], such as the hydraulic manipulators [91], permanent magnet synchronous motors [106] and so on, which have proved that these control schemes are more effective than their integer-order counterparts. In what follows, preliminaries of FO calculus are provided, and its applications in the linear motor and space tethered system are discussed.

1.1 The Definition of Fraction Order Calculus

The history of FO calculus, which is deemed as the generalization of traditional integer-order calculus, can go back to 1690s. Many great mathematician have contributed to the field, such as Euler, Lagrange, Riemann and so on. Liouville expanded the functions in series of exponentials and defined the *nth*-order derivative. Riemann proposed a different definition that involved a definite integral and was applicable to power series with non-integer exponents. Grüunwald definite generalized derivative, as stated above, from the starting point of the integer derivative. Several centuries have been past. FO calculus has been slowly developed in the field of mathematics society. The main reason for limiting in engineering applications is the lack of physical meaning. Until now, There are three kinds of common used definitions of FO derivative, which are Riemann-Liouville, Grünwald-Letnikor, and Caputo definitions. More details about the FO calculus can be found in [41, 71, 77]. Here, both the Riemann-Liouville definition and Caputo definition used in this monograph are given.

1.2 Realization of Fractional-Order Calculus in Engineering

• The Riemann-Liouville (R-L) definition is addressed as

$$_{t_0}\mathsf{D}^{\beta}_t f(t) = \frac{1}{\Gamma(n-\beta)} \frac{\mathsf{d}^n}{\mathsf{d}t^n} \int_{t_0}^t \frac{f(\varepsilon)}{(t-\varepsilon)^{\beta-n+1}} \mathsf{d}\varepsilon, \tag{1.2}$$

where $n - 1 < \beta < n, n$ is an integer, f(t) is a continuous function with respect to t, and $\Gamma(\cdot)$ is a Gamma function.

The Laplace transform of the FO derivative based on Riemann-Liouville definition is expressed as

$$\mathscr{L}\left\{_{t_0} \mathsf{D}_t^{\beta} f(t)\right\} = s^{\beta} F(s) - \sum_{k=0}^{n-1} s^k{}_{t_0} \mathsf{D}_t^{\beta-k-1} f(t)|_{t=t_0}$$

where $n - 1 < \beta < n$ and *s* is the Laplace operator. The Oustaloup's discretization algorithm shown in [75] is used to approximate s^{β} in numerical simulations. For notational simplicity, in what follows, ${}_{0}D_{t}^{\beta}$ is simplified as D^{β} .

• The Caputo definition of the FO derivative is as follows.

$$D_t^{\alpha} f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(\tau)}{(t-\tau)^{\alpha-n+1}} d\tau, n-1 < \alpha < n,$$
(1.3)

where *a* is a real number, *n* is a given integer number and $\Gamma(\cdot)$ is the Gamma function defined as $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.

It is noted that the FO derivative of a function is related to not only the current state $f(t_n)$ but also the previous states $f(t_i)$, i < n. It indicates the FO derivative possesses histroical memory capacity. The stability of FO calculus is very important to its application in dynamics and control. Matignon pioneered in this area [67] by checking the condition of FO system stability by the poles of FO system in the complex plane of its pseudo-state space. Subsequently, many stability conditions have been derived [19, 73], for instance, the LMI condition for linear time-delay systems [19, 73], Mittag-Leffler stability for nonlinear FO systems [50] and so on.

1.2 Realization of Fractional-Order Calculus in Engineering

In order to obtain a FO calculus in engineering application, there are two kinds of methods which are called the discrete numerical method and approximation method in Laplace domain. A natural approach for computing can be got by using the G-L definition which has the discrete form. Using the commonly used integer-order transfer function to approximate the fraction order operators in a given frequency

range is the main feature for the approximation method in Laplace domain. Some results have been summarized in Vinagre's work [89].

In this book, considering the discussion background mainly focusing on the control science and engineering, the FO differential equation can be written as

$$D_t^{\alpha} y(t) = f(t, y(t)).$$
 (1.4)

For the common sense linear control system, the above equation can be also rewritten as

$$a_n D^{\alpha_n} y(t) + a_{n-1} D^{\alpha_{n-1}} y(t) + \dots + a_0 D^{\alpha_0} y(t) = b_m D^{\beta_m} f(t) + b_{m-1} D^{\beta_{m-1}} f(t) + \dots + b_0 D^{\beta_0} f(t),$$
(1.5)

or by a continuous transfer function of the form

$$G(s) = \frac{b_m s^{\beta_m} + b_{m-1} s^{\beta_{m-1}} + \dots + b_0 s^{\beta_0}}{a_n s^{\alpha_n} + a_{n-1} s^{\alpha_{n-1}} + \dots + a_0 s^{\alpha_0}}.$$
 (1.6)

It's clear that for the above equation, the first and most important thing is how to solve the equation. Therefore, in this section, we will introduce two kinds of realization examples to compute the FO calculus in our applications.

1.2.1 Discrete Numerical Methods

• G-L definition based discrete method

Based on the Grünwald-Letnikov FO definition, for a given FO operator $D^{\alpha} f(t)$, we can use the following approximation

$$D^{\alpha}f(t) \approx \Delta_{h}^{\alpha}f(t), \qquad (1.7)$$

$$\Delta_{h}^{\alpha} f(t)|_{t=kh} = h^{-\alpha} \sum_{j=0}^{k} (-1)^{j} {\alpha \choose j} f(kh - jh).$$
(1.8)

As we can see in the former equation, as the step $t = kh \rightarrow \infty$, more and more items will be computed to solve the equation. In other words, as the time/step grows, more and more memories are needed to store every step value (from $t = 0 \rightarrow kh$) to get current solution. It is unpractical to require infinite memories in our application no matter engineering or numerical simulation. To solve this problem, the short memory principle or finite term truncation method is the natural way for computing. Before introducing the principle, define the coefficient parameter as follows

1.2 Realization of Fractional-Order Calculus in Engineering

$$w_j^{\alpha} = (-1)^j \begin{pmatrix} \alpha \\ j \end{pmatrix}. \tag{1.9}$$

It's clearly that the difference equation (1.8) can be viewed as a weighted sum of the values at all time f(t - jh), j = 0, 1, 2, ... with the coefficient equation (1.9). We can observe that the values of the w_j^{α} near t = 0 (or any other time step $t = t_0$ as initial step) have little influence for the current $t = kh \rightarrow \infty$. What's more, the initial value will influence the current value more and more small as the current time $t \rightarrow \infty$. Thus, The short memory principle or finite term truncation method allows us to approximate the numerical solution by using the information of the "recent past". By using the time interval [t - L, t] instead of the long history [0, t] to get the given length of memory, a window function liked method is easily proposed to compute the FO derivatives. Some results for the error of the approximation can be found in Monje's work [71].

• Generalized Adams-Bashforth-Moulton method

Another effective discretization method can be viewed as generalized method from the classical integer-order Adams-Bashforth-Moulton method [21]. Considering the FO differential (1.4) in the time interval $0 \le t \le T$ with initial value $y^{(k)}(0) = y_0^{(k)}$ [20, 22, 77], the equivalent Volterra integral is:

$$y(t) = \sum_{k=0}^{m-1} y_0^{(k)} \frac{t^k}{k!} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau, y(\tau)) d\tau.$$
(1.10)

Define h = T/N, $t_n = nh$, $n = 0, 1, \dots N \in Z^+$, the following Adams-Bashforth predictive formula is firstly used.

$$y_h^p(t_{n+1}) = \sum_{k=0}^{m-1} \frac{t_{n+1}^k}{k!} y_0^{(k)} + \frac{1}{\Gamma(\alpha)} \sum_{j=0}^n b_{j,n+1} f(t_j, y_h(t_j)), \qquad (1.11)$$

where the parameter $b_{j,n+1} = h^{\alpha}((n+1-j)^{\alpha} - (n-j)^{\alpha})/\alpha$, and then the Adams-Moulton correction formula is introduced,

$$y_{h}(t_{n+1}) = \sum_{k=0}^{m-1} \frac{t_{n+1}^{k}}{k!} y_{0}^{(k)} + \frac{h^{\alpha}}{\Gamma(\alpha+2)} f(t_{n+1}, y_{h}^{p}(t_{n+1})) + \frac{h^{\alpha}}{\Gamma(\alpha+2)} \sum_{j=0}^{n} a_{j,n+1} f(t_{j}, y_{h}(t_{j})),$$
(1.12)

where the parameter $a_{j,n+1}$ can be stated as

$$a_{j,n+1} = \begin{cases} n^{\alpha+1} - (n-\alpha)(n+1)^{\alpha} &, j = 0\\ (n-j+2)^{\alpha+1} + (n-j)^{\alpha+1} - 2(n-j+1)^{\alpha+1} &, 1 \le j \le n\\ 1 &, j = n+1 \end{cases}$$
(1.13)

And the error is

$$\max_{j=0,1,\dots,N} |y(t_j) - y_h(t_j)| = O(h^p),$$
(1.14)

where $p = \min(2, 1 + \alpha)$ [21]. We can find that the generalized Adams-Bashforth-Moulton method has the same disadvantage in computing, which means that infinite memories are needed as the time/step grow. Thus, the same finite term truncation method to get "recent past" effect is also important.

1.2.2 Approximations Method in Laplace Domain

The above discrete methods are very useful in numerical computing. However, many of the engineering problems can be indeed well expressed by transfer functions. Many engineers in the control field are familiar with the transfer function. Considering the FO transfer function (1.6), many researchers have proposed approximation methods in Laplace domain based on the classical transfer function. The main feature is using the classical integer-order transfer function to approximate FO operator s^{α} for a given frequency range. This kind of approximation method can be roughly divided into two categories. One is the approximation method based on continued fraction expansions (CFE) [16] and interpolation techniques, such as Carlson method [9] and Matsuda's algorithm [68]. The other is the approximate method based on Curve fitting or Identification techniques, such as Oustaloup's and Chareff's algorithms [11, 75].

Continued fraction expansions and interpolation method

The CFE is a very famous method for evaluation of functions, which frequently converges much more rapidly than power series expansions, and converges in a much larger domain in the complex plane. The result of such approximation for an irrational function G(s), can be expressed in the form,

$$G(s) \approx a_0(s) + \frac{b_1(s)}{a_1(s) + \frac{b_2(s)}{a_2(s) + \frac{b_3(s)}{a_3(s) + \cdots}}}$$

$$= a_0(s) + \frac{b_1(s)}{a_1(s) + \frac{b_2(s)}{a_2(s) + \frac{b_3(s)}{a_3(s) + \cdots}},$$
(1.15)

where $a_i(s)$ and $b_i(s)$ are rational functions of the variable s, or are constant. The application of the method yields a rational function $\hat{G}(s)$, which is an approxima-

tion of the irrational function G(s). Based on this principal, three brief methods are presented

(1) **Piecewise linear approximation**: In Laplace domain, FO operator $s^{-\alpha}$, $0 < \alpha < 1$ can be approximated by following rational function

$$G_h(s) = \frac{1}{(1+sT)^{\alpha}},$$
 (1.16)

$$G_l(s) = \left(1 + \frac{1}{s}\right)^{\alpha},\tag{1.17}$$

where $G_h(s)$ is the approximation for high frequencies ($\omega \gg 1$), and $G_l(s)$ is the approximation for low frequencies ($\omega \ll 1$).

(2) **Carlson's method** [9]: This method is an iterative approximation algorithm. Derive regular Newton iterative process to approximate the α -th root. The starting point of the method is the statement of the following relationships:

$$(H(s))^{1/\alpha} - G(s) = 0; H(s) = G(s)^{\alpha}.$$
(1.18)

Defining $\alpha = 1/q$, m = q/2, in each iteration, starting from the initial value $H_0(s) = 1$, an approximated rational function is obtained in the form

$$H_{i}(s) = H_{i-1}(s) \frac{(q-m)(H_{i-1}(s))^{2} + (q+m)G(s)}{(q+m)(H_{i-1}(s))^{2} + (q-m)G(s)}.$$
 (1.19)

(3) **Matsuda's method** [68]: This method is based on the approximation of an irrational function by a rational one, obtained by CFE and fitting the original function in a set of logarithmically spaced points. Assuming that the selected points are s_k , k = 0, 1, 2, the approximation takes on the form:

$$H(s) = a_0 + \frac{s - s_0}{a_1 + s_2} \frac{s - s_1}{a_2 + s_2} \frac{s - s_2}{a_3 + s_2} \cdots, \qquad (1.20)$$

where
$$a_i = v_i(s_i), v_0(s) = H(s), v_{i+1}(s) = \frac{s-s_i}{v_i(s)-a_i}$$
.

• Curve fitting based method

The curve fitting and identification method is based on the response of fractional integral operator in the frequency domain, and the curve fitting method is adopted to ensure that the following cost function is minimum in the sense of least square criterion:

$$J = \int W(\omega) \left| G(\omega) - \hat{G}(\omega) \right|^2 d\omega, \qquad (1.21)$$

where $W(\omega)$ is a weighting function, $G(\omega)$ is the original frequency response, and $\hat{G}(\omega)$ is the frequency response of the approximated rational function. There are two important methods in applications.

(1) **Oustaloup's method** [75]: This method is a proposed by CRONE research group in France. Its highlight is to approximate fractional integral operators in the frequency band of interest through the following approximation formula $H(s) = s^{\mu}$.

$$H(s) \approx C \prod_{k=-N}^{N} \frac{1 + s/\omega_k}{1 + s/\omega'_k},$$
(1.22)

where

$$\omega'_{0} = \alpha^{-0.5} \omega_{u}, \omega_{0} = \alpha^{0.5} \omega_{u}, \omega_{u} = \sqrt{\omega_{h} \omega_{l}},$$

$$\frac{\omega'_{k+1}}{\omega'_{k}} = \frac{\omega_{k+1}}{\omega_{k}} = \alpha \eta > 1, \frac{\omega'_{k+1}}{\omega_{k}} = \eta > 0, \frac{\omega_{k}}{\omega'_{k}} = \alpha > 0,$$

$$N = \frac{\log(\omega_{N}/\omega_{0})}{\log(\alpha \eta)}, \mu = \frac{\log \alpha}{\log(\alpha \eta)},$$
(1.23)

where ω_u is the unit gain frequency and the central frequency of a band of frequencies geometrically distributed around it. ω_b , ω_h are the high and low transitional frequencies, respectively.

(2) **Chareff's method** [11]: This method is very similar with Oustaloup's method. The difference is using the following approximation function instead of fractional operator s^{α} .

$$H(s) = \frac{1}{(1+s/P_T)^{\alpha}}.$$
 (1.24)

In the frequency domain, above H(s) can be instead by a quotient of polynomials in *s* in a factorized form:

$$\hat{H}(s) = \frac{\prod_{i=0}^{n-1} (1 + \frac{s}{z_i})}{\prod_{i=0}^{n} (1 + \frac{s}{p_i})},$$
(1.25)

where the coefficients are computed for obtaining a maximum deviation from the original magnitude response in the frequency domain of y dB. Given the break frequency P_T and frequency range[$\omega_{min}, \omega_{max}$], define

$$a = 10^{y/10(1-\alpha)}, b = 10^{y/10\alpha}.$$
 (1.26)