Christoph Rindfleisch Bernhard Wicht

Chip-Scale Power Supplies for DC-Link and Grid Applications

Chip-Scale Power Supplies for DC-Link and Grid Applications

Christoph Rindfleisch • Bernhard Wicht

Chip-Scale Power Supplies for DC-Link and Grid Applications

Christoph Rindfleisch Infineon Technologies Dresden GmbH & Co. KG Dresden, Sachsen, Germany Bernhard Wicht Institute of Microelectronic Systems Leibniz University Hannover Hannover, Niedersachsen, Germany

ISBN 978-3-031-60819-3 ISBN 978-3-031-60820-9 (eBook) https://doi.org/10.1007/978-3-031-60820-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

The objective of this book is to provide a systematic and comprehensive insight into the design of integrated chip-scale power supplies. The focus is on miniaturized power supplies that run from the 120 V/230 V mains supply or high-voltage DC sources of up to 400 V to power various low-voltage subsystems. Applications include sensor nodes, transmitters, receivers, actuators as well as auxiliary supplies in power electronics with supply voltages of 3.3 V to 10 V at power levels of up to 500 mW. Conventionally, these applications are supplied from batteries with the expense of high maintenance. Alternatively, energy harvesting would be suitable but has limited output power. Commercial power modules are relatively large and expensive, and suffer from poor conversion efficiency at power levels below 500 mW. Consequently, there is a gap in solutions for highly efficient and compact power supplies.

This book covers solutions on system and circuit level for isolated and nonisolated low-power-optimized high-voltage converters in standard high-voltage silicon-on-insulator (SOI) technologies. The implemented converters are not only suitable for all common AC grid voltages (120 V/230 V) but also for a wide DC input-voltage range of 12.5 V to 400 V. Their high voltage-conversion ratios of up to 120 make them well-suitable for low-power target applications. Together with the presented low-power optimized subcircuits, innovative control techniques, and layout/technology optimizations, peak efficiencies of up to 84% are achieved.

The book deals in detail with the following main topics: (1) Low-power optimized high-voltage converter architectures and control approaches are evaluated for high voltage-conversion ratios. They enable a high converter efficiency over the whole targeted input-voltage and output-power range at a compact size. (2) Low-power subcircuits are presented for a reliable converter operation with a high common-mode-transient immunity at low steady-state losses and low high-voltage-related capacitive and resistive losses. (3) A comprehensive analysis enables the size and loss reduction of the power inductor and transformer. An active zero-crossing buffer is described to reduce the size of the mandatory buffer capacitor in the AC interface. (4) Design techniques in SOI technologies are presented. It includes capacitive-loss-reduction techniques to reduce high-voltage-related capacit

itive losses to a minimum. Techniques for a reduction of substrate coupling as one major disturbance mechanism are explained. The performance of state-of-the-art on-chip high-voltage power switches is analyzed to enable a size and loss reduction by selecting a well-suited power-switch type for each converter architecture.

The book is intended as a comprehensive all-in-one source on the design of chipscale high-voltage power supplies for low-power DC-link and grid applications. It is written in handbook style with systematic guidelines, including many implementation examples. It covers the full range from technology fundamentals to circuit implementation details. It includes guidelines for the application-specific selection of the converter topology, design guidelines for the inductive components, and a detailed description of low-power optimized control approaches and subcircuits.

This book is based on our research at the Institute for Microelectronic Systems at Leibniz University Hannover, Hannover, Germany. We are grateful to many team members at the university as well as to our industry partners.

A special thanks goes to our families; without their love and support, this book would not have been possible.

Dresden, Germany Hannover, Germany March 2024 Christoph Rindfleisch Bernhard Wicht

Contents

1	Intro	oductio	n	1			
	1.1	Scope	of This Book	3			
	1.2	Outlin	e	5			
	Refe	rences.		6			
2	Motivation and Challenges						
	2.1	cations and Requirements for High-Voltage					
		Low-H	Power Converters	9			
	2.2	State-	of-the-Art High-Voltage Converters	11			
	2.3	Syster	n-Level Challenges	12			
		2.3.1	AC–AC Converter Stage	13			
		2.3.2	Rectifier	15			
		2.3.3	Zero-Crossing Buffer	15			
		2.3.4	DC–DC Converter Stage	17			
	Refe	rences.		24			
3	High	High-Voltage DC–DC Converters					
	3.1	Funda	mentals and State-of-the-Art Converter Architectures	28			
		3.1.1	Linear Regulators	28			
		3.1.2	Switched-Capacitor Converters	29			
		3.1.3	Inductive Converters	35			
		3.1.4	Summary	48			
	3.2	Buck	Converter with Constant-On-Time Control	50			
		3.2.1	Operating Principle: Voltage-Interval-Based				
			Constant-On-Time Control	52			
		3.2.2	Closed-Loop Control	55			
		3.2.3	Loss Breakdown	56			
		3.2.4	Experimental Results	57			
	3.3	Reson	ant Buck Converter	60			
		3.3.1	Operating Principle: Resonant Buck with				
			Self-Timed On-Time	63			
		3.3.2	Closed-Loop Control	69			

		3.3.3	Loss Breakdown	70					
		3.3.4	Experimental Results	72					
	3.4	Buck Converter with Resonant and Constant-On-Time Mode							
	3.5	5 Active-Clamp Flyback							
		3.5.1	Operating Principle: Voltage-Interval-Based						
			Constant-On-Time Control	82					
		3.5.2	Closed-Loop Control	86					
		3.5.3	Loss Breakdown	87					
		3.5.4	Experimental Results	89					
	3.6	Comp	parison to State-of-the-Art	92					
	3.7	Inductor and Transformer Design for Low-Power							
		High-Voltage Converters							
		3.7.1	Design Considerations	98					
		3.7.2	Loss Calculation	103					
		3.7.3	Inductor Comparison	111					
	Refe	rences .		119					
				,					
4	AC-	DC Col	nversion	125					
	4.1	Funda	mentals and State-of-the-Art Approaches	126					
		4.1.1	Rectifier	126					
		4.1.2	Zero-Crossing Buffer	128					
	4.2	AC-D	C Architecture with Active Zero-Crossing Buffer	131					
	4.3	Opera	ting Principle of the Active Zero-Crossing Buffer	133					
	4.4	Contro	ol of the Active Zero-Crossing Buffer	135					
	4.5	Loss I	Breakdown	136					
	4.6	Experimental Results 13							
	4.7	Comparison to State-of-the-Art							
	Refe	rences .		143					
5	Low	-Power	Subcircuits for High-Voltage Designs	145					
	51	High-	Voltage Threshold Detection	145					
	5.2	Level	Shifter	149					
	0.2	521	Continuous Direct-Coupled Level Shifter	149					
		5.2.2	Pulse-Based and Cross-Coupled Level Shifter	151					
		523	Canacitive Level Shifter	152					
		524	Performance Comparison of Different Level Shifters	155					
	53	High_	Side Gate-Pulse Generation	156					
	5.4	Gate I	Drivers	158					
	5.5	High-	Side Supply	160					
	5.5	5 5 1	Regulated Bootstran Supply with	100					
		5.5.1	Reverse-Recovery-Loss Reduction	161					
		552	Charge Pump	162					
	56	Active	charge 1 unip	165					
	5.0	Clock	ed Comparator	167					
	5.1 5.2	Ring (Oscillator	169					
	J.O Dofo	rances		100					
	INCIE	4011008.		109					

6	Circ	uit Design in SOI	171			
	6.1	Parasitic Capacitances	171			
		6.1.1 Capacitive Losses	173			
		6.1.2 Substrate Coupling	182			
	6.2	High-Voltage Power Switches	184			
		6.2.1 State-of-the-Art Switch Structures	184			
		6.2.2 The Lateral Super-Junction MOSFET and the				
		Lateral Super-Junction IGBT	186			
	Refe	rences	191			
7	Con	clusion and Outlook	195			
	7.1	Conclusion	195			
	7.2	Outlook	199			
	Refe	rences	200			
	_					
Α	Requ	uired Coupling Capacitor of a Capacitor-Drop Power Supply	203			
B	Req	uired Buffer Capacitance of an AC-DC Converter Stage	207			
	B .1	Required Buffering Time	207			
	B .2	Required Buffer Capacitor	209			
С	Equations of Inductive Converters: Continuous-Conduction Mode					
Ŭ	C.1	Buck Architecture	211			
	C.2	Fly-Buck Architecture	212			
	C.3	Flyback Architecture	213			
D	Equations of Inductive Converters:					
	Disc	ontinuous-Conduction Mode	215			
	D.I	Buck Architecture	215			
	D.2	Fly-Buck Architecture.	218			
	D.3	Flyback Architecture	220			
E	Volta	age Overshoot in a Flyback Without Clamp	223			
F	Loss	es in the Clamp of a Passive-Clamp Flyback	229			
G	Mod	ified Steinmetz Equation: Equivalent Frequency in				
	Disc	ontinuous-Conduction Mode	235			
H	Req	uired Clock Frequency of the Charge Pump	239			
In	dex		243			

Acronyms

List of Abbreviations

ADC	Analog-to-Digital Converter
BCM	Boundary-Conduction Mode
BOX	Buried Oxide
BUR	Buried Layer
CCM	Continuous-Conduction Mode
CMOS	Complementary Metal-Oxide-Semiconductor
CMTI	Common-Mode-Transient Immunity
DCM	Discontinuous-Conduction Mode
DTI	Deep-Trench Isolation
EMI	Electromagnetic Interference
GaN	Gallium Nitrite
HSGND	High-Side Ground
HV	High Voltage
IC	Integrated Circuit
IGBT	Insulated-Gate Bipolar Transistor
IoT	Internet of Things
IR	Infrared
LCD	Liquid-Crystal Display
LDMOS	Lateral Double-Diffused MOSFET
LED	Light-Emitting Diode
MIM	Metal-Insulator-Metal
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
NMOS	n-Type MOSFET
PCB	Printed-Circuit Board
PMOS	p-Type MOSFET
PWM	Pulse-Width Modulated Signal
RESURF	Reduced Surface Field
RF	Radio Frequency

SC	Switched Capacitor
SiC	Silicon Carbide
SJ-LIGBT	Lateral Super-Junction IGBT
SJ-MOSFET	Lateral Super-Junction MOSFET
SMD	Surface-Mounted Device
SMU	Source Measurement Unit
SOI	Silicon on Insulator
ZCS	Zero-Current Switching
ZVS	Zero-Voltage Switching

Symbols

$A_{e,core}$	m^2	Effective Cross-sectional Area of a Magnetic Core
AL	Н	Inductance Rating of a Magnetic Core per N_{Lp}^2
$A_{\rm wire}$	m^2	Cross-sectional Area of a Wire
B _{core}	Gs	Magnetic Flux Density in a Magnetic Core
$B_{\rm core, max}$	Gs	Maximum Value of $B_{\rm core}$
$B_{\rm core, min}$	Gs	Minimum Value of $B_{\rm core}$
B _{core, peak}	Gs	Peak Value of $B_{\rm core}$
$B_{\rm sat, core}$	Gs	Magnetic Saturation Flux Density of a Magnetic Core
BU		Buffer
$C_{\rm BOX}$	F	Capacitance Across the Buried Oxide
$C_{\rm BOX,J}$	F	Total Capacitance of C_{Box} in Series to C_{J}
C _{bst}	F	Bootstrap Capacitor
$C_{\rm buf}$	F	Buffer Capacitor
$C_{\rm CA,Dbst}$	F	Cathode-Anode Capacitance of D _{bst}
$C_{\rm clp}$	F	Clamp Capacitor
$C_{\rm CP,1}$	F	Charge-Pump Capacitor Number One
$C_{\rm CP,2}$	F	Charge-Pump Capacitor Number Two
$C_{\rm cpl}$	F	Coupling Capacitance
$C_{\rm d}$	F	Capacitor of an RC-Delay Gate
$C_{\rm DG}$	F	Drain-Gate Capacitance of a Transistor
$C_{\rm DS}$	F	Drain-Source Capacitance of a Transistor
$C_{\rm DTI}$	F	Capacitance Across the Deep Trench
$C_{\rm DTI,total}$	F	Total Capacitance Across Multiple Deep Trenches
C_{f}	F	Filter Capacitor
$C_{\rm fb}$	F	Primary-Side Capacitor of a Fly-Buck Converter
C_{fly}	F	Flying Capacitor of an SC/a Multi-level Converter
$C_{\rm fly,1}$	F	First Flying Capacitor of an SC/a Multi-level Converter
$C_{\mathrm{fly},n}$	F	<i>n</i> th Flying Capacitor of an SC/a Multi-level Converter
$C_{\rm in}$	F	Input Buffer Capacitor
$C_{\text{in,AC}-\text{AC}}$	F	Input Capacitor of a Capacitive Voltage Divider

$C_{\rm iso}$	F	Capacitor Used for the Signal Isolation
C_{J}	F	Junction Capacitance
Cm	W	First Steinmetz Parameter
$C_{\text{MET}-\text{MET}}$	F	Capacitance Between Different Metal Layers
$C_{\rm MET-SUB}$	F	Capacitance Between Metal Layers and the Substrate
C_{off}	F	Coupling Capacitor in the Turn-Off Path
Con	F	Coupling Capacitor in the Turn-On Path
Cout	F	Output Buffer Capacitor
$C_{\rm par}$	F	Parasitic Capacitance
$C_{\text{par.CEqv}}$	F	Charge-Equivalent Value of C_{par}
$C_{\text{par},\text{EEqv}}$	F	Energy-Equivalent Value of C_{par}
$C_{\text{par.sub}}$	F	Parasitic Capacitance Towards the Substrate
$C_{\rm res}$	F	Resonant Capacitor
$C_{\rm sht AC-AC}$	F	Shunt Capacitor of a Capacitive Voltage Divider
C_{snub}	F	Snubber Capacitor
D		Diode
D		Duty Cycle
D-FF		Delay Flip-Flop
d_1	S	Delay One
d_2	S	Delay Two
d_{3}	S	Delay Three
d_A	S	Delay Four
D _{bst}		Bootstrap Diode
D _{cln}		Clamp Diode
D _{CP} 1		Charg-Pump Diode Number One
DCP 2		Charg-Pump Diode Number Two
DHV 1		HV Power Diode Number One
		HV Power Diode Number Two
Duy buf		HV Diode of the Active Zero-Crossing Buffer
Duv out		HV Freewheeling Power Diode of the Output Filter
d: corro	m	Inner Diameter of a Toroidal Core
$d_{a,aara}$	m	Outer Diameter of a Toroidal Core
Dout		Freewheeling Power Diode of the Output Filter
Down		Over-Voltage-Protection Diode
D _{eff} 1		Rectifier Diode Number One
Druf 2		Rectifier Diode Number Two
Druf 2		Rectifier Diode Number Three
Druf, 5		Rectifier Diode Number Four
d_{1}	s	Delay Until the Snubber is Turned On Again
D	3	Under-Voltage-Protection Diode
dV/dt	V/s	Slew Rate
during	m 7/5	Diameter of a Wire
duvire	m	Maximum Value of duing
^{wwire,max}	111	Zener Diode

D _{Z,clp}		Zener Diode of the Passive Clamp
D _{Z,ref}		Reference Zener Diode
E _{Cbuf,init}	Ws	Energy That is Initially Stored in C _{buf}
$E_{Cbuf,rem}$	Ws	Energy That Remains in C_{buf} After t_{buf}
$E_{\rm clp}$	Ws	Energy Transferred to $C_{clp}/D_{Z, clp}$ During the Clamping
E_{Cout}	Ws	Energy Transferred to C_{out} While HV1 is Turned On
$E_{Cres,max}$	Ws	Peak Value of the Energy Stored in C_{res}
E _{crit}	V/m	Critical Electric Field Strength
E_{LmTp}	Ws	Energy Transferred to $L_{\rm m}$, T _p While HV1 is Turned On
E_{load}	Ws	Energy Consumed by the Load
$E_{\rm loss, charge}$	Ws	Energy Loss at Charging
$E_{\rm loss,core}$	Ws	Core Loss per Switching Cycle
$E_{\rm loss, discharge}$	Ws	Energy Loss at Discharging
E_{Lp}	Ws	Energy Transferred to L_p While HV1 is Turned On
Eout	Ws	Energy Transferred to the Output
$E_{\rm out, clp}$	Ws	Energy Transferred to the Output During the Clamping
$E_{\text{out},Llk,s,Tp}$	Ws	Energy Transferred from $L_{lk, s, Tp}$ to the Output
$E_{\text{out},Lm,Tp}$	Ws	Energy Transferred from $L_{m, Tp}$ to the Output
$E_{\rm surf}$	V/m	Field Strength Along the Surface of a Semiconductor
E_x	V/m	Electric Field Strength in x-Direction
f	Hz	Frequency
$f_{\rm c}$	Hz	Frequency of the Current
$f_{\rm clk}$	Hz	Clock Frequency
$f_{\rm cut-off}$	Hz	Cut-Off Frequency
$f_{\rm eqv}$	Hz	Equiv. Frequency of the Modified Steinmetz Equation
$f_{\rm grid}$	Hz	Grid Frequency
$f_{\rm max}$	Hz	Maximum Frequency
$f_{\rm res}$	Hz	Resonant Frequency
FS-A		Input AND Gate of the Fault-Signal-Detection Circuit
$f_{\rm sw}$	Hz	Switching Frequency
$f_{\rm sw,max}$	Hz	Maximum Value of f_{sw}
$h_{\rm core}$	m	Height of a Toroidal Core
H _{core}	A/m	Magnetic Field Strength in a Magnetic Core
H _{core, I sat}	A/m	$B_{\text{sat, core}}$ -Dependent Maximum Value of H_{core}
$H_{I \text{wire}}$	A/m	Magnetic Field Induced by I_{wire}
HS-BU		Buffer at the High Side
HS-BU _{off}		HS-BU for the Detection of the Turn-Off Signal
HS-BU _{on}		HS-BU for the Detection of the Turn-On Signal
HS-INV		Inverter at the High Side
HS-INV _{off}		HS-INV for the Detection of the Turn-Off Signal
HS-INV _{on}		HS-INV for the Detection of the Turn-On Signal
HS-SR		High-Side Shift Register
HV1		HV Power Switch Number One
HV1 _a		HV Power Switch Number One a
HV1 _b		HV Power Switch Number One b

Acronyms

HV1 _{rtf}		HV Power Switch of the Rectifier Number One
$HV1_{\phi 1}$		HV Power Switch Number One of Phase One
$HV1_{\phi 2}$		HV Power Switch Number One of Phase Two
HV2		HV Power Switch Number Two
HV2 _a		HV Power Switch Number Two a
HV2 _b		HV Power Switch Number Two b
HV2 _{rtf}		HV Power Switch of the Rectifier Number Two
$HV2_{\phi 1}$		HV Power Switch Number Two of Phase One
$HV2_{\phi 2}$		HV Power Switch Number Two of Phase Two
HV3 _{rtf}		HV Power Switch of the Rectifier Number Three
HV4 _{rtf}		HV Power Switch of the Rectifier Number Four
HV _{buf}		HV Power Switch of the Active Zero-Crossing Buffer
HV _{clp}		HV Clamp Switch
HVna		HV Power Switch Number <i>n</i> a
HVn _b		HV Power Switch Number <i>n</i> b
I-FF		Initialization Flip-Flop
I_{Cflv}	А	Current Through $C_{\rm fly}$
I _{clp}	А	Current Through the Clamp
I _{Cout}	А	Current Through C_{out}
I _{Dbst}	А	Current Through D _{bst}
I _{DHV.out}	А	Current Through D _{HV, out}
I _{eddv}	А	Eddy Current
I _{HV2}	А	Current Through the Drain of HV2
I _{in}	А	Input Current
Ileak	А	Leakage Current
$I_{Llk,p,Tp}$	А	Current Through $L_{lk, p, Tp}$
I _{Llk,s,Tp}	А	Current Through $L_{lk, s, Tp}$
$I_{Lm,Tp}$	А	Current Through $L_{m, Tp}$
$I_{Lm,Tp,max}$	А	Peak Value of $I_{Lm,Tp}$
I_{Lp}	А	Current Through L_{p}
$I_{Lp,DC}$	А	DC Value of I_{Lp}
$I_{Lp,max}$	А	Peak Value of I_{Lp}
I _{Mclp}	А	Current Through M _{clp}
I _{Ms}	А	Current Through Ms
Iout	А	Output Current
Ip	А	Current at the Primary Side of T _p
Ipar	А	Parasitic Coupling Current
I _{par,max}	А	Maximum Value of <i>I</i> _{par}
Îpu	А	Pull-Up Current
I_R	А	Current Through R
Is	А	Current at the Secondary Side of T _p
$I_{\text{sat},Lm,Tp}$	А	Saturation Current of $L_{m, Tp}$
I _{sat,Lp}	А	Saturation Current of L_p
I _{sat,Ms}	А	Saturation Current of M _s
I _{snub}	А	Current Through the Snubber

I _{sub}	А	Parasitic Current Through the Substrate
Iwire	А	Current Through a Wire
$J_{\rm s,wire}$	A/m^2	Surface Current Density of a Wire
$J_{\rm wire}$	A/m^2	Current Density in a Wire
L	m	Device Length
l _{e,core}	m	Effective Magnetic Path Length of a Magnetic Core
LS - SR		Low-Side Shift Register
$L_{\rm lk,p,Tp}$	Н	Primary-Side Leakage Inductance of T _p
$L_{\rm lk,s,Tp}$	Н	Secondary-Side Leakage Inductance of T _p
L _{m Tp}	Н	Primary-Side Inductance of T _p
$L_{\rm p}$	Н	Power Inductor
LV1		Low-Voltage Power Switch Number One
LV2		Low-Voltage Power Switch Number Two
Iwinding	m	Circumference of the Winding Laver
luvire	m	Total Length of the Wire
M-FF		Mode-Saving Flip-Flop
Meln		Clamp Transistor
Mad		Pull-Down Transistor
M _{nd off}		M _{nd} in the Turn-Off Path
Mad an		M_{red} in the Turn-On Path
M		Pull-Un Transistor
M		M _m in the Turn-Off Path
M		$M_{\rm pu}$ in the Turn-On Path
M _{pu,on}		Transistor for the Generation of a Reference Voltage
M		Transistor for the Reverse Recovery Loss Reduction
M		Transistor for the Signal Transmission
M		M in the Turn Off Deth
M _{s,off}		M_s in the Turn-On Path
M _{s,on}		M _s in the Turn-On Path Shout Transiston of a Shout Descripton
IVI _{shunt}		Shuht Transistor of a Shuht Regulator
Msnub	1	Snubber Transistor
Ni	1	Intrinsic voltage-Conversion Ratio of an SC Converter
N _L p	1	Number of windings of L_p
$N_{Lp,max}$	1	Maximum value of N_{Lp}
N _{Tp}	1	Winding Ratio Between Primary and Secondary Side
P-FF		Phase-Saving Flip-Flop
$P_{\rm in}$	W	Input Power
$P_{\rm loss}$	W	Power Loss
$P_{\text{loss}, \text{accum}, Lp}$	W	Accumulated Power Loss Caused by L_p
$P_{\text{loss},CBOX}$	W	Power Loss Caused by C_{BOX}
$P_{\text{loss},CDS}$	W	Power Loss Caused by $C_{\rm DS}$
$P_{\text{loss},C\text{DTI}}$	W	Power Loss Caused by C_{DTI}
P _{loss,charge}	W	Power Loss During Charging
$P_{\rm loss, clp}$	W	Power Loss Caused by $L_{lk, p, Tp}$ and $L_{lk, s, Tp}$
P _{loss,core}	W	Power Loss in a Magnetic Core

$P_{\text{loss},Cpar}$	W	Power Loss Caused by C_{par}
P _{loss,discharge}	W	Power Loss During Discharging
$P_{\text{loss},Lp}$	W	Power Loss Caused by $L_{\rm p}$
$P_{\rm loss,LR}$	W	Power Loss in a Linear Regulator
$P_{\text{loss},R,\text{cur}}$	W	Current-Related Resistive Power Loss
$P_{\text{loss}, R, \text{HV}}$	W	HV-Related Resistive Power Loss
$P_{\text{loss total }Lp}$	W	Total Power Loss Caused by $L_{\rm p}$
Pout	W	Output Power
Pout max	W	Maximum Value of P_{out}
$O_{\rm buf}$	As	Charge Delivered to $V_{\rm buf}$
$O_{CCP 1}$	As	Charge Stored in $C_{CP 1}$
O_{CCP2}	As	Charge Stored in C_{CP} 2
$Q_{Cin AC-AC}$	As	Charge Transferred to $C_{in} \Delta C = \Delta C$
$Q_{\rm circ}$ HS	As	Charge Stored in C_{par}
$Q_{\rm cln}$	As	Charge Transferred to C_{clp} or $D_{7,clp}$ During Clamping
O Cout	As	Charge Transferred to C_{out} While HV1 is Turned On
$Q_{C_{\text{par}}}$	As	Charge Stored in C _{nor}
$Q_{Coht} \wedge C \wedge C$	As	Charge Transferred to Cast AC
Q_{C} ps	As	Gate Charge of a Power Transistor
Q_{out}	As	Charge Transferred to the Output in Each Phase
Que Dhat	As	Reverse-Recovery Charge of Deat
$Q_{\pm 1}$	As	Charge Transfered to Ca., in Phase One
$\mathcal{Q}_{\phi 1}$	As	Charge Transfered to $C_{\rm fly}$ in Phase Two
$\mathcal{Q}\phi_2$ R	0	Resistor
R 1	0	Resistor One of a Voltage Divider
R_{1}	0	Resistor Two of a Voltage Divider
R .	0	Resistance in the Channel of a Transistor
R _{ch}	0	Clamp Resistor
R _{clp}	22	Pagistor of an <i>PC</i> Dalay Gata
$R_{\rm d}$	22	DC Resistence of a Wire
ADC, wire	22	DC Resistance of a wife Basistance in the Drift Basion of a Transistor
Adrift	22	L and Desister
R _{load}	22	Load Resistor Veriable Series Desister of a Lincor Desulator
κ _{LR}	22	On Desistance
κ _{on}	22	On-Resistance
κ _{on,Mpu}	22	Deference Connect Desister of the Oscillator
K _{osc}	52	Reference-Current Resistor of the Oscillator
<i>K</i> _{out}	22	Equivalent Output Resistance of an SC Converter
R _{out,min}	22	Lowest Achievable value of R_{out}
<i>K</i> _p	22	Permanent Losses in an SC Converter
<i>R</i> _{par}	Ω	Parasitic Resistor
κ _{pu}	22	Pull-Up Kesistor
K _s	Ω	Sensing Resistor
<i>R</i> _{skin,wire}	Ω	Skin-Effect-Related AC Resistance of a Wire
<i>K</i> _{snub}	\$2	Snubber Resistor
S-FF		State-Saving Flip-Flop

SR	V/s	Slew Rate
SR-FF		Set-Reset Flip-Flop
Swinding	m	Spacing Between First and Last Turn of the Winding
t	S	Time
t_1	S	Point of Time Number One
<i>t</i> ₂	S	Point of Time Number Two
<i>t</i> ₃	S	Point of Time Number Three
t_4	S	Point of Time Number Four
t_5	S	Point of Time Number Five
t_6	S	Point of Time Number Six
t_7	S	Point of Time Number Seven
<i>t</i> ₈	S	Point of Time Number Eight
$t_{\rm A}$	S	Point of Time Number A
t _B	S	Point of Time Number B
<i>t</i> _{buf}	S	Buffer Time
$t_{\rm buf,1}$	S	Buffer Time Number One
$t_{\rm buf,2}$	S	Buffer Time Number Two
t _{buf,max}	S	Maximum Value of <i>t</i> _{buf}
<i>t</i> _{buf,min}	S	Minimum Value of <i>t</i> _{buf}
<i>t</i> _{clp}	S	Duration of the Clamping
t _{dead}	S	Dead Time Between Two Signals
$t_{\rm off,HV1}$	S	Off-Time of HV1
ton	S	On-Time of a Power Switch
t _{on,HV1}	S	On-Time of HV1
<i>t</i> on,HV1,max	S	Maximum Value of $t_{on, HV1}$
<i>t</i> on,HV1,min	S	Minimum Value of <i>t</i> _{on, HV1}
$t_{\rm on,HV2}$	S	On-Time of HV2
$t_{\rm on,HV2,max}$	S	Maximum Value of $t_{on, HV2}$
$t_{\rm on,HV2,min}$	S	Minimum Value of <i>t</i> _{on, HV2}
ton, HVclp	S	On-Time of HV _{clp}
tovershoot	S	Duration Until V _{overshoot} is Reached
Tp		Power Transformer
t _{pd}	S	Propagation Delay
<i>t</i> _{pd,off}	S	Propagation Delay at Turn-Off
<i>t</i> _{pd,on}	S	Propagation Delay at Turn-On
t _{stl}	S	Settling Time
<i>t</i> _{stl,min}	S	Minimum Settling Time
V	V	Voltage
V_{A}	V	Voltage Number A
$V_{\rm B}$	V	Voltage Number B
$V_{\rm buf}$	V	Buffered Voltage
$V_{\rm buf,min}$	V	Minimum Value of V _{buf}
$V_{\rm BUR}$	V	Voltage Across $C_{\rm J}$
$V_{C clp}$	V	Voltage Across C_{clp}
$V_{CCP,1}$	V	Voltage Across $C_{CP, 1}$

$V_{CCP,2}$	V	Voltage Across $C_{CP, 2}$
V _{CE}	V	Collector-Emitter Voltage
$V_{C fly}$	V	Voltage Across $C_{\rm fly}$
$V_{C fly,1}$	V	Voltage Across $C_{\rm fly, 1}$
$V_{C fly,n}$	V	Voltage Across $C_{\rm fly, n}$
$V_{C flv.\phi 1}$	V	Steady-State Voltage Across $C_{\rm fly}$ in Phase One
$V_{C fly, \phi 2}$	V	Steady-State Voltage Across $C_{\rm fly}$ in Phase Two
$V_{\rm clp}$	V	Clamp Voltage
VCpar	V	Voltage Across C_{par}
$V'_{C par}$	V	Voltage Across C_{par} in the Simplified Equivalent Circuit
VCR	1	Voltage-Conversion Ratio
VCR_{min}	1	Lowest Achievable Value of VCR
V _{Cres}	V	Voltage Across C_{res}
$V_{Csht AC-AC}$	V	Voltage Across $C_{\text{sht} AC - AC}$
V _{Dbst}	V	Forward-Conduction Voltage of D _{bst}
VDCP1	V	Forward-Conduction Voltage of D _{CP} 1
VDCP2	V	Forward-Conduction Voltage of D_{CP} 2
VDD	V	Supply Voltage at the Low Side
$V'_{\rm DD}$	V	Input Voltage of the Voltage Regulator at the High Side
VDD HS	V	Supply Voltage at the High Side
VDD US min	V	Minimum Value of Volume
VDD US nom	v	Nominal Value of VDD Hs
VDHVout	v	Forward-Conduction Voltage of Duv out
VDE	v	Drain-Source Voltage
VDS mor	v	Maximum Value of VDS
VC Mala	v	Gate Voltage of M_{abc}
	v	Gate Voltage of M
	v	Gate-Source Voltage of HV1
VGS,HV1	v	Gate-Source Voltage of HV1
V _{CS} IIV2	v	Gate-Source Voltage of HV2
VGS,HV2	v	Gate-Source Voltage of HV.
Vuscovo	v	Voltage at HSGND
VHSGND	v	Minimum Value of Vuscoup
VHSGND,min	v	Input Voltage
V_{1n} V'	v	Scaled Input Voltage
vin Vinto	v	AC Input Voltage
Vin,AC	v	Peak Value of V.
Vin, AC, peak	v	Root-Mean-Square of $V_{\rm in}$ AC
V: DC	v	DC Input Voltage
Vin DC	v	Maximum Value of Victor
v in, DC, max	v	Maximum Value of $V_{\rm in}$, DC
• in, max	v	Minium Value of $V_{\rm in}$
v in,min Vr	v	Voltage $\Delta cross I$
VLp	v V	Fourier Transform of V.
v∠p,FFT	v	Fourier fransform of VLp

V _{mag}	V	Magnetizing / Demagnetizing Voltage
$V_{\text{mag},Llk,p,Tp}$	V	Magnetizing / Demagnetizing Voltage of $L_{lk, p, Tp}$
$V_{\text{mag},Llk,s,Tp}$	V	Magnetizing / Demagnetizing Voltage of $L_{lk, p, Tp}$
V _{nhw}	V	Control Signal of HV2 _{rtf} and HV3 _{rtf}
Vol_{Lp}	m ³	Volume of $L_{\rm p}$
Vout	V	Output Voltage
$V'_{\rm out}$	V	Scaled Output Voltage
V _{out min}	V	Minium Value of V_{out}
V _{out Ni}	V	Intrinsic Output Voltage of an SC Converter
Vovershoot	V	Overshoot Voltage During Turn-Off of a Power Switch
Vnhw	V	Control Signal of HV1 _{rtf} and HV4 _{rtf}
$V_{\rm ref}$	V	Reference Voltage
Vring	V	Oscillating Voltage Across Cper
	v	Voltage Drop Across RLP
V _{Ra} man	v	Maximum Voltage Across $R_{\rm c}$
Vas	v	Rectified Voltage
	v	Maximum Value of $V_{-\epsilon}$
Vrtt, max	v	Source Voltage
Variation	v	Source Voltage of HV1
VS,HVI V	v V	Voltage at the Switching Node
V _{SW} V.	v V	Threshold Voltage
V _{th}	v V	Threshold Voltage of HS PU
Vth,HS-BU	v V	Threshold Voltage of HS – BU and HS – BU
Vth,HS-BU,on/off	v V	Threshold Voltage of $HS = BU_{on}$ and $HS = BU_{off}$
Vth,HS-INV,on/off	V V	Threshold Voltage of $HS - HV_{on}$ and $HS - HV_{off}$
Vth,Mclp	V V	Threshold Voltage of MCLP
Vth,mode	V	Dural dawn Valage of a Zanar Diada
VZ	V	Breakdown voltage of a Zener Diode
$V_{\phi 1}$	V	Gate-Source Voltage of HV $I_{\phi 1}$ and HV $2_{\phi 1}$
$V_{\phi 2}$	V	Gate-Source Voltage of HV $I_{\phi 2}$ and HV $2_{\phi 2}$
W	m	Device Width
W _{ch}	m	Channel Width
$w_{\rm core}$	m	Width of the Cross-Sectional Area of a Toroidal Core
Z_{Lp}	Ω	Impedance of $L_{\rm p}$
α	1	Second Steinmetz Parameter
β	1	Third Steinmetz Parameter
δ	m	Skin Depth
$\Delta I_{Lm,Tp}$	А	Ripple-Current Through $L_{m, Tp}$
$\Delta I_{Lm,Tp,toff,HV1}$	А	Ripple-Current Through $L_{m, Tp}$ Caused During $t_{off, HV1}$
$\Delta I_{Lm,Tp,ton,HV1}$	А	Ripple-Current Through $L_{m, Tp}$ Caused During $t_{on, HV1}$
ΔI_{Lp}	А	Ripple-Current Through $L_{\rm p}$
$\Delta I_{Lp,toff,HV1}$	А	Ripple-Current Through L_p Caused During $t_{\text{off, HV1}}$
$\Delta I_{Lp,ton,HV1}$	А	Ripple-Current Through L_p Caused During $t_{on, HV1}$
ΔQ	As	Charge Difference
Δt	S	Time Difference
ΔV	V	Voltage Difference

Acronyms

$\Delta V_{\rm out}$	V	Output-Voltage Ripple
η_{AC-AC}	%	Efficiency of the AC-AC Converter Stage
η_{AC-DC}	%	Efficiency of the AC-DC Converter Stage
$\eta_{ m buf}$	%	Efficiency of the Buffer Stage
$\eta_{\rm DC-DC}$	%	Efficiency of the DC-DC Converter Stage
$\eta_{\rm DC-DC,1}$	%	Efficiency of the First DC-DC Converter Stage
$\eta_{\mathrm{DC-DC},n}$	%	Efficiency of the <i>n</i> th DC-DC Converter Stage
$\eta_{ m LR}$	%	Efficiency of a Linear Regulator
η_{\max}	%	Peak Efficiency
$\eta_{ m rtf}$	%	Efficiency of the Rectifier Stage
$\eta_{\rm SC}$	%	Efficiency of an SC Converter
$\eta_{\rm SC,max}$	%	Maximum Value of η_{SC}
$\eta_{ m SC,min}$	%	Minimum Value of η_{SC}
μ_0	Vs/Am	Magnetic Constant
$\mu_{\rm r,core}$	1	Permeability of the Core Material
$\mu_{r,DC,core}$	1	DC Permeability of the Core Material
$\mu_{\rm r,wire}$	1	Permeability of the Wire Material
ρ	$\Omega\mathrm{m}$	Specific Electric Resistance
$\phi 1$		Phase Phi Number One
$\phi 2$		Phase Phi Number Two
ϕn		Phase Phi Number <i>n</i>

Chapter 1 Introduction

The continuously growing field of applications for IoT and smart homes leads to a trend toward both miniaturization and decentralization [1]. This trend is further driven by the increasing complexity of electric vehicles and industrial applications that demand smaller and smarter decentralized electronics to enable higher functionality and higher productivity [2].

Figure 1.1 illustrates typical IoT and smart-home applications. They range from simple tasks, such as remotely controlled light bulbs and temperature control in every room of a building, up to complex home-automation systems [1]. Thereby, the number of the required sensor nodes, transmitters, receivers, and actuators increases drastically with the complexity of the system. In order to realize their tasks, they usually need to be distributed over the whole building. For example, the control panel of a heater must be easily accessible to the user, whereas the actuator must be directly connected to the heater, and temperature sensors need to be distributed in the room. To reduce the wiring, the communication between components is realized wirelessly via transmitters and receivers.

In electric vehicles, more and more sensors, actuators, and control units for lighting and entertainment are used to improve safety and driving comfort [3]. Examples are airbag and distance sensors in the bumper, small electrical motors in the seats that are used to adjust the seat position, and rear-view cameras. A similar trend is observed in the context of Industry 4.0/5.0. Industry 4.0/5.0 targets increased productivity and reduced cost by smart autonomous systems [4, 5]. These systems require many sensors and actuators everywhere in the production line for comprehensive monitoring and control of the production process [2].

A huge challenge that all of these applications have in common is their power supply. The trend toward decentralization leads to large distances between subsystems and, thus, demands a separate power supply for each of them. Conventionally, batteries are used to supply each subsystem [6], which has the drawback of high maintenance. An approach that significantly reduces maintenance requirements is energy harvesting [6]. However, its typical output power is limited to

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 C. Rindfleisch, B. Wicht, *Chip-Scale Power Supplies for DC-Link and Grid Applications*, https://doi.org/10.1007/978-3-031-60820-9_1

Fig. 1.1 Increasing demand for smaller, cheaper, and efficient AC-DC and DC-DC converters

below 1 mW [7], which is not enough for the continuously growing functionality and complexity of the target applications with a power consumption of up to several tens or even hundreds of milliwatts [4, 8–10]. The limitations of these conventionally used power sources demand alternative solutions that supply powers of up to several hundred milliwatts, have a compact size, and low maintenance requirements.

Figure 1.1 indicates power sources that enable the targeted high output powers and are readily available in every building and every electric vehicle: the AC grid and high-voltage (HV) DC sources, such as the HV battery in electric cars or the DC link in industrial applications. However, most target applications require a supply voltage below 5 V. This demands efficient and compact HV low-power converters that are suitable for all common AC grid voltages (120 V/230 V) and DC input voltages of up to 400 V [11, 12].

Conventionally, HV conversion is achieved by expensive and relatively large power modules [13–17], as shown on the left in Fig. 1.2. They have poor efficiency below 500 mW, along with low power density. Hence, they are not well-suitable to supply the target applications. The converter-module photos in Fig. 1.2 confirm that their size is mainly defined not only by passive components, such as inductors and capacitors, but also by power switches and diodes.

Prior-art publications [18–21] use a capacitive-coupled AC–AC interface to reduce the HV requirements of the power stage and, thus, to achieve an on-chip integration of the converter at output powers below 1 mW [18–20]. However, for the targeted output powers up to several hundred milliwatts, their HV capacitor in the AC interface needs to be a large external component [21]. This results in power densities below 50 mW/cm^3 . In addition, they only allow for AC but not for DC input voltages, which significantly reduces their range of applications. The direct-coupled approach in [22] can be used to achieve higher power densities and

Fig. 1.2 Conventional HV power converters and the target of this book

resistive coupling [23] to enable a wide AC and DC input-voltage range. However, their efficiencies have not shown to exceed 30 %. The large size at sufficient high output power and the low efficiency make these approaches not well-suitable for the targeted decentralized low-power applications.

This book presents solutions for a chip-scale HV AC–DC and DC–DC conversion with higher power density compared to existing solutions. As depicted in Fig. 1.2, the implemented converters are optimized to efficiently supply low-power applications from the grid and from HV DC sources.

1.1 Scope of This Book

The scope of this book is summarized and depicted in Fig. 1.3. It is strongly related to the trend toward miniaturization and decentralization of more and more complex systems and the resulting demand for an efficient and compact power supply for each of the low-power subsystems. The grid and HV DC sources represent a convenient way to supply these applications with sufficient output power and low maintenance effort. However, existing HV power solutions are bulky, inefficient, or cannot provide the required power. This book covers solutions for isolated and non-isolated low-power-optimized HV converters in standard HV silicon-on-insulator (SOI) technologies. The implemented converters are not only suitable for all common grid voltages (120 V/230 V) but also for a wide DC input-voltage range ($12.5 \text{ V} \le V_{in,DC} \le 400 \text{ V}$). Their maximum output power of up to 500 mW and their high power density of up to 752 mW/cm^3 make the implemented converters well-suitable for IoT and smart-home applications as well as for e-mobility and industry.

Figure 1.3 indicates that the size reduction of the passive and discrete components of the power stage is one of the major challenges toward a high power density of HV power supplies. The second major challenge is the reduction of steady-state losses as well as HV-related capacitive and resistive losses to achieve high converter efficiencies even at light-load conditions. The third major challenge is the targeted high-voltage-conversion ratio between the input and output voltages. The wide input-voltage and output-power range is the fourth major challenge.

Fig. 1.3 Summary of the scope of this book

This book addresses these four major challenges through four main topics that are illustrated at the bottom of Fig. 1.3: (1) Low-power optimized HV converter architectures and control approaches are developed for the targeted high-voltage-conversion ratios. They enable a high converter efficiency over the whole targeted input-voltage and output-power range at a compact size. (2) Low-power subcircuits are developed for a reliable converter operation with a high common-mode-transient immunity (CMTI) at low steady-state losses and low HV-related capacitive and resistive losses. (3) A comprehensive analysis enables the size and loss reduction of the power inductor and transformer. An active zero-crossing buffer is developed to reduce the size of the mandatory buffer capacitor in the AC interface. (4) Capacitive-loss-reduction techniques are developed to reduce HV-related capacitive losses to a minimum. Techniques for a reduction of substrate coupling as one major disturbance mechanism are developed. The performance of state-of-the-art on-chip HV power

switches is analyzed to enable a size and loss reduction by selecting a well-suited power-switch type for each converter architecture.

1.2 Outline

This section shows the structure of this book and gives a short summary of the content of each chapter.

Chapter 2 highlights the motivation of this book. It discusses the requirements of power supplies for the target applications for IoT and smart homes as well as for e-mobility and industry. It further compares prior-art publications and commercially available power modules and discusses the challenges of compact and efficient converter designs at high-voltage-conversion ratios, low output powers, and a wide input-voltage and output-power range.

Chapter 3 presents HV power converters as a solution to the design challenges at high input voltages and low output powers identified in Sect. 2.3. Section 3.1 discusses the characteristics of state-of-the-art converter architectures and control approaches regarding their suitability for a chip-scale HV low-power conversion. The converter architectures developed and implemented in this work are presented in Sects. 3.2 to 3.5. Section 3.2 presents a step-down converter that uses a constant-on-time control to enable a high light-load efficiency even at input voltages of up to 400 V. The converter in Sect. 3.3 uses a resonant approach to enable an efficient and compact power conversion at high-voltage-conversion ratios. Section 3.4 explains how the resonant converter from Sect. 3.3 can be combined with the step-down converter from Sect. 3.2 to take advantage of both architectures. The active-clamp flyback presented in Sect. 3.5 gives a solution for applications requiring galvanic isolation. Section 3.6 compares the performance of the implemented converters to commercial products and prior-art publications. Section 3.7 discusses the design of the power inductor and transformer for lightload-optimized HV power converters.

Chapter 4 presents an offline chip-scale power supply as a solution to the design challenges at high AC input voltages identified in Sect. 2.3. Section 4.1 discusses state-of-the-art approaches for the different stages of an AC–DC converter. In Sect. 4.2, the structure of the implemented AC–DC converter is developed. It includes a detailed analysis of the developed active-zero-crossing buffer that enables the on-chip integration of the buffer capacitor up to several milliwatts of output power. The required control circuits for the AC–DC converter are presented in Sect. 4.4. Sections 4.5 and 4.6 show the loss breakdown and the experimental results of the implemented AC–DC converter, respectively. A comparison of the converter to prior-art publications and commercially available power modules is found in Sect. 4.7.

Chapter 5 describes the low-power subcircuits that are developed in this work to enable a reliable and efficient power conversion of the converters described in Chaps. 3 and 4, even at light-load conditions, and measured slew rates as high