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Preface

The objective of this book is to provide a systematic and comprehensive insight into
the design of integrated chip-scale power supplies. The focus is on miniaturized
power supplies that run from the 120 V/230V mains supply or high-voltage DC
sources of up to 400V to power various low-voltage subsystems. Applications
include sensor nodes, transmitters, receivers, actuators as well as auxiliary supplies
in power electronics with supply voltages of 3.3V to 10V at power levels of
up to 500mW. Conventionally, these applications are supplied from batteries
with the expense of high maintenance. Alternatively, energy harvesting would be
suitable but has limited output power. Commercial power modules are relatively
large and expensive, and suffer from poor conversion efficiency at power levels
below 500 mW. Consequently, there is a gap in solutions for highly efficient and
compact power supplies.

This book covers solutions on system and circuit level for isolated and non-
isolated low-power-optimized high-voltage converters in standard high-voltage
silicon-on-insulator (SOI) technologies. The implemented converters are not only
suitable for all common AC grid voltages (120 V/230V) but also for a wide DC
input-voltage range of 12.5V to 400 V. Their high voltage-conversion ratios of up
to 120 make them well-suitable for low-power target applications. Together with
the presented low-power optimized subcircuits, innovative control techniques, and
layout/technology optimizations, peak efficiencies of up to 84% are achieved.

The book deals in detail with the following main topics: (1) Low-power
optimized high-voltage converter architectures and control approaches are evalu-
ated for high voltage-conversion ratios. They enable a high converter efficiency
over the whole targeted input-voltage and output-power range at a compact size.
(2) Low-power subcircuits are presented for a reliable converter operation with a
high common-mode-transient immunity at low steady-state losses and low high-
voltage-related capacitive and resistive losses. (3) A comprehensive analysis enables
the size and loss reduction of the power inductor and transformer. An active zero-
crossing buffer is described to reduce the size of the mandatory buffer capacitor
in the AC interface. (4) Design techniques in SOI technologies are presented. It
includes capacitive-loss-reduction techniques to reduce high-voltage-related capac-
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itive losses to a minimum. Techniques for a reduction of substrate coupling as one
major disturbance mechanism are explained. The performance of state-of-the-art
on-chip high-voltage power switches is analyzed to enable a size and loss reduction
by selecting a well-suited power-switch type for each converter architecture.

The book is intended as a comprehensive all-in-one source on the design of chip-
scale high-voltage power supplies for low-power DC-link and grid applications. It
is written in handbook style with systematic guidelines, including many implemen-
tation examples. It covers the full range from technology fundamentals to circuit
implementation details. It includes guidelines for the application-specific selection
of the converter topology, design guidelines for the inductive components, and a
detailed description of low-power optimized control approaches and subcircuits.

This book is based on our research at the Institute for Microelectronic Systems
at Leibniz University Hannover, Hannover, Germany. We are grateful to many team
members at the university as well as to our industry partners.

A special thanks goes to our families; without their love and support, this book
would not have been possible.

Dresden, Germany Christoph Rindfleisch
Hannover, Germany Bernhard Wicht
March 2024
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Chapter 1 ®
Introduction Check for

The continuously growing field of applications for IoT and smart homes leads
to a trend toward both miniaturization and decentralization [1]. This trend is
further driven by the increasing complexity of electric vehicles and industrial
applications that demand smaller and smarter decentralized electronics to enable
higher functionality and higher productivity [2].

Figure 1.1 illustrates typical IoT and smart-home applications. They range from
simple tasks, such as remotely controlled light bulbs and temperature control in
every room of a building, up to complex home-automation systems [1]. Thereby, the
number of the required sensor nodes, transmitters, receivers, and actuators increases
drastically with the complexity of the system. In order to realize their tasks, they
usually need to be distributed over the whole building. For example, the control
panel of a heater must be easily accessible to the user, whereas the actuator must be
directly connected to the heater, and temperature sensors need to be distributed in
the room. To reduce the wiring, the communication between components is realized
wirelessly via transmitters and receivers.

In electric vehicles, more and more sensors, actuators, and control units for
lighting and entertainment are used to improve safety and driving comfort [3].
Examples are airbag and distance sensors in the bumper, small electrical motors
in the seats that are used to adjust the seat position, and rear-view cameras. A
similar trend is observed in the context of Industry 4.0/5.0. Industry 4.0/5.0 targets
increased productivity and reduced cost by smart autonomous systems [4, 5]. These
systems require many sensors and actuators everywhere in the production line for
comprehensive monitoring and control of the production process [2].

A huge challenge that all of these applications have in common is their power
supply. The trend toward decentralization leads to large distances between subsys-
tems and, thus, demands a separate power supply for each of them. Conventionally,
batteries are used to supply each subsystem [6], which has the drawback of
high maintenance. An approach that significantly reduces maintenance require-
ments is energy harvesting [6]. However, its typical output power is limited to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
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Fig. 1.1 Increasing demand for smaller, cheaper, and efficient AC-DC and DC-DC converters

below 1 mW [7], which is not enough for the continuously growing functionality and
complexity of the target applications with a power consumption of up to several tens
or even hundreds of milliwatts [4, 8—10]. The limitations of these conventionally
used power sources demand alternative solutions that supply powers of up to several
hundred milliwatts, have a compact size, and low maintenance requirements.

Figure 1.1 indicates power sources that enable the targeted high output powers
and are readily available in every building and every electric vehicle: the AC grid
and high-voltage (HV) DC sources, such as the HV battery in electric cars or the DC
link in industrial applications. However, most target applications require a supply
voltage below 5 V. This demands efficient and compact HV low-power converters
that are suitable for all common AC grid voltages (120 V/230V) and DC input
voltages of up to 400 V [11, 12].

Conventionally, HV conversion is achieved by expensive and relatively large
power modules [13—17], as shown on the left in Fig. 1.2. They have poor efficiency
below 500 mW, along with low power density. Hence, they are not well-suitable to
supply the target applications. The converter-module photos in Fig. 1.2 confirm that
their size is mainly defined not only by passive components, such as inductors and
capacitors, but also by power switches and diodes.

Prior-art publications [18-21] use a capacitive-coupled AC-AC interface to
reduce the HV requirements of the power stage and, thus, to achieve an on-chip
integration of the converter at output powers below 1 mW [18-20]. However, for
the targeted output powers up to several hundred milliwatts, their HV capacitor
in the AC interface needs to be a large external component [21]. This results in
power densities below 50mW /cm?>. In addition, they only allow for AC but not
for DC input voltages, which significantly reduces their range of applications. The
direct-coupled approach in [22] can be used to achieve higher power densities and
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Fig. 1.2 Conventional HV power converters and the target of this book

resistive coupling [23] to enable a wide AC and DC input-voltage range. However,
their efficiencies have not shown to exceed 30 %. The large size at sufficient high
output power and the low efficiency make these approaches not well-suitable for the
targeted decentralized low-power applications.

This book presents solutions for a chip-scale HV AC-DC and DC-DC con-
version with higher power density compared to existing solutions. As depicted in
Fig. 1.2, the implemented converters are optimized to efficiently supply low-power
applications from the grid and from HV DC sources.

1.1 Scope of This Book

The scope of this book is summarized and depicted in Fig. 1.3. It is strongly related
to the trend toward miniaturization and decentralization of more and more complex
systems and the resulting demand for an efficient and compact power supply for
each of the low-power subsystems. The grid and HV DC sources represent a
convenient way to supply these applications with sufficient output power and low
maintenance effort. However, existing HV power solutions are bulky, inefficient,
or cannot provide the required power. This book covers solutions for isolated
and non-isolated low-power-optimized HV converters in standard HV silicon-on-
insulator (SOI) technologies. The implemented converters are not only suitable for
all common grid voltages (120 V/ 230 V) but also for a wide DC input-voltage range
(12.5V < Vin,pc <400 V). Their maximum output power of up to 500 mW and
their high power density of up to 752mW /cm® make the implemented converters
well-suitable for IoT and smart-home applications as well as for e-mobility and
industry.

Figure 1.3 indicates that the size reduction of the passive and discrete compo-
nents of the power stage is one of the major challenges toward a high power density
of HV power supplies. The second major challenge is the reduction of steady-
state losses as well as HV-related capacitive and resistive losses to achieve high
converter efficiencies even at light-load conditions. The third major challenge is the
targeted high-voltage-conversion ratio between the input and output voltages. The
wide input-voltage and output-power range is the fourth major challenge.
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Fig. 1.3 Summary of the scope of this book

This book addresses these four major challenges through four main topics that
are illustrated at the bottom of Fig. 1.3: (1) Low-power optimized HV converter
architectures and control approaches are developed for the targeted high-voltage-
conversion ratios. They enable a high converter efficiency over the whole targeted
input-voltage and output-power range at a compact size. (2) Low-power subcircuits
are developed for a reliable converter operation with a high common-mode-transient
immunity (CMTI) at low steady-state losses and low HV-related capacitive and
resistive losses. (3) A comprehensive analysis enables the size and loss reduction of
the power inductor and transformer. An active zero-crossing buffer is developed to
reduce the size of the mandatory buffer capacitor in the AC interface. (4) Capacitive-
loss-reduction techniques are developed to reduce HV-related capacitive losses to a
minimum. Techniques for a reduction of substrate coupling as one major disturbance
mechanism are developed. The performance of state-of-the-art on-chip HV power
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switches is analyzed to enable a size and loss reduction by selecting a well-suited
power-switch type for each converter architecture.

1.2 OQOutline

This section shows the structure of this book and gives a short summary of the
content of each chapter.

Chapter 2 highlights the motivation of this book. It discusses the requirements
of power supplies for the target applications for IoT and smart homes as well as for
e-mobility and industry. It further compares prior-art publications and commercially
available power modules and discusses the challenges of compact and efficient
converter designs at high-voltage-conversion ratios, low output powers, and a wide
input-voltage and output-power range.

Chapter 3 presents HV power converters as a solution to the design challenges
at high input voltages and low output powers identified in Sect.2.3. Section 3.1
discusses the characteristics of state-of-the-art converter architectures and control
approaches regarding their suitability for a chip-scale HV low-power conversion.
The converter architectures developed and implemented in this work are pre-
sented in Sects.3.2 to 3.5. Section 3.2 presents a step-down converter that uses
a constant-on-time control to enable a high light-load efficiency even at input
voltages of up to 400V. The converter in Sect.3.3 uses a resonant approach
to enable an efficient and compact power conversion at high-voltage-conversion
ratios. Section 3.4 explains how the resonant converter from Sect.3.3 can be
combined with the step-down converter from Sect.3.2 to take advantage of both
architectures. The active-clamp flyback presented in Sect. 3.5 gives a solution for
applications requiring galvanic isolation. Section 3.6 compares the performance
of the implemented converters to commercial products and prior-art publications.
Section 3.7 discusses the design of the power inductor and transformer for light-
load-optimized HV power converters.

Chapter 4 presents an offline chip-scale power supply as a solution to the
design challenges at high AC input voltages identified in Sect.2.3. Section 4.1
discusses state-of-the-art approaches for the different stages of an AC-DC converter.
In Sect. 4.2, the structure of the implemented AC-DC converter is developed. It
includes a detailed analysis of the developed active-zero-crossing buffer that enables
the on-chip integration of the buffer capacitor up to several milliwatts of output
power. The required control circuits for the AC-DC converter are presented in
Sect. 4.4. Sections 4.5 and 4.6 show the loss breakdown and the experimental results
of the implemented AC-DC converter, respectively. A comparison of the converter
to prior-art publications and commercially available power modules is found in
Sect. 4.7.

Chapter 5 describes the low-power subcircuits that are developed in this work
to enable a reliable and efficient power conversion of the converters described in
Chaps. 3 and 4, even at light-load conditions, and measured slew rates as high



