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Preface 

This book grew out of many years of involvement with the practical applications 
of extreme value analysis to measured or simulated data. This is a fascinating area 
of research because of the fundamental dichotomy inherent in this problem area. 
On the one hand, you have beautiful mathematical results for asymptotic extreme 
value distributions. On the other hand, you have real-life data, which are hardly 
asymptotic. So, the unavoidable question becomes: To what extent can you use 
the asymptotic distributions to analyze real-life data? Personally, I have always felt 
uncomfortable with the use of the parametric classes of asymptotic extreme value 
distributions in applications. This was largely due to the fact that the justification 
for applying them generally seemed dubious, and amazingly enough, the problem 
of justification is rarely discussed at all in papers using asymptotic distributions 
on real-life data. The problems of justification and other issues related to the 
fundamental dichotomy are discussed in Chap. 1. 

Of course, I was not the only one who disliked asymptotics for use on real-
life data. A consequence of this situation was that alternative procedures for 
extreme value analysis were developed in several engineering disciplines. Some 
of these alternative procedures were based on ideas similar to those developed in 
Chap. 4. This chapter contains what was largely my world view on applied extreme 
value statistics for quite some time, and to some extent, it still is. However, the 
development of the ACER method, which is a central theme in this book, cf. Chap. 5, 
allows for a much wider perspective. Its use in practice basically involves two 
separate steps. The first step is based exclusively on the data and ends up with 
a nonparametric representation of the extreme value distribution inherent in the 
data. This is the crucial element of the ACER method. The second step consists 
of an optimization procedure to fit a parametric function to the nonparametric 
distribution. This step is necessary in order to be able to predict extremes larger 
than those contained in the data, which is typically demanded by applications. To 
develop a rational method of optimized fitting, the asymptotic extreme value theory 
by necessity becomes an essential ingredient which guides the construction of the 
parametric functions used in the optimization procedure. It is therefore necessary to 
identify the correct asymptotic extreme value distribution, since the fitted extreme
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value distribution by necessity must approach the relevant asymptotic form in the 
limit. 

Even if my own work in developing methods for use in applied extreme 
value analysis more or less avoided direct use of the asymptotic extreme value 
distributions, I have always clearly understood their importance as an unavoidable 
foundation. The publication in 1983 of the important book Extremes and Related 
Properties of Random Sequences and Processes by Leadbetter, Lindgren, and 
Rootzén happened when my own interest in extreme value analysis more or less 
started. I, therefore, read this book very carefully, and it gave me a very good grip 
on the asymptotic extreme value theory. Of course, I also read parts of the seminal 
book by E. J. Gumbel, published in 1958, which also has a focus on asymptotic 
results. However, by the mid-1980s, that book, which was written in a pre-computer 
era, appeared as more or less obsolete when compared to the book by Leadbetter 
et al. 

I have written this book, not because I want to convince people to abandon 
the classical asymptotic approaches, which, unfortunately, too often in practice are 
reduced to blindfolded curve fitting exercises to asymptotic parametric distributions 
with no real analysis to back it up. No, I have written the book because I would 
also like to show that it is now possible to make a more rationally based extreme 
value analysis of observed data. I want to show that the ACER method very often 
provides a unique practical diagnostic tool for a rational extreme value analysis. If, 
as a result, asymptotic distributions turn out to be more or less acceptable, then their 
use would at least have a reasonable justification. 

It is also important to emphasize that the book is not a comprehensive treatment 
of methods for applied extreme value analyses, but to a large extent a collection 
of methods that I have personally worked with on and off over a period of three 
decades, and which I have found to be relevant and useful. I have made an effort to 
write the book as much as possible like an introduction to extreme value statistics 
with emphasis on applications. Therefore, the book also contains introductory 
chapters to the classical asymptotic theories and the threshold exceedance models, 
as well as many illustrative examples. The mathematical level is elementary, and 
detailed mathematical proofs have been avoided in favor of heuristic arguments to 
increase readability. Hopefully, this makes the book useful and appealing to a large 
audience of people representing a wide range of diverse applications. 

Since the topic of this book is applied extreme value statistics, an inevitable 
component to go along with it, is access to computer programs for carrying out 
the analysis of available data. For the methods based on the asymptotic results 
described in Chaps. 2 and 3, there are several excellent programs easily available. 
Specific recommendations are not given here. Whichever program is chosen, good 
results can be obtained within the framework of asymptotic distributions. On the 
other hand, the ACER method has not yet attained a comparable level of software 
development. References to computer programs for univariate and bivariate analyses 
by the ACER method have therefore been given in this book. These programs can 
be freely downloaded.



Preface ix

Writing on the technical level necessary for this book requires a lot of attention to 
details. It is in practice impossible to avoid errors and mistakes, poorly formulated 
explanations, or misprints in initial versions of such a book. Fortunately, I have 
some very good friends and colleagues who have helped me identify and correct 
many such shortcomings, and for this, I am forever thankful. Any mistakes, which 
may still remain, are entirely my own responsibility. The first group of people that 
I would like to mention for their important contributions to improving the book 
are Professors Bernt J. Leira, Bo H. Lindqvist, and Sverre Haver and Dr. Karl 
W. Breitung. Previous collaborators and PhD students that have been important 
in helping me in various ways are Professors Torgeir Moan, Oleg Gaidai, Sjur 
Westgaard, Marc Maes, Nilanjan Saha, Wei Chai, and Arild Brandrud Næss; Drs. 
Oleksandr Batsevich, Oleh Karpa, Ali Cetin, Hans K. Karlsen, and Kai Erik Dahlen; 
and Morten Skjong. I am also very grateful to my many good students that I have 
had the pleasure of working with over the years, who have also inevitably been part 
of my own never-ending education as a researcher. 

Trondheim, Norway Arvid Naess 
March, 2023 
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Chapter 1 
Challenges of Applied Extreme Value 
Statistics 

1.1 Introduction 

This book provides an introduction to the calculation of extreme value statistics 
for measured or simulated data. “Extreme” here means “the largest”, interpreted in 
a way that follows from the context. As opposed to books on asymptotic extreme 
value statistics, the focus is also on methods specifically developed to work for real-
life data. A consequence of this, is that the book contains much less theoretical 
issues about the asymptotic properties of extreme value statistics than is usual. 
However, the most important elements from the asymptotic extreme value statistics 
will be discussed, since they are still widely used in practical applications. 

Although two of the asymptotic methods described in this book have been 
used extensively over several decades for prediction of the extreme value statistics 
of many natural phenomena, the prerequisites for their application are often not 
satisfied, and in some cases, not even approximately. Under such circumstances, 
there would appear to be a problem. It is this situation that will be highlighted in 
this chapter. 

1.2 A Brief Summary of Status, Problems and Challenges 

Statistical distributions of the extreme values of large samples of data were derived 
almost one hundred years ago by Fisher and Tippett (1928), cf. also Fréchet (1927); 
Gnedenko (1943); de Haan (1970). The main prerequisite for the existence of the 
derived results were that the data could be considered as outcomes of independent 
and identically distributed random variables. As it turned out, in non-degenerate 
cases there are only three possible types of limiting extreme value distributions 
with increasing amounts of data. It means that these results are asymptotic, as the 
technical term goes. On the positive side, the fact that we know explicitly what the 
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possible distributions look like, even if only in the limit of large samples increasing 
indefinitely, is very satisfactory. And there are criteria that can tell us which type of 
distribution applies if the underlying distribution of the data is known (Leadbetter 
et al. 1983). However, on the negative side, it is not possible to know to what extent 
one of the three types of limiting distributions actually applies to a real-life case with 
only a limited amount of data, even though there may be reasons to expect that the 
true extreme value distribution should not deviate too much from one of the limiting 
forms. Unfortunately, there are no useful convergence results that are precise enough 
to really help us decide quantitatively on this issue. Still, the common practice has 
been to assume an appropriate limiting form as the extreme value distribution to use. 
This can easily be understood from the simple fact that the limiting distributions are 
known explicitly, while the exact extreme value distributions inherent in the data, 
are largely unknown. The procedure to identify the appropriate limiting distribution 
is to optimize the fit of the extreme values derived from the observed data to the 
asymptotic forms. Typically, the extreme values from the data are taken as the 
maxima of specified blocks of data, e.g. annual maxima. 

The three asymptotic types of extreme value distributions are essentially charac-
terized by the value of one parameter, . γ say, called the shape parameter. As will be 
seen later, the most important case for us in this book is when .γ = 0. This is called 
a Type I, or Gumbel, distribution. For positive values of . γ , Type II, or Fréchet, 
distributions are obtained, while for negative values of . γ , the distributions are of 
Type III, or Weibull (for maxima). As it turns out, all three distribution types may 
be expressed in terms of one parametric form called the generalized extreme value 
(GEV) distribution. A standard recommendation is then to use the GEV parametric 
form for the sake of optimized fitting of the obtained extreme value sample. There 
is, however, one serious flaw with this procedure. The extreme value sample being 
extracted from limited amounts of data, are hardly a sample from an asymptotic 
distribution. Hence, one cannot expect that the estimated parameters will point to 
the correct asymptotic distribution. This is an issue of importance for extrapolation 
to out-of-sample long return period levels. For example, a practical task may be 
to say something about a 100 year return period level on the basis of 25 years of 
measured data. Then the correct asymptotic distribution is of paramount importance 
because the different types of extreme value distribution may lead to quite different 
extrapolation results. An additional issue is, of course, that with limited amounts 
of data follows considerable uncertainty on the estimated quantities. It may, in fact, 
happen that the estimated value of . γ is slightly negative, pointing to a Type III 
distribution, but with the confidence interval accounted for, also . γ = 0, or even  
.γ > 0 are possible candidates for the value of . γ . Hence, all three types of extreme 
value distributions seems to be possible alternatives in such a case. Since these 
asymptotic distributions have very different behaviour when extrapolated to high 
quantile values, the previous comments on the importance of this aspect, would 
often necessitate a more careful analysis of the situation to decide which asymptotic 
distribution to apply. 

The peaks-over-threshold (POT) method for extreme value analysis will be 
discussed to some extent in this book. This method is also based on asymptotics.
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The data extracted for its use, are the exceedances above high thresholds. Asymptot-
ically, these data are assumed to follow a generalized Pareto (GP) distribution, which 
is then the equivalent of the GEV for the block maxima method. The POT method 
also has three classes of distributions, again characterized by the . γ parameter. For 
example, the singular case .γ = 0 corresponds to the exponential distribution. It 
is a rather popular method, mainly because it uses more of the data for inference. 
Unfortunately, it has certain deficiencies, which will be highlighted in this book. 

There is an important and interesting observation to be made at this initial stage 
of our exposition of extreme value statistics. As already been stated, for all negative 
values of the shape parameter . γ , the Type III class of extreme value distributions 
apply, while for all positive values of . γ , it is the Type II class of extreme value 
distributions that is obtained. This would seem to indicate that there are two huge 
classes of extreme value distributions that would tend to make the singular case 
.γ = 0 a rather special and maybe uninteresting case. The fact of the matter is 
quite the opposite. For almost all environmental processes that will be dealt with in 
this book, it is the Gumbel distribution that has prevailed as the correct asymptotic 
extreme value distribution. There has over the years been some suggestions to the 
other types as well, but these have almost all been finally rejected in the face of 
overwhelming evidence for Type I distributions. Of course, it is impossible to fully 
answer the fundamental question: To what extent do our statistical models apply to 
real-life data? But so far, it seems that these statistical methods work rather well 
on such data, but being overconfident in these methods is perhaps an unwarranted 
position to take. 

One important reason that the singular asymptotic Gumbel case is so important 
in practice, is that from the perspective of a sub-asymptotic world, the picture 
of the size of the extreme value distribution classes looks very different. When 
only limited amounts of data are available, the asymptotic limiting distributions, 
strictly speaking, do not apply, except in very special cases. Hence, we are in a sub-
asymptotic situation. As will be seen in large parts of this book, there is a huge class 
of extreme value distributions that apply to a range of different problems, which all 
end up at the Gumbel distribution asymptotically. So, the apparent singularity of the 
Gumbel case is an artefact of the asymptotic limiting process, and does not reflect 
the situation in the sub-asymptotic regime. 

In an effort to resolve the inconsistency between real-life data and asymptotic 
distributions, a new method has been developed that is based on the concept of the 
average conditional exceedance rate (ACER). The method proceeds by establishing 
a cascade of empirical, non-parametric distribution functions that converge to the 
extreme value distribution inherent in the data. The advantages of the method 
is that no assumptions about independent and stationary data have to be made. 
For example, seasonal variations of the data do not require special modelling. 
The method also has a unique diagnostic feature in how it displays the effect of 
dependence between the data on the extreme value distribution. This may be of 
significance for the choice of which data can be included in the analysis. The ACER 
method will be discussed in detail in this book.
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Whatever method of extreme value statistics is chosen for the analysis of the 
available data, the goal is almost always to predict extreme values with return 
periods larger, and often much larger, than the period of data collection. This 
inevitably requires extrapolation techniques to be used. The seemingly stochastic 
mechanism generating the sampled data is often sufficiently well understood to 
support the assumption of the validity of extrapolation. Unfortunately, this may not 
always be the situation. Ideally, in such cases, the predicted extreme values obtained 
by extrapolation should then be accompanied by a cautionary note. However, this 
is rarely done, simply because more credible alternatives for the prediction process 
are not available. 

The extrapolation procedure is, in general, based on obtaining estimates of the 
parameters that determine the extreme value distribution type adopted for the data at 
hand. If an asymptotic approach is used, the GEV distribution is often preferred for 
parameter estimation in the case of the block maxima method, or the GP distribution 
for the POT method. Since these are parametrized forms covering all three types of 
asymptotic extreme value distributions, it is often recommended to use these forms, 
allowing the data to determine which type of extreme value distribution to use. As 
already mentioned, such a procedure may not always be a good idea. Also for the 
ACER method, a parametrized family of functions is proposed for the purpose of 
extrapolation, which is tailored to reflect the sub-asymptotic character of the data. 

The parameter estimates calculated for the examples in this book, are based on 
either the method of moments or the maximum likelihood method in the case of the 
GEV or the GP distributions. For the ACER method, the optimized fitting is obtained 
by using a Levenberg-Marquardt method on an objective function expressed as a 
weighted mean square deviation measure between the empirical and the proposed 
parametric ACER functions on the log level. Uncertainty quantification is also a very 
important aspect of any statistical inference. In this book, the use of bootstrapping 
will serve to illustrate this issue, since it has some attractive properties.



Chapter 2 
Classical Extreme Value Theory 

2.1 Introduction 

Classical extreme value statistics is concerned with the distributional properties of 
the maximum of a number of independent and identically distributed (iid) random 
variables when the number of variables becomes large. A partial result was obtained 
by Fréchet (1927), while Fisher and Tippett (1928) discovered that there are three 
types of possible limiting or asymptotic distributions, which are now contained 
in the Extremal Types Theorem, which is discussed in the next section. These 
three asymptotic distributions are typically referred to as the Gumbel, Fréchet, and 
Weibull distributions. It is also common practice to refer to them as Type I, Type 
II, and Type III, in the same order. Important contributions to this theory were later 
made by Gnedenko (1943), Gumbel (1958), and de Haan (1970). 

2.2 The Asymptotic Limits of Extreme Value Distributions 

The classical extreme value theory starts by looking at a sequence of independent 
and identically distributed (iid) random variables .X1, X2, . . . with common distri-
bution function .FX(x). The extreme value of a finite number .X1, . . . , Xn is then 
.Mn = max{X1, . . . , Xn}. The distribution of .Mn can be easily derived as 

. FMn(x) = Prob(Mn ≤ x) = Prob(X1 ≤ x, . . . , Xn ≤ x)

= Prob(X1 ≤ x) · . . . · Prob(Xn ≤ x) = (
FX(x)

)n
. (2.1) 

This relation is not very helpful in practice, because in most cases the distribution 
function .FX(x) is not known exactly. Therefore, it would have to be estimated from 
recorded data. However, small discrepancies in the estimates of .FX(x) can lead 
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to substantial discrepancies, in a relative sense, in the values of .
(
FX(x)

)n for large 
values of n. In classical extreme value theory, one proceeds by studying the behavior 
of .

(
FX(x)

)n as .n → ∞, but with a twist. Obviously, for any x such that .FX(x) < 1, 
.
(
FX(x)

)n → 0 as .n → ∞. This necessitates a rescaling. Specifically, instead of 
studying . Mn, one introduces a renormalized version of . Mn: 

.M∗
n = Mn − bn

an

(2.2) 

for suitable sequences of constants .an > 0 and . bn that are chosen to stabilize the 
location and scale of .M∗

n as .n → ∞. It is then proven that there are, in fact, 
only three types of limiting distributions for this renormalized . M∗

n . This is the  
famous Extremal Types Theorem (Leadbetter et al. 1983), which can be expressed 
as follows. 

If there exist sequences of constants .an > 0 and . bn such that 

.Prob
(Mn − bn

an

≤ x
)

→ G(x) , n → ∞, (2.3) 

where .G(x) is a nondegenerate distribution function, then .G(x) belongs to one of 
the following three families: 

.I G(x) = exp

{
− exp

[
−

(x − b

a

)]}
, −∞ < x < ∞; (2.4) 

.II G(x) =
⎧
⎨

⎩

0 , x ≤ b ,

exp

{
−

(
x−b
a

)−c
}

, x > b ; (2.5) 

.III G(x) =
{

exp
{
−

(
b−x
a

)c}
, x < b ,

1 , x ≥ b ;
(2.6) 

for parameters .a > 0, b and for families II and III, .c > 0. 
These three types of extreme value distributions are also commonly referred to 

as Gumbel, Fréchet, and Weibull, respectively. Note that the Weibull distribution 
given here is not the same as the commonly known Weibull distribution, which 
corresponds to the type III extreme value distribution for minima. Also, carefully 
note that even if the Weibull distribution is the only type of extreme value 
distribution with a finite upper limit on its values, this does not mean that extremes of 
limited data must follow this distribution. For such data, it may very well happen that 
the rescaling constant .an → 0 as n increases. Hence, even the Gumbel distribution 
may be the appropriate asymptotic limit for the extreme values of bounded data.
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It may be verified that it is, in fact, possible to express all three types of extreme 
value distributions in a common form, which is known as the generalized extreme 
value (GEV) distribution. This is achieved as follows: 

.G(x) = G(x;μ, σ, γ ) = exp

{

−
[

1 + γ
(x − μ

σ

)]−1/γ
}

, (2.7) 

defined on the set .{x : 1 + γ
(
(x − μ)/σ

)
> 0}, where the parameters satisfy 

.−∞ < μ < ∞, .σ > 0, .−∞ < γ < ∞. This distribution has three parameters: 
a location parameter . μ, a scale parameter . σ , and a shape parameter . γ . The type II 
distributions correspond to .γ > 0, while type III corresponds to .γ < 0. The case 
.γ = 0 must be interpreted as a limiting case when .γ → 0, which leads to the 
Gumbel distribution: 

.G(x) = exp

{
− exp

[
−

(x − μ

σ

)]}
, −∞ < x < ∞. (2.8) 

The statistical moments of the GEV distributions can now be calculated based on the 
explicit formulas of Eqs. (2.7) and (2.8). Denoting the random variable determined 
by a GEV distribution by M , its first two moments are 

.E(M) = μ + (e1 − 1)
σ

γ
, γ /= 0, γ < 1 (2.9) 

and 

.Var(M) =
(
e2 − e2

1

) σ 2

γ 2
, γ /= 0, γ < 1/2, (2.10) 

where .ek = Γ (1 − kγ ), .k = 1, 2, and .Γ (·) is the gamma function. For .γ ≥ 1, 
.E(M) = ∞, while .E(M) = μ + λE σ when .γ = 0, that is, for the Gumbel case. 
Here, .λE = 0.5772... denotes Euler’s constant. For .γ ≥ 1/2, .Var(M) = ∞, while 
.Var(M) = σ 2π2/6, when .γ = 0. 

For statistical inference on experimental data, the unified form expressed by 
Eq. (2.7) has the advantage that the data themselves determine which type of 
distribution is appropriate, thereby avoiding a prior subjective judgment about any 
specific tail behavior. The uncertainty in the estimated value of . γ is also a reflection 
of the uncertainty about the correct distribution for the data. Unfortunately, in 
practice, it may very well happen that the uncertainty in . γ may cover all three 
types of extreme value distribution, which would necessitate a more careful analysis 
of the data. Also note that the data used for estimation purposes are never truly 
asymptotic, thereby introducing additional uncertainty when trying to identify the 
correct asymptotic distribution. Since the results of extrapolation to determine long 
return period design values may depend very much on the asymptotic extreme value 
distribution used, identifying the correct one is clearly important in such cases.
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2.3 The Block Maxima Method 

In practical application of the GEV distributions to a long time series of observed 
data, it is assumed that the maximum observation of a reasonably large chunk of the 
time series follows a GEV distribution. This is recognized by observing that from 
(2.3) we would assume that for large n, 

.Prob
(Mn − bn

an

≤ x
)

≈ G(x) . (2.11) 

But this may be rewritten as (.y = anx + bn) 

.Prob
(
Mn ≤ y

) ≈ G
(y − bn

an

)
= G∗(y) , (2.12) 

where .G∗ is also a member of the GEV family of distributions. Hence, if the main 
theorem applies, that is, by (2.3), .M∗

n = (Mn − bn)/an approximately follows a 
GEV distribution, then .Mn itself will approximately follow a GEV distribution, but 
with different parameters. Anyway, in practice, it is the parameters of . G∗ that would 
be of most interest. 

This leads to the following approach, which is often referred to as the block 
maxima method. Assume that a sequence of independent observations . x1, x2, . . .

from a stationary time series is long enough to allow segmenting it into blocks 
of data of length n, for some large value of n, generating a series of m block 
maxima, .Mn,1, . . . ,Mn,m, say, to which a GEV distribution is tentatively fitted. A 
typical application of the block maxima method would be to yearly extreme value 
observations of an environmental parameter, e.g., wind speed. In such a case, it is 
also often referred to as an annual maxima method. There is a practical argument 
behind extracting the maximum over the period of 1 year, because by choosing 
shorter periods, the assumption that the sampled maxima are outcomes of a common 
distribution would easily be violated due to seasonal variations. Still, of course, the 
underlying assumption that the block maxima are extracted from a set of iid random 
variables is clearly violated. Fortunately, by experience, this does not seem to pose 
a serious obstacle to the practical use of the block maxima method. 

A quantity of specific interest in applications is the return period level . xp, where 
.G(xp) = 1−p. For the annual maxima method, . xp has a return period of .1/p years. 
That is, . xp would be exceeded on the average every .1/p years. Inverting (2.7), it is  
found that for .γ /= 0, 

.xp = μ − (σ/γ )
[
1 − ( − log(1 − p)

)−γ ]
, (2.13) 

while for .γ = 0, 

.xp = μ − σ log
( − log(1 − p)

)
. (2.14)
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Coles (2001) discusses how to estimate confidence intervals on . xp using profile 
likelihood methods, which seem to provide reasonable accuracy. In this book the 
focus is on the bootstrap method, cf. Sect. 2.8. 

2.4 Outline Proof of the Extremal Types Theorem 

The proof of the Extremal Types Theorem is not a very complicated proof, but it 
is rather lengthy and technical (Leadbetter et al. 1983). Since it is not central to the 
focus of this book, only a sketch will be given here to illustrate the main ingredients. 
The concept of max-stability is needed. It is defined as follows: 

A distribution G is called max-stable if, for every .m = 2, 3, . . ., there are 
constants .αm > 0 and . βm such that 

.Gm(αmx + βm) = G(x) . (2.15) 

.Gm is the distribution function of .Mm = max{Z1, . . . , Zm}, where the . Zi are iid 
random variables with distribution function G. Therefore, max-stability is a property 
satisfied by distributions that are invariant under the operation of taking sample 
maxima, except for a change of scale and location. The following result brings 
forward the connection between max-stability and extreme value distributions 
(Leadbetter et al. 1983), 

A distribution is max-stable if, and only if, it is a GEV distribution. 
To check that a GEV distribution is max-stable is a straightforward exercise in 

algebra. The converse is much harder. Anyway, this result can now be used to prove 
the Extremal Types Theorem. Consider first .Mnk = max{X1, . . . , Xnk} of a sample 
of nk iid random variables . Xi , for some large value of n. This large sample can be 
divided into k subsamples of n variables in each. Hence, there will be k iid random 
variables like .Mn = max{X1, . . . , Xn}. n is chosen large enough to claim that 

.Prob
(Mn − bn

an

≤ x
)

≈ G(x) , (2.16) 

for suitable constants . an and . bn and for the limiting distribution G. Hence, for any 
integer .k ≥ 2, since .nk > n, 

.Prob
(Mnk − bnk

ank

≤ x
)

≈ G(x) , (2.17) 

Eq. (2.16) leads to .Prob
(
Mn ≤ z

) ≈ G
(
(z − bn)/an

)
, while Eq. (2.17) gives 

.Prob
(
Mnk ≤ z

) ≈ G
(
(z − bnk)/ank

)
. However, .Mnk is obviously the maximum 

of k variables having the same distribution as . Mn. But then, 

.Prob
(
Mnk ≤ z

) =
[
Prob

(
Mn ≤ z

)]k

. (2.18)
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From this, it is deduced that (in the limit) 

.G
(z − bnk

ank

)
= Gk

(z − bn

an

)
. (2.19) 

From this it follows that G and .Gk are identical apart from location and scale 
parameters. Hence, G is max-stable, and by the result above, it is a member of 
the GEV family of distributions. 

2.5 Domains of Attraction for the Extreme Value 
Distributions 

In practice, the exact statistical distribution of the data being analyzed is rarely 
known. However, in many cases there may be rather strong evidence as to what 
type of distribution to expect. For instance, average wind speeds over periods of 10 
minutes in northern Europe have been found to follow a Weibull type distribution. 
Then it would be useful to know what kind of extreme value distribution to 
expect for such data. The answer to such questions is the subject of the theory of 
domains of attraction for extreme value distributions. It is beyond the scope of our 
treatment of this topic here to go into much detail, but some useful results seem 
worthwhile presenting. A more thorough discussion is given by Gnedenko (1943) 
and Leadbetter et al. (1983). 

A time series .X1, X2, . . . of iid random variables with distribution function F , 
and with a density function f , is considered. . xF is defined to be the right endpoint of 
F by .xF = sup{x;F(x) < 1} (xF ≤ ∞). Then the following sufficient conditions 
due to von Mises apply: 

Suppose that F is absolutely continuous with density f . Then sufficient con-
ditions for F belonging to each of the three possible domains of attraction are as 
follows: 

Type I: f has a negative derivative . f ' for all x in some interval .(x0, xF ), . (xF ≤
∞), and 

. lim
x↗xF

f '(x)(1 − F(x))

f 2(x)
= −1.

Type II: .f (x) > 0 for .x ≥ x0 finite, and for some constant .α > 0, 

. lim
x→∞

xf (x)

1 − F(x)
= α.
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Type III: .f (x) > 0 for all x in some finite interval .(x0, xF ), .f (x) = 0 for .x > xF , 
and for some constant .α > 0, 

. lim
x↗xF

(xF − x)f (x)

1 − F(x)
= α.

Using these results, it is straightforward to verify that the following list of 
distributions belongs to the domain of attraction of the Type I (Gumbel) case, just to 
mention a few well-known cases: normal, lognormal, exponential, Weibull, gamma, 
and, of course, the Gumbel distribution itself. 

Distributions belonging to the domain of attraction of Type II are, e.g., the Pareto, 
the generalized Pareto for positive shape parameter, and the Type II extreme value 
distribution itself. For Type III may be mentioned, e.g., the uniform distributions, 
distributions truncated on the upper side (provided a smooth density function), and 
the Type III extreme value distribution itself. 

2.6 Parameter Estimation for the GEV Distributions 

The practical application of the block maxima method involves the need to decide 
on how to divide the observed data into blocks. Obviously, there will be two 
conflicting issues that have to be dealt with. The desire to have large blocks so 
that the distribution of the block maxima will approximate a GEV distribution may 
easily lead to a sample of few block maxima. Statistical inference on small samples 
may entail large uncertainties. On the other hand, increasing the sample of block 
maxima by choosing smaller blocks may violate the asymptotic approximation by 
assuming a GEV distribution for the block maxima. These issues may be further 
complicated by the issues of independence and stationarity, which were discussed 
in Sect. 2.3. While establishing general rules for the choice of block size relative 
to the amount of data available is hardly feasible, for some practical cases the 
accumulated experience has led to what may be called a consensus. For example, in 
wind engineering, the choice of 1 year as a block size has become very close to a 
standard procedure. An important consideration for this choice is that the data may 
then reasonably be assumed to belong to the same population since seasonal effects 
have effectively been removed. 

When the sample of block maxima has been determined, the next step would be 
to estimate the parameters of the GEV model, or one of the three types, if that can 
be ascertained a priori. In this book the focus is on two rather popular estimation 
methods, which is the method of moments (primarily for the Gumbel model) and 
the maximum likelihood method. The probability weighted moment method has 
also been used to some extent. For this method, please cf. Hosking et al. (1985). 

To simplify notation, the block maxima are denoted by .Z1, . . . , Zk , assuming 
k blocks. These random variables are assumed to be iid with a common GEV
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distribution, the parameters of which are to be estimated from the outcomes of the 
block maxima, that is, the observed data. 

2.6.1 Estimation by the Method of Moments 

The exposition of the method of moments for parameter estimation is limited to the 
Gumbel model. It is for this case that it seems to be most popular, maybe due to its 
simplicity in this case. The general Gumbel model has two parameters. Since the 
first two statistical moments .m1 = E(Z) and .m2 = E(Z2) of a Gumbel distributed 
variable Z can be expressed in terms of these two parameters, for estimation the 
following two empirical moments are calculated: 

.m̂j = (1/k)

k∑

i=1

z
j
i , j = 1, 2, (2.20) 

where .z1, . . . , zk are the observed data. 
Assuming that Z has the general Gumbel distribution . G(z) = exp{− exp[−(z −

μ)/σ ]}, then .m1 = E(Z) = μ + 0.5772σ and .m2 = E(Z2) = m2
1 + π2σ 2/6, cf.  

Sect. 2.2. Denote by . μk and . σk the estimated values of the parameters based on the 
k observations of block maxima. It is then obtained that 

.μk = m̂1 − 0.5772σk (2.21) 

and 

.σk = (
√

6/π)

√
m̂2 − m̂2

1. (2.22) 

2.6.2 Maximum Likelihood Estimation 

The maximum likelihood (ML) method is very popular and has widespread use in 
almost every branch of statistics. It turns out that the application of the ML methods 
for estimation on GEV models requires some caution. Fortunately, it seems that 
for the applications relevant for this book, the restrictions that need to be observed 
are rarely an issue. Specifically, for values of the shape parameter .γ > −0.5, the  
ML estimators behave regularly. The only thing to note is that there are some small 
sample issues related to the use of ML estimators also for GEV models, cf. Coles 
and Dixon (1999).
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Based on the assumption that .Z1, . . . , Zk are iid random variables having a 
common GEV distribution, then the log-likelihood function for the GEV parameters 
when .γ /= 0 has the following expression: 

. 𝓁(μ, σ, γ ) = −k log σ − (1 + 1/γ )

k∑

i=1

log

[
1 + γ

(zi − μ

σ

)]

−
k∑

i=1

[
1 + γ

(zi − μ

σ

)]−1/γ

, (2.23) 

provided that 

.1 + γ
(zi − μ

σ

)
> 0, for i = 1, . . . , k. (2.24) 

If the last condition is violated, the likelihood becomes zero and the log-likelihood 
therefore .−∞. The case .γ = 0 needs to be considered separately, using the Gumbel 
model. In this case the log-likelihood becomes 

.𝓁(μ, σ ) = −k log σ −
k∑

i=1

(zi − μ

σ

)
−

k∑

i=1

exp

{
−

(zi − μ

σ

)}
. (2.25) 

To obtain the numerical maximum likelihood estimates from the observed data 
by using (2.23) and (2.25), standard numerical optimization programs may be 
utilized. If (2.23) is used, care must be exercised to avoid numerical problems in 
cases where the optimization algorithms tend to parameter estimates in the close 
vicinity of .γ = 0. Then it is strongly advisable to use (2.25). 

Confidence intervals on the estimated parameter values can be calculated exploit-
ing that the approximate distribution of the estimators .(μ̂, σ̂ , γ̂ ) is multivariate 
normal with mean value .(μ, σ, γ ). This is discussed by Coles (2001). 

2.7 Model Validation 

As is well known from basic courses in statistics, the use of probability (or PP) 
plots and quantile (or QQ) plots may reveal very useful information about the extent 
of agreement between an assumed or estimated probability distribution and the 
empirical distribution of the data. These are also highly useful tools for a visual 
check of fitted GEV models in particular cases. For a thorough discussion of the use 
of these plots, cf. Beirlant et al. (2004).
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A probability or a PP plot is a direct comparison of the fitted distribution model 
to the empirical distribution. Assume that the sample of block maxima has been 
ordered by increasing value: .z(1) ≤ z(2) ≤ . . . ≤ z(k). The empirical distribution 
function, . G̃ say, evaluated at .z(i) is given by 

.G̃(z(i)) = i/(k + 1). (2.26) 

The proposed GEV model distribution is obtained by substituting the parameter 
estimates into (2.7) 

.Ĝ(z(i)) = exp

{

−
[

1 + γ̂
(z(i) − μ̂

σ̂

)]−1/γ̂
}

, (2.27) 

provided . γ̂ /= 0. If .γ̂ = 0, the plot is constructed using the Gumbel distribution. If 
the GEV model is a good approximation, then 

.Ĝ(z(i)) ≈ G̃(z(i)) (2.28) 

for each index i, so that the PP plot consisting of the points 

.

(
Ĝ(z(i)), G̃(z(i))

)
i = 1, . . . , k (2.29) 

should follow approximately the unit diagonal. 
For the case of extreme value distributions, a quantile or QQ plot is usually 

considered to be more informative than a PP plot because it shows more clearly the 
agreement at high values of the observed data, which is of primary concern when 
fitting extreme value models. Assuming again that .γ̂ /= 0, the QQ plot is traced out 
by the point graph 

.
(
Ĝ−1(i/(k + 1)), z(i)

)
, i = 1, . . . , k, (2.30) 

where 

.Ĝ−1(i/(k + 1)) = μ̂ − σ̂

γ̂

[
1 − {− log

(
i/(k + 1)

)}−γ̂
]
. (2.31) 

This graph should also approximately follow a straight line. These procedures are 
discussed at greater length in Chap. 9.
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2.8 Estimating Confidence Intervals by Bootstrapping 

The bootstrapping method is a statistical technique of fairly recent origin that can 
be used for estimating confidence intervals on quantities derived from a statistical 
distribution on the basis of a limited sample generated by that same distribution 
(Efron and Tibshirani 1993; Davison and Hinkley 1997). It is based on resampling 
from a distribution determined by the available sample of data. Despite the fact that 
the name of the method alludes to lifting oneself up by the bootstraps (Baron von 
Munchausen), the method appears to be reasonably effective for the specific purpose 
of estimating confidence bands. For convenience, a brief discussion of some basic 
features of the bootstrapping method is provided here. 

Assume that .z = (z1, z2, . . . , zn) is a sample or a vector consisting of n 
independent observations of a random variable Z and that this is the only empirical 
information available about Z. Confidence intervals for a statistical quantity require 
the estimation of quantiles from the distribution of a relevant estimator. There 
are in principle two available options for obtaining bootstrap estimates of such 
quantiles. One is the nonparametric approach, where a purely empirical distribution 
function is established for Z on the basis of the observed data by allocating a 
probability of .1/n to each of the observed data points. The other is the parametric 
bootstrap, which is obtained by assuming that Z has a specified distribution function 
.FZ(z; θ) = Prob(Z ≤ z), where . θ denotes a vector of unknown parameters, which 
determine the distribution. These parameters are then estimated from the observed 
data . z, giving . θ̂ , and .FZ(z; θ̂ ) is adopted as the distribution of Z. 

In this section on the block maxima method using GEV models, only the 
parametric bootstrap is used. The goal is to estimate some statistical quantity V , e.g., 
a high quantile like .100(1−α)% (.0 < α << 1), given by the unknown distribution. 
Let . V̂ denote the estimate of V obtained from the fitted model distribution .FZ(z; θ̂ ), 
which is a GEV distribution. The parametric bootstrapping technique for estimating 
confidence intervals on V is based on resampling from the GEV model obtained. 

This is done as follows: Let .Z∗ denote the random variable with distribution 
function .FZ(z; θ̂ ). . 𝓁 bootstrap samples . z∗

j , .j = 1, . . . , 𝓁, with n independent 
observations of .Z∗ in each sample are now generated. Each sample . z∗

j is used to 
fit a new GEV model from which an estimate . V ∗

j of V is obtained. 
Simple estimates for confidence intervals on V are derived by calculating the 

sample standard deviation . s∗
V : 

.s∗
V =

√√√√√
1

𝓁 − 1

𝓁∑

j=1

(V ∗
j − V̄ ∗)2, (2.32)


