Pierre Larochelle J. Michael McCarthy

Craig P. Lusk Editors

Proceedings of MSR-RoManSy 2024

Combined IFToMM Symposium of RoManSy and USCToMM Symposium on Mechanical Systems and Robotics

Springer

Mechanisms and Machine Science

Volume 159

Series Editor

Marco Ceccarelli (D), Department of Industrial Engineering, University of Rome Tor Vergata, Roma, Italy

Advisory Editors

Burkhard Corves, RWTH Aachen University, Aachen, Germany
Victor Glazunov, Mechanical Engineering Research Institute, Moscow, Russia Alfonso Hernández, University of the Basque Country, Bilbao, Spain Tian Huang, Tianjin University, Tianjin, China
Juan Carlos Jauregui Correa (D), Universidad Autonoma de Queretaro, Queretaro, Mexico

Yukio Takeda, Tokyo Institute of Technology, Tokyo, Japan
Sunil K. Agrawal, Department of Mechanical Engineering, Columbia University, New York, NY, USA

This book series establishes a well-defined forum for monographs, edited Books, and proceedings on mechanical engineering with particular emphasis on MMS (Mechanism and Machine Science). The final goal is the publication of research that shows the development of mechanical engineering and particularly MMS in all technical aspects, even in very recent assessments. Published works share an approach by which technical details and formulation are discussed, and discuss modern formalisms with the aim to circulate research and technical achievements for use in professional, research, academic, and teaching activities.

This technical approach is an essential characteristic of the series. By discussing technical details and formulations in terms of modern formalisms, the possibility is created not only to show technical developments but also to explain achievements for technical teaching and research activity today and for the future.

The book series is intended to collect technical views on developments of the broad field of MMS in a unique frame that can be seen in its totality as an Encyclopaedia of MMS but with the additional purpose of archiving and teaching MMS achievements. Therefore, the book series will be of use not only for researchers and teachers in Mechanical Engineering but also for professionals and students for their formation and future work.

The series is promoted under the auspices of International Federation for the Promotion of Mechanism and Machine Science (IFToMM).

Prospective authors and editors can contact Mr. Pierpaolo Riva (publishing editor, Springer) at: pierpaolo.riva@ springer.com

Indexed by SCOPUS and Google Scholar.

Pierre Larochelle • J. Michael McCarthy .
Craig P. Lusk
Editors

Proceedings of MSR-RoManSy 2024

Combined IFToMM Symposium of RoManSy and USCToMM Symposium on Mechanical Systems and Robotics

Editors
Pierre Larochelle
Department of Mechanical Engineering
South Dakota School of Mines
and Technology
Rapid City, SD, USA
Craig P. Lusk
Department of Mechanical Engineering University of South Florida
Tampa, FL, USA

J. Michael McCarthy
University of California
Irvine, CA, USA

ISSN 2211-0984
ISSN 2211-0992 (electronic)
Mechanisms and Machine Science
ISBN 978-3-031-60617-5
ISBN 978-3-031-60618-2 (eBook)
https://doi.org/10.1007/978-3-031-60618-2
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
If disposing of this product, please recycle the paper.

Preface

This volume constitutes the refereed conference proceedings of the Joint Mechanical Systems and Robotics and RoManSy Symposium, MSR-RoManSy 2024, held in Saint Petersburg, Florida, United States, in May 2024. In 2024, there was an exciting synergistic combining of MSR and RoManSy. RoManSy is a long-established series of conferences traditionally held in Europe. This 2024 conference, combining both MSR and RoManSy, is the 25th RoManSy gathering and the 3rd MSR gathering.

The joint MSR-RoManSy Symposium welcomed submissions that addressed: Specialized Robotic Systems; Soft, Wearable \& Origami Robotic Systems; Applications to Walking, Flying, Climbing, Ground, Underground, Swimming, \& Space Systems; Human Rehabilitation \& Performance Augmentation; Design and Analysis of Mechanisms \& Machines; Human-Robot Collaborative Systems; Service Robotics; Mechanical Systems \& Robotics Education; Commercialization of Mechanical Systems \& Robotics; and related topics.

MSR-RoManSy 2024 was organized under the patronage of the U.S. Committee for the Theory of Machines and Mechanisms (USCToMM), the Canadian Committee for the Theory of Machines and Mechanisms (CCToMM), and the IFToMM Technical Committee on Robotics and Mechatronics. The goal of USCToMM is to promote research and development in the field of machines and mechanisms by theoretical and experimental methods, along with their practical application. USCToMM is the United States' Member Organization of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM).

Every other year, USCToMM organizes a MSR symposium to bring together researchers from the US, Canada, Mexico, and from around the globe to share their latest research results, exchange new ideas, and foster new collaborations. The USCToMM symposia bring together researchers in all areas of mechanisms, machines, mechanical systems, and robotics for an engaging and focused academic experience. In this publication, the editors introduce 19 full papers that were carefully reviewed, presented, and deeply discussed during single-track sessions at MSR-RoManSy 2024.

We wish to express our sincere thanks to the authors, reviewers, and participants for making the combined 3rd USCToMM MSR and 25th RoManSy Symposium a success.

Rapid City, USA
Pierre Larochelle
Irvine, USA
Tampa, USA
J. Michael McCarthy

Craig P. Lusk

Contents

1 Kinematic Analysis of a Novel Actuation Redundant 3-DOF Parallel Manipulator Based on Parallelogram-Linkage 1
Qi Zou, Shuo Zhang, Yuancheng Shi, and Byung-Ju Yi
2 Accelerating Robotics Test and Evaluation with a Streamlined Simulation Process 15
Vikram Adipudi, Kevin Carey, Andre Harrison, Jeffrey W. Herrmann, Craig Lawrence, James Michaelis, and Adam Porter
3 Large Deflection Model for Spatial Flexure Elements Supporting Helix Compliant Stages 25
Jian Yang and Peng Yan
4 EWA: A Single Size Self-adapting Upper Limb Exoskeleton Without Adjustment 37
Alberto Borboni, Antonio Arbore, and Irraivan Elamvazuthi
5 A Compliant PneuNets Linear Actuator with Large Off-Axis Stiffness 53
Yi Jin and Haijun Su
6 Quasi-Periodic Shape-Morphing Mechanism Array Based on Penrose Tiles 67
Craig P. Lusk
7 Controlling Autonomous Robots: Metareasoning, Adjustable Autonomy, and Competence-Aware Systems 79
Jeffrey W. Herrmann
8 Biped Robot Terrain Adaptability Based on Improved SAC Algorithm 93
Yilin Zhang, Jianan Xie, Xiaohan Du, Huimin Sun, Shanshan Wang, and Kenji Hashimoto
9 Global Reorientation of a Free-Fall Multibody System Using Reconstruction Loss-Based Deep Learning Method 105
Tianqi Ma, Tao Zhang, and Ou Ma
10 Performance Evaluation of a Variable Stiffness Joint Based on Electromagnetic Force Attraction 119
Luis D. Filomeno Amador, Eduardo Castillo Castañeda, Med Amine Laribi, and Giuseppe Carbone
11 A New 3R1T Parallel Robot with Remote Centre of Motion for Minimally Invasive Surgery 129
Aislinn McAleenan, Yinglun Jian, Yan Jin, Dan Sun, and Jonathan Moore
12 Defining a Workspace Without Singular Configurations of 3-PRRS Type Tripod 143
Zhumadil Baigunchekov, Giuseppe Carbone, Med Amine Laribi, and Rustem Kaiyrov
13 UAV Obstacle Mapping for Multi-UGV Exploration and Mapping 155
Noor Khabbaz and Scott Nokleby
14 Virtual and Physical Prototyping of the 4-DOF Delta-type Parallel Robot Based on the Criteria of Closeness to Singularity 167
Pavel Laryushkin, Alexey Fomin, Anton Antonov, and Victor Glazunov
15 A Real-Time Algorithm for Computing the Tension Force in a Suspended Elastic Sagging Cable 179
Aravind Baskar, Mark Plecnik, Jonathan D. Hauenstein, and Charles W. Wampler
16 Reconfigurable Parallel Walking Mechanisms for Interaction with the Environment 189
Severino Hernandez and Nina Robson
17 Design of a Robotic Rowboat 203
Jiaji Li and J. Michael McCarthy
18 Constructing Kinematic Confidence Regions with Double Quaternions 215
Q. Jeffrey Ge, Zihan Yu, Anurag Purwar, and Mark P. Langer
19 Design and Implementation of a Control System Architecture for a Hexapod Walking Machine 231
William Colletti, Kyden DeGross, Trinity Lindner, John Miller, and Pierre Larochelle

Chapter 1
 Kinematic Analysis of a Novel Actuation Redundant 3-DOF Parallel Manipulator Based on Parallelogram-Linkage

Qi Zou, Shuo Zhang, Yuancheng Shi, and Byung-Ju Yi

Abstract

The passive joints occurring in the parallel robots require additional steps to be calculated, which may lead to complicated analytical kinematic and dynamic models, become burdens to derive these mathematical solutions or demand extra efforts to measure their motions. This research presents a special planar parallel manipulator with actuation redundancy based on parallelogram linkage. Every moving linkage excluding the mobile platform is parallel to one of the actuation rods within the reachable workspace and all these passive joint angles can be conveniently resolved from the active joint angles through simple arithmetic operations. The constant linkage dimension relationships are utilized to formulate the inverse kinematic solution with the assistance of two additional virtual points. The vector loop equations are employed to compute the forward kinematic results. The Jacobian matrix is established from the forward kinematic model. The spatial searching methodology is utilized to obtain the reachable workspace and the kinematic performance distributions are explored.

Keywords Parallel manipulator • Parallelogram linkage • Redundant robot • Performance evaluation

1.1 Introduction

A conventional parallel robot is constituted of a fixed platform and moving platform connected by several kinematic chains. Each kinematic limb is generally actuated by only one motor, which is different from the serial robot where each joint

[^0]demands a motor. Compared with the serial robot in the similar scale and materials, the parallel robot tends to realize higher stiffness, payload performance, precision level and speed/acceleration [1, 2]. The parallel robots are widely employed in parallel kinematic machine tools [3], stacking robots [4] and medical robots [5].

The most distinguished drawbacks of parallel robots contain the restricted reachable workspace and complex mathematical solution. The methodologies to overcome the limited workspace include designing novel robot architectures, utilizing the equivalent joints to replace the spatial joints (i.e., use two orthogonal revolute joints to substitute a universal joint). The latter issue happens especially on the forward kinematic models due to a group of nonlinear equations. There are some strategies, analytical methods (e.g., Sylvester's dialytic elimination algorithm [6]), numerical methods (e.g., Newton-Raphson method) [7], Newton-Gauss method [8]), artificial intelligent algorithms (e.g., support vector machine approach [9]).

The difficulty of the nonlinear analytical forward kinematic problem can be fully/ partially alleviated if there are some special relationships among some moving linkages. Under this condition, some passive joint angles can be conveniently formulated, which may be beneficial to derive the first- or second- order kinematic problems with sufficient computation efficiency.

The noncomplex forward kinematic solutions can be guaranteed in some parallel architectures where special modules are employed in the kinematic chains. For example, the parallelogram mechanism has been widely utilized many parallel and serial robots, such as the Diamond robot [10], rotary Delta robot [11], Linear Delta robot [12], Improved variants of Delta robot (Par4, H4, I4 family [13]), University of Maryland robot [14], the parallel manipulator with Schönflies motion [15], 2 degrees-of-freedom (DOFs) parallel structure [16].

The additional internal constraints (parallel relationship between two opposite rods) originated from the parallelogram linkages can facilitate the calculation of forward kinematic models. Another function of the parallelogram linkage is to enhance the stiffness of the kinematic chain. As a special case, the Rhombus linkage is another special module which is popular in parallel robots, especially in deployable mechanisms (e.g., the Expteron robot [17], D-SLiM [18]) where large workspace and small storage space are desired.

The parallel manipulator with actuation redundancy has received increasing interests recently. It is reported that this feature could enhance the stiffness of the whole structure, supply better force capacity and avoid some singularities with active manner, at the expense of complicated control strategy for actuation joints forces/ torques [19, 20].

This paper aims to mitigate the unknown passive joints calculation and complex forward kinematics by special design using parallelogram linkages. Each moving linkage excluding the moving platform is parallel to one of the driving linkages when the mobile platform is in any pose. The layout of this manuscript is organized as follows. The detailed kinematic models are derived in Sect. 1.2, followed by the workspace and kinematic analysis in Sects. 1.3 and 1.4, respectively. This work is concluded in Sect. 1.5.

1.2 Position Analysis

1.2.1 Inverse Kinematics

The proposed planar parallel structure with two kinematic limbs is seen in Fig. 1.1a. Each kinematic limb is constituted of six linkages $\left(A_{i} C_{i}, C_{i} I_{i}, D_{i} E_{i}, E_{i} F_{i}, B_{i} H_{i}\right.$, and $H_{i} \mathrm{P}_{\mathrm{i}}, \mathrm{i}=1,2$) and nine revolute joints (locating at points $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}, \mathrm{E}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}, \mathrm{I}_{\mathrm{i}}$ and $P_{i}, i=1,2$). In each kineamtic limb, the proximal end of linakge $A_{i} C_{i}$ is attached to the fixed platform $\mathrm{A}_{1} \mathrm{~A}_{2}$, while the distal end is connected to the linkage $\mathrm{C}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}$. Point I_{i} is on the linkage $\mathrm{H}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}$, which is connected to the mobile platform $\mathrm{P}_{1} \mathrm{P}_{2}$ by a revolute joint. Linakges $\mathrm{A}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$ and $\mathrm{H}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}$ can also be connected by a middle inkage $\mathrm{B}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$. The fixed platform can also reach to the link $\mathrm{C}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}$ through linkage $\mathrm{D}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}$ and then linkage $\mathrm{E}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}$. The key construction principles of each kinematic limb within this symmetrical parallel mechanism are listed below ($\mathrm{i}=1$ or 2),
(a) There are two parallelogram linkages in each kinematic chain. They are composed of the points $\mathrm{B}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}-\mathrm{I}_{\mathrm{i}}-\mathrm{H}_{\mathrm{i}}$ and $\mathrm{D}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}-\mathrm{F}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}$, respectively. Linkages $\mathrm{A}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$, $\mathrm{E}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}}$, and $\mathrm{H}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}$ are paraellel. Linkage $\mathrm{A}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$, and $\mathrm{C}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}$ are collinear.
(b) Points B_{i} and D_{i} lie at line $A_{i} C_{i}$.
(e) Point F_{i} is on the line $C_{i} I_{i}$.
(f) Point P_{i} is collinear with line $\mathrm{H}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}$.

The linkage lengths are listed as: $\left|A_{i} B_{i}\right|=L_{1},\left|B_{i} C_{i}\right|=\left|H_{i} I_{i}\right|=L_{2},\left|C_{i} F_{i}\right|=$ $L_{3},\left|F_{i} I_{i}\right|=L_{4},\left|I_{i} P_{i}\right|=L_{7},\left|P_{i} P\right|=L_{8}(\mathrm{i}=1,2)$. The global coordiate system is constructed, as illustratd in Fig. 1.1a. The X -axis is collinear with the fixed platform $\mathrm{A}_{1} \mathrm{~A}_{2}$, while the Y -axis is vertical. The coordinate of point D_{1} is $\left(L_{5}, L_{6}\right)$. In this case, point D_{1} coincides with point A_{1} in the first kineamtic chain and point D_{2} coincides with point A_{2} in the second kineatmic chain. Therefore, $L_{5}=L_{6}=0$. The coordinates of the points A_{1} and A_{2} are separately $\left(\mathrm{x}_{\mathrm{A} 1}, 0\right)$ and $\left(\mathrm{x}_{\mathrm{A} 2}, 0\right)$. The system input of this parallel manipulator is denoted as the rotation angles $\mathbf{Q}=\left[\theta_{1} ; \theta_{2} ; \theta_{3} ; \theta_{4}\right]$ at four points, A_{1}, D_{1}, A_{2} and D_{2}, with respect to the X axis. The position and orientation of the mobile platform $\mathrm{P}_{1} \mathrm{PP}_{2}$ are summaried as $\mathbf{X}=[x ; y ; \alpha]$ in the planar coordinate system. This parallel architecture is classified as the actuation redundant robot since there is one additional motor to manipulate the mobile platform.

Given the pose \boldsymbol{X} of the mobile platform, the inverse kineamtic model is to derive the four rotation angles of linakges $\mathrm{A}_{1} \mathrm{C}_{1}, \mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{~A}_{2} \mathrm{C}_{1}$ and $\mathrm{D}_{2} \mathrm{E}_{2}$. For the sake of simplicity, two virtual points G_{1} and G_{2} are attached to this planar parallel mechanism, as illustrated in Fig. 1.1a. Two revolute joints are mounted at points G_{1} and G_{2}, respectively. The virtual links $\mathrm{C}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}$ and $\mathrm{G}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}(\mathrm{i}=1,2)$ are separately defined as L_{7} and $L_{3}+L_{4}$. Thus, a new parallelogram mechanims is established by points $\mathrm{C}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}$ in each kineamtic limb. In accordance with the parallelgoram mechanisms employed in this design, linkage $C_{i} G_{i}$ is parallel to linkages $A_{i} C_{i}, E_{i} F_{i}$ and $H_{i} P_{i}$, while linkage $\mathrm{G}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}$ is collinear with linkages $\mathrm{D}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$ and $\mathrm{C}_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}$ in each kinematic chain. These two added points can enable the decoupled calculations of two unknown joint angles in each kinematic chain and simplify the inverse kinematic solution.

Fig. 1.1 The planar parallel robot

To compute θ_{1} in the first kineamtic limb, the following constraint equation can be generated

$$
\begin{equation*}
\left\|\mathbf{O P}_{1}-\mathbf{O G}_{1}\right\|=\left\|\mathbf{G}_{1} \mathbf{P}_{1}\right\|=L_{3}+L_{4} \tag{1.1}
\end{equation*}
$$

where the II II symbol denotes 2-norm operation.
Two vector-loop equations should be explored to determine the two vectors in the left side of Eq. (1.1). In according to the geometry of this parallel robot, the position of point G_{1} is calculated

$$
\begin{equation*}
\mathbf{O G}_{1}=\mathbf{O A}_{1}+\mathbf{A}_{1} \mathbf{G}_{1}=\binom{x_{A 1}+\left(L_{1}+L_{2}+L_{7}\right) \cos \theta_{1}}{\left(L_{1}+L_{2}+L_{7}\right) \sin \theta_{1}} \tag{1.2}
\end{equation*}
$$

The position of point P_{1} is derived as

$$
\begin{equation*}
\mathbf{O} \mathbf{P}_{1}=\mathbf{O P}+\mathbf{P}_{1} \mathbf{P}=\binom{x-L_{8} \cos \alpha}{y-L_{8} \sin \alpha} \tag{1.3}
\end{equation*}
$$

Combing Eqs. (1.1-1.3), the following equation can be generated

$$
\begin{equation*}
N_{11} \sin \theta_{1}+N_{12} \cos \theta_{1}+N_{13}=0 \tag{1.4}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
N_{11}=-2\left(y-L_{8} \sin \alpha\right)\left(L_{1}+L_{2}+L_{7}\right) \\
N_{12}=-2\left(x-x_{A 1}-L_{8} \cos \alpha\right)\left(L_{1}+L_{2}+L_{7}\right) \\
N_{13}=\left(x-L_{8} \cos \alpha-x_{A 1}\right)^{2}+\left(y-L_{8} \sin \alpha\right)^{2}+\left(L_{1}+L_{2}+L_{7}\right)^{2}-\left(L_{3}+L_{4}\right)^{2}
\end{array}\right.
$$

A special substitution should be utilized to solve Eq. (1.4),

$$
\begin{equation*}
t_{1}=\tan \left(\theta_{1} / 2\right) \tag{1.5}
\end{equation*}
$$

On the basis of trigonometric identity, the following equations can be expressed,

$$
\begin{equation*}
\sin \theta_{1}=2 t_{1} /\left(1+t_{1}^{2}\right), \cos \theta_{1}=\left(1-t_{1}^{2}\right) /\left(1+t_{1}^{2}\right) \tag{1.6}
\end{equation*}
$$

Combing Eqs. (1.4) and (1.6) yields the following quadratic equation of variable t_{1},

$$
\begin{equation*}
\left(N_{13}-N_{12}\right) t_{1}^{2}+2 N_{11} t_{1}+\left(N_{12}+N_{13}\right)=0 \tag{1.7}
\end{equation*}
$$

The variable t_{1} can be formulated directly from Eq. (1.7),

$$
\begin{equation*}
t_{1}=\frac{-N_{11} \pm \sqrt{N_{11}^{2}+N_{12}^{2}-N_{13}^{2}}}{N_{13}-N_{12}} \tag{1.8}
\end{equation*}
$$

The actuation angle θ_{1} is then deduced based on Eq. (1.5),

$$
\begin{equation*}
\theta_{1}=2 \tan ^{-1} t_{1} \tag{1.9}
\end{equation*}
$$

The second constraint equation to solve rotatioanl angle θ_{2} is arranged as

$$
\begin{equation*}
\left\|\mathbf{O G}_{1}-\mathbf{O A}_{1}\right\|=\left\|\mathbf{A}_{1} \mathbf{G}_{1}\right\|=L_{1}+L_{2}+L_{7} \tag{1.10}
\end{equation*}
$$

The vector $\mathbf{O G}_{1}$ should be different from the expression in Eq. (1.2), in order to express explicitly the rotation angle θ_{2}, as seen below

$$
\begin{equation*}
\mathbf{O G}_{1}=\mathbf{O P}_{1}-\mathbf{G}_{1} \mathbf{P}_{1}=\binom{x-L_{8} \cos \alpha-\left(L_{3}+L_{4}\right) \cos \theta_{2}}{y-L_{8} \sin \alpha-\left(L_{3}+L_{4}\right) \sin \theta_{2}} \tag{1.11}
\end{equation*}
$$

Akin to the calculation process in Eqs. (1.4-1.9) for the angle θ_{1}, the rotation angle θ_{2} can be resolved as

$$
\begin{equation*}
\theta_{2}=2 \tan ^{-1} \frac{-N_{21} \pm \sqrt{N_{21}^{2}+N_{22}^{2}-N_{23}^{2}}}{N_{23}-N_{22}} \tag{1.12}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
N_{21}=-2\left(y-L_{8} \sin \alpha\right)\left(L_{3}+L_{4}\right) \\
N_{22}=-2\left(x-x_{A 1}-L_{8} \cos \alpha\right)\left(L_{3}+L_{4}\right) \\
N_{23}=\left(x-L_{8} \cos \alpha-x_{A 1}\right)^{2}+\left(y-L_{8} \sin \alpha\right)^{2}+\left(L_{3}+L_{4}\right)^{2}-\left(L_{1}+L_{2}+L_{7}\right)^{2}
\end{array}\right.
$$

In a simialr manner, the first constraint equation of the second kinematic limb is established as

$$
\begin{equation*}
\left\|\mathbf{O P}_{2}-\mathbf{O G}_{2}\right\|=\left\|\mathbf{G}_{2} \mathbf{P}_{2}\right\|=L_{3}+L_{4} \tag{1.13}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mathbf{O P}_{2}=\mathbf{O P}+\mathbf{P P}_{2}=\binom{x+L_{8} \cos \alpha}{y+L_{8} \sin \alpha} \\
\mathbf{O G}_{2}=\mathbf{O A}_{2}+\mathbf{A}_{2} \mathbf{G}_{2}=\binom{x_{A 2}+\left(L_{1}+L_{2}+L_{7}\right) \cos \theta_{3}}{\left(L_{1}+L_{2}+L_{7}\right) \sin \theta_{3}}
\end{array}\right.
$$

Arranging Eq. (1.13) in a similar form as Eq. (1.4), the rotation angle θ_{3} is formulated as

$$
\begin{equation*}
\theta_{3}=2 \tan ^{-1} \frac{-N_{31} \pm \sqrt{N_{31}^{2}+N_{32}^{2}-N_{33}^{2}}}{N_{33}-N_{32}} \tag{1.14}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
N_{31}=-2\left(y+L_{8} \sin \alpha\right)\left(L_{1}+L_{2}+L_{7}\right) \\
N_{32}=-2\left(x+L_{8} \cos \alpha-x_{A 2}\right)\left(L_{1}+L_{2}+L_{7}\right) \\
N_{33}=\left(x+L_{8} \cos \alpha-x_{A 2}\right)^{2}+\left(y+L_{8} \sin \alpha\right)^{2}+\left(L_{1}+L_{2}+L_{7}\right)^{2}-\left(L_{3}+L_{4}\right)^{2}
\end{array}\right.
$$

Another constraint equation of the second kinematic chain is described as

$$
\begin{equation*}
\left\|\mathbf{O G}_{2}-\mathbf{O A}_{2}\right\|=\left\|\mathbf{A}_{2} \mathbf{G}_{2}\right\|=L_{1}+L_{2}+L_{7} \tag{1.15}
\end{equation*}
$$

where

$$
\mathbf{O G}_{2}=\mathbf{O P}_{2}-\mathbf{G}_{2} \mathbf{P}_{2}=\binom{x+L_{8} \cos \alpha-\left(L_{3}+L_{4}\right) \cos \theta_{4}}{y+L_{8} \sin \alpha-\left(L_{3}+L_{4}\right) \sin \theta_{4}}
$$

Expressing Eq. (1.15) in a similar form as Eq. (1.4), the rotation angle θ_{4} is resolved as

$$
\begin{equation*}
\theta_{4}=2 \tan ^{-1} \frac{-N_{41} \pm \sqrt{N_{41}^{2}+N_{42}^{2}-N_{43}^{2}}}{N_{43}-N_{42}} \tag{1.16}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
N_{41}=-2\left(y+L_{8} \sin \alpha\right)\left(L_{3}+L_{4}\right) \\
N_{42}=-2\left(x+L_{8} \cos \alpha-x_{A 2}\right)\left(L_{3}+L_{4}\right) \\
N_{43}=\left(x+L_{8} \cos \alpha-x_{A 2}\right)^{2}+\left(y+L_{8} \sin \alpha\right)^{2}+\left(L_{3}+L_{4}\right)^{2}-\left(L_{1}+L_{2}+L_{7}\right)^{2}
\end{array}\right.
$$

The analytical inverse kineamtic solution are showns in Eqs. (1.9), (1.12), (1.14) and (1.16). Each variable can be generated with one equation, which reveals the decoupled calculation among these four variables.

1.2.2 Forward Kinematics

The forward kinematic model can be constructed through Eqs. (1.1), (1.10), (1.13) and (1.15). In this case, three unknown parameters in $\mathbf{X}=[x ; y ; \alpha]$ exist in each equation and the calculation process is complicated. Instead of this approach, another straightforward method is utilized in this section according to the special features of this parallel robot. It is not necessary to employ the virtual points G_{1} and G_{2} within in this alternative approach.

The loop-closure equation in the first kinematic chain is written as

$$
\begin{equation*}
\mathbf{O} \mathbf{P}_{1}=\mathbf{O} \mathbf{A}_{1}+\mathbf{A}_{1} \mathbf{C}_{1}+\mathbf{C}_{1} \mathbf{I}_{1}+\mathbf{I}_{1} \mathbf{P}_{1} \tag{1.17}
\end{equation*}
$$

Combing Eqs. (1.3) and (1.17) yields the following equations in two orthogonal directions,

$$
\begin{equation*}
\Gamma_{1}=x_{A 1}+\left(L_{1}+L_{2}+L_{7}\right) \cos \theta_{1}+\left(L_{3}+L_{4}\right) \cos \theta_{2}=x-L_{8} \cos \alpha \tag{1.18}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma_{2}=\left(L_{1}+L_{2}+L_{7}\right) \sin \theta_{1}+\left(L_{3}+L_{4}\right) \sin \theta_{2}=y-L_{8} \sin \alpha \tag{1.19}
\end{equation*}
$$

The vector-loop equation in the second kinematic limb is

$$
\begin{equation*}
\mathbf{O P}_{2}=\mathbf{O A}_{2}+\mathbf{A}_{2} \mathbf{C}_{2}+\mathbf{C}_{2} \mathbf{I}_{2}+\mathbf{I}_{2} \mathbf{P} \tag{1.20}
\end{equation*}
$$

Equation (1.20) can be resolved into X and Y directions by integrating with the $\boldsymbol{O P} \boldsymbol{P}_{2}$ definition Eq. (1.13),

$$
\begin{gather*}
\Gamma_{3}=x_{A 2}+\left(L_{1}+L_{2}+L_{7}\right) \cos \theta_{3}+\left(L_{3}+L_{4}\right) \cos \theta_{4}=x+L_{8} \cos \alpha \tag{1.21}\\
\Gamma_{4}=\left(L_{1}+L_{2}+L_{7}\right) \sin \theta_{3}+\left(L_{3}+L_{4}\right) \sin \theta_{4}=y+L_{8} \sin \alpha \tag{1.22}
\end{gather*}
$$

It is noteworthy that the given parameters $\mathbf{Q}=\left[\theta_{1} ; \theta_{2} ; \theta_{3} ; \theta_{4}\right]$ and the desired parameters $\mathbf{X}=[x ; y ; \alpha]$ are separately in two sides of Eqs. (1.18), (1.19), (1.21) and (1.22). Therefore, the forward kinematic solutions can be directly obtained from these four equations,

$$
\begin{gather*}
x=\left(\Gamma_{1}+\Gamma_{3}\right) / 2 \tag{1.23}\\
y=\left(\Gamma_{2}+\Gamma_{4}\right) / 2 \tag{1.24}\\
\alpha=\tan ^{-1}\left[\left(\Gamma_{4}-\Gamma_{2}\right) /\left(\Gamma_{3}-\Gamma_{1}\right)\right] \tag{1.25}
\end{gather*}
$$

It is worth noticing that the points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{I}_{2} \mathrm{I}_{1}$ and points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{H}_{2} \mathrm{H}_{1}$ could not always construct parallelogram linkages within the reachable workspace. A mathematical proof is provided below.

The schematic diagram is illustrated in Fig. 1.2. It is assumed that there is one point G_{3} on the line $\mathrm{H}_{1} \mathrm{P}_{1}$, and one point G_{4} on the line $\mathrm{H}_{2} \mathrm{P}_{2}$. These two extra points are both in the same side of linkage $\mathrm{P}_{1} \mathrm{P}_{2}$. The lengths of $\mathrm{G}_{3} \mathrm{P}_{1}$ and $\mathrm{G}_{4} \mathrm{P}_{2}$ are both equal to ΔL.

Fig. 1.2 The diagram for linkages $\mathrm{H}_{1} \mathrm{I}_{1} \mathrm{P}_{1}$ and $\mathrm{H}_{2} \mathrm{I}_{2} \mathrm{P}_{2}$

Based on the geometrical relationship, the moving platform $\mathrm{P}_{1} \mathrm{P}_{2}$ can be solved as

$$
\begin{equation*}
\mathbf{P}_{1} \mathbf{P}_{2}=\binom{2 L_{8} \cos \alpha}{2 L_{8} \sin \alpha} \tag{1.26}
\end{equation*}
$$

The coordinates of two points G_{3} and G_{4} are calculated separately as

$$
\begin{gather*}
\mathbf{O G}_{3}=\mathbf{O P}_{1}+\mathbf{P}_{1} \mathbf{G}_{3}=\binom{x_{P 1}+\Delta L \cos \theta_{1}}{y_{P 1}+\Delta L \sin \theta_{1}} \tag{1.27}\\
\mathbf{O G}_{4}=\mathbf{O P}_{2}+\mathbf{P}_{2} \mathbf{G}_{4}=\binom{x_{P 1}+2 L_{8} \cos \alpha+\Delta L \cos \theta_{3}}{y_{P 1}+2 L_{8} \sin \alpha+\Delta L \sin \theta_{3}} \tag{1.28}
\end{gather*}
$$

where $x_{P 1}, y_{P 1}$ are respectively the X and Y components of the point P_{1}.
The virtual linkage $\mathrm{G}_{3} \mathrm{G}_{4}$ are then obtained on the basis of Eqs. (1.27) and (1.28)

$$
\begin{equation*}
\mathbf{G}_{3} \mathbf{G}_{4}=\mathbf{O G}_{4}-\mathbf{O G}_{3}=\binom{\Delta L\left(\cos \theta_{3}-\cos \theta_{1}\right)+2 L_{8} \cos \alpha}{\Delta L\left(\sin \theta_{3}-\sin \theta_{1}\right)+2 L_{8} \sin \alpha} \tag{1.29}
\end{equation*}
$$

Comparing the Eqs. (1.26) and (1.29), both the dimensions and the orientations of two linkages are not the same except for the cases where $\theta_{1}=\theta_{3}$ (The rotation angle beyond $2 \pi \mathrm{rad}$ (e.g., $\theta_{1}=\theta_{3}+2 k \pi, k$ is an integer.) in mathematics can not be reached on this parallel robot). The points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{G}_{4} \mathrm{G}_{3}$ can not form a parallelogram linkage. This generic conclusion also testifies that the points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{I}_{2} \mathrm{I}_{1}$ and points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{H}_{2} \mathrm{H}_{1}$ could not form parallelogram linkages in any robot configuration.

1.2.3 Velocity Relationship

The velocity relationship between actuation velocity $\dot{\mathbf{Q}}$ and mobile platform velocity $\dot{\mathbf{X}}$ can be revealed by the Jacobian matrix. The velocity relationship can be derived from two groups of equations, Eqs. (1.1), (1.10), (1.13), (1.15), and Eqs. (1.18), (1.19), (1.21), (1.22). According to the special configuration of this 2T1R (T and R represent translation and rotation respectively) parallel robot, the orientation of each moving linkage can be directly generated from either the acuation input \boldsymbol{Q} or the mobile platform pose \boldsymbol{X}. As a result, the Jacobian matrix obtained from either category of equations contains no unknown passive joint position or rotary angle. However, the latter group of equations is selected for the computation in this section for the sake of simplicity.

Take the differential for Eqs. (1.18), (1.19), (1.21), (1.22) with respect to time and arrange them into the following form,

$$
\begin{equation*}
\mathbf{J}_{Q} \dot{\mathbf{Q}}=\mathbf{J}_{X} \dot{\mathbf{X}} \tag{1.30}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{J}_{Q}=\operatorname{diag}\left(-(\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 7) \sin \theta_{1},(\mathrm{~L} 3+\mathrm{L} 4) \cos \theta_{2},\right. \\
& \left.-(\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 7) \sin \theta_{3},(\mathrm{~L} 3+\mathrm{L} 4) \cos \theta_{4}\right)
\end{aligned}
$$

$$
\mathbf{J}_{X}=\left[\begin{array}{ccc}
-1 & 0 & -L_{8} \sin \alpha \\
0 & -1 & L_{8} \cos \alpha \\
-1 & 0 & L_{8} \sin \alpha \\
0 & -1 & -L_{8} \cos \alpha
\end{array}\right]
$$

The Jacobian matrix of this parallel mechanism is then defined as

$$
\begin{equation*}
\mathbf{J}=\mathbf{J}_{Q}^{-1} \mathbf{J}_{X} \tag{1.31}
\end{equation*}
$$

1.3 Reachable Workspace Determination

The reachable workspace analysis seeks the set of all the qualified positions and orientations the mobile platform can reach. The spatial searching algorithm [21] based on the inverse kinematic model is employed to determine the reachable workspace in this section. The analytical direct kinematic model is not chosen because extra procedures should be supplied since there are only three independent variables in \boldsymbol{Q} (in another word, one variable in \boldsymbol{Q} are dependent on the remaining three variables). The linkage dimensions are provided: $L_{1}=L_{2}=L_{3}=100 \mathrm{~mm}, L_{4}=150 \mathrm{~mm}, L_{5}$ $=L_{6}=0, L_{7}=125 \mathrm{~mm}, L_{8}=80 \mathrm{~mm}$. The coordinates along X direction of two points A_{1} and A_{2} are given as $\mathrm{x}_{\mathrm{A} 1}=0, \mathrm{x}_{\mathrm{A} 2}=500 \mathrm{~mm}$.

The strokes of the active and passive rotary joints are practically mentioned in the ranges of motion of four actuation rotary joints, as provided below

$$
\left\{\begin{array}{l}
0+\sigma<\theta_{1}<\pi-\sigma \tag{1.32}\\
0+\sigma<\theta_{2}<\pi / 2-\sigma \\
0+\sigma<\theta_{3}<\pi-\sigma \\
\pi / 2+\sigma<\theta_{4}<\pi-\sigma
\end{array}\right.
$$

where σ is a manually defined actuation joint angular distance to the unexpected configurations (especially the singularities and their surounding regions)

Equation (1.32) with the absence of σ is the theoretical motion constriants of four driving joints. This parameter could gurantee the avoidance of undesired regions of the mobile platform. σ is equal to $\pi / 36$ in this scenario.

Fig. 1.3 The reachable workspace

On the basis of the robot configuration demonstrated in Fig. 1.1a, additional limitations are provided to enable the proper operation of the whole structure within the workspace.

$$
\left\{\begin{array}{l}
\theta_{1}>\theta_{2} \tag{1.33}\\
\theta_{4}>\theta_{3}
\end{array}\right.
$$

The research workspace of this symmetric parallel mechanism is illustrated in Fig. 1.3. The position distribution of the mobile platform is a symmetrical shape about line $\mathrm{X}=250 \mathrm{~mm}$. When the workspace is far away from the symmetrical line, both the upper and lower limits present downward trends. The Y-direction range in each fixed X coordinate is about 210 mm . From Fig. 1.3b, the orientational capacity of the mobile platform in each position varies. The mobile platform can achieve the largest rotational range $[-1.4835,1.4835]$ rad when point P is close to $(250,450)$ mm .

1.4 Kinematic Performance Evaluations

The kinematic performance measurements are fundamental to evaluate a parallel robot. The local condition index and manipulability measure are the most widely employed performance indices among all performance indices based on the geometric Jacobian matrix. The latter index is selected in this research. The manipulability measure (MM) proposed by Tsuneo Yoshikawa [22, 23] can evaluate the manipulation capacity of the first-order kinematics for a serial or parallel robot. This index is derived as

$$
\begin{equation*}
\text { Manipulability measure }=1 / \sqrt{\operatorname{det}\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}\right)} \tag{1.34}
\end{equation*}
$$

The layouts of the manipulability measure under three conditions are illustrated in Fig. 1.4. The orientation angle is set as 0 in Fig. 1.4a. The manipulability measure plot is symmetric about line $X=250 \mathrm{~mm}$. This index has a downward trend when the X coordinate is far away from the symmetric line. The Y position of point P is equal to 450 mm in Fig. 1.4b. Its distribution is similar to a saddle surface. Given a constant orientational angle, the manipulability measure increases when the X coordinate is away from both the left and right borders. The X position component of point P is predefined as 250 mm in Fig. 1.4c. This layout has a symmetrical line $\alpha=0$. The manipulability measures with a constant Y value are close, while the index increases significantly when the Y value decreases and the orientation angle is a constant value.

Fig. 1.4 The distribution of the Manipulability measure (MM)

1.5 Conclusions

The research presents a novel symmetrical planar parallel architecture based on four parallelogram linkages. This actuation redundant robot could achieve 2 translations and 1 rotation with 4 actuators mounted on the ground. Based on the parallelogram linkages employed in each kinematic limb, all these driven rotary joints (excluding two joints connected to the mobile platform) can be simply calculated from the driving joint variables. This feature significantly simplifies the calculation process of both the inverse and direct kinematic solutions, and provides convenience to derive the Jacobian matrix from both models. The mathematical proof is provided to testify that two linkages $\mathrm{H}_{1} \mathrm{P}_{1}$ and $\mathrm{H}_{2} \mathrm{P}_{2}$ are not always paralell to each other even the usage of four parallelogram linkages in the whole structure. This robot has the potential to be utilized as the planar sorting robot, spraying robot and etc. The future work includes investigating singularity avoidance and experimental testification.

Acknowledgements This research was supported by the University Grants from Columbus State University, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education (2021R1I1A4A01051258) and in part by the research fund of Hanyang University (HY-2023-0340).

References

1. Zhou, Z., Gosselin, C.M.: Analysis and design of a novel compact three-degree-of-freedom parallel robot. J. Mech. Robot. 15(5), 051009 (2023)
2. Ye, W., Chai, X.X., Zhang, K.T.: Kinematic modeling and optimization of a new reconfigurable parallel mechanism. Mech. Mach. Theory 149, 103850 (2020)
3. Luo, X., Xie, F.G., Liu, X.J., Xie, Z.H.: Kinematic calibration of a 5-axis parallel machining robot based on dimensionless error mapping matrix. Robot. Comput. Integr. Manuf. 70, 102115 (2021)
4. Belzile, B., Eskandary, P.K., Angeles, J.: Workspace determination and feedback control of a pick-and-place parallel robot: analysis and experiments. IEEE Robotics Autom. Lett. 5(1), 40-47 (2019)
5. Zhou, M.C., Yu, Q.M., Huang, K., Mahov, S., Eslami, A., Maier, M., Lohmann, C.P., Navab, N., Zapp, D., Knoll, A., Nasseri, M.A.: Towards robotic-assisted subretinal injection: a hybrid parallel-serial robot system design and preliminary evaluation. IEEE Trans. Ind. Electron. 67(8), 6617-6628 (2019)
6. Kim, J., Park, F.C.: Direct kinematic analysis of 3-RS parallel mechanisms. Mech. Mach. Theory 36(10), 1121-1134 (2001)
7. Yang, C.F., Zheng, S.T., Jin, J., Zhu, S.B., Han, J.W.: Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method. J. Cent. South Univ. Technol. 17(6), 1264-1270 (2010)
8. Schreiber, L.T., Gosselin, C.M.: Physical human-robot interaction with a backdrivable (6+ 3)-dof parallel mechanism
9. Zhang, D., Lei, J.H.: Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence approach. Robot. Comput. Integr. Manuf. 27(1), 157-163 (2011)
10. Yang, X., Zhu, L.M., Ni, Y.B., Liu, H.T., Zhu, W.L., Shi, H., Huang, T.: Modified robust dynamic control for a diamond parallel robot. IEEE/ASME Trans. Mechatron. 24(3), 959-968 (2019)
11. Clavel, R.: Device for the movement and positioning of an element in space, US Patent No. 4,976,582 (1990)
12. Bouri, M., Clavel, R.: The linear delta: Developments and applications. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1-8. VDE (2010)
13. Liu, Y., Kong, M., Wan, N., Ben-Tzvi, P.: A geometric approach to obtain the closed-form forward kinematics of h4 parallel robot. J. Mech. Robot. 10(5), 051013 (2018)
14. Tsai, L.W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)
15. Kang, L., Oh, S.M., Kim, W.K., Yi, B.Y.: Design of a new gravity balanced parallel mechanism with Schönflies motion. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(17), 3111-3134 (2016):
16. Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, P.: Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans. Robot. 25(2), 213-224 (2009)
17. Chablat, D., Rolland, L.: Design of mechanisms with scissor linear joints for swept volume reduction. In The 4th Joint International Conference on Multibody System Dynamics (2016)
18. Yang, Y., Peng, Y., Pu, H.Y., Chen, H.J., Ding, X.L., Chirikjian, G.S., Lyu, S.N.: Deployable parallel lower-mobility manipulators with scissor-like elements. Mech. Mach. Theory 135, 226-250 (2019)
19. Gosselin, C.M., Schreiber, L.T.: Redundancy in parallel mechanisms: a review. Appl. Mech. Rev. 70(1), 010802 (2018)
20. Luces, M., Mills, J.K., Benhabib, B.: A review of redundant parallel kinematic mechanisms. J. Intell. Robot. Syst. 86, 175-198 (2017)
21. Gosselin, C.M., Schreiber, L.T.: Kinematically redundant spatial parallel mechanisms for singularity avoidance and large orientational workspace. IEEE Trans. Robot. 32(2), 286-300 (2016)
22. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3-9 (1985)
23. Cardou, P., Bouchard, S., Gosselin, C.M.: Kinematic-sensitivity indices for dimensionally nonhomogeneous Jacobian matrices. IEEE Trans. Robot. 26(1), 166-173 (2010)

Chapter 2
 Accelerating Robotics Test and Evaluation with a Streamlined Simulation Process

Vikram Adipudi, Kevin Carey, Andre Harrison, Jeffrey W. Herrmann, Craig Lawrence, James Michaelis, and Adam Porter

Abstract

Simulation is a popular approach for testing and evaluating robotic systems, but it is also a challenge due to the complexity of the autonomy stack (the software that runs the robot) and its interactions with the simulation software. This paper describes software tools that streamline the process of creating and running simulation models with unmanned ground vehicles that are using the ARL ground autonomy stack. Using these tools simplifies the tasks that are needed to conduct a simulation study by employing a map-based user interface, providing a checklist for selecting the topics that should be recorded, and automatically iterating over different combinations of configurations and maps. The streamlined process can accelerate the development of safe, reliable robotic systems.

[^1] W911NF2120076.

[^2]
[^0]: Q. Zou

 Robotics Engineering, Columbus State University, Columbus, GA 31907, USA
 S. Zhang

 Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
 Y. Shi • B.-J. Yi (\boxtimes)

 School of Electrical Engineering, Hanyang University, Ansan 15588, Korea
 e-mail: bj@hanyang.ac.kr

[^1]: The research described in this paper was supported by Army Cooperative Agreement

[^2]: V. Adipudi • K. Carey • J. W. Herrmann (\boxtimes)

 Institute for Systems Research, University of Maryland, College Park, MD, USA
 e-mail: jwh2@umd.edu
 V. Adipudi
 e-mail: vadipudi@umd.edu
 K. Carey
 e-mail: kcarey13@umd.edu
 A. Harrison • J. Michaelis

 DEVCOM Army Research Laboratory, Adelphi, MD, USA
 e-mail: andre.v.harrison2.civ@army.mil
 J. Michaelis
 e-mail: james.r.michaelis2.civ@army.mil
 C. Lawrence

 ARLIS, University of Maryland, College Park, MD, USA
 e-mail: clawren4@umd.edu
 A. Porter

 Department of Computer Science, University of Maryland, College Park, MD, USA
 e-mail: aporter@umd.edu

