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Chapter 1 
Introduction 

This book is the result of our experience in the field of short-term forecasting 
using “high-resolution” data sets generated in the context of industrial and scientific 
applications. We illustrate the basic theory and practical utility of several up-to-
date statistical methods, with particular emphasis on their functional data analysis 
aspect. The book should be useful beyond the electrical context because it discusses 
methods and models that extend to other applications, such as forecasting of 
seasonal phenomena, possibly influenced by external factors (e.g., call centers 
activity, public hot water supply, airport passenger traffic, etc.). 

The use of statistical and machine learning techniques to solve real-life problems 
has been undergoing tremendous change in the last few decades. More and more 
branches of science and engineering require modern approaches merging statistics, 
machine learning, and software tools, especially in the context of forecasting, expert 
systems and Big Data. The main aim of the present work is introducing a set of 
statistical and machine learning tools, and showing how they can be used effectively 
for applied data analysis in the context of electricity load forecasting. While some of 
the topics addressed in the manuscript are rather classical, our presentation follows 
an unconventional approach, which has been inspired by our research and applied 
work on forecasting electricity demand in an industrial setting. Indeed, we aim at 
guiding the reader through a number of modern forecasting ideas, from an industrial 
and applied perspective, centered around a collection of case studies. Several of the 
examples treated in the book are based on sizeable high-resolution data sets, thus 
giving a realistic account of the managerial, descriptive, and predictive challenges 
faced by real-world statisticians and engineers. 

This work is the result of the long-lasting friendship and scientific collaboration 
of the five authors with Électricité de France (EDF); hence we consider mostly 
problems and data sets related to the electricity industry. However, the workflows 
and tools presented in this book are applicable more broadly and reflect our views 
of what the practice of functional data analysis for high-dimensional data should 
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be, with particular focus on predictive analytics and the presence of external 
or exogenous factors. Hence, in the following treatment we aim at striking a 
balance between illustrating how to use certain statistical tools and R packages to 
solve specific applied problems, and providing the theoretical and methodological 
background that justifies and motivates their use. 

Being based on the authors’ collaboration on load forecasting with EDF, this 
book is biased toward the statistical models and methods that they have found 
most useful in this context. For example, generalized additive models (GAMs) 
have been used extensively in their EDF-related work; hence several chapters of 
this book feature such models. In contrast, classical time series methods, such as 
autoregressive models, are covered only marginally. The reason is that, in their load 
forecasting work, the authors have relied more heavily on models that are able to 
flexibly capture the effect of exogenous variables, such as GAMs, than on time 
series models designed to more rigorously handle the time series aspect of the 
data. Further, the use of time series models for load forecasting has already been 
covered by Weron (2007), a reference that the interested reader could use to fill the 
gaps in the present book. The selection of methods and models presented here was 
also dictated by the industry-specific need to use models characterized by a high 
degree of interpretability. In particular, to be trusted for use in operations, a model 
must produce a load forecast that can be (at least approximately) decomposed into 
separate effects (of, e.g., temperature, seasonality, etc.). Hence, hard-to-interpret 
models, such as deep neural networks, are not covered in this book. 

The book is suitable for several audiences. As should be clear from its title, 
it is intended for practitioners, researchers, and post-graduate students working 
on electricity load forecasting. More broadly, it can be of interest to applied 
academics or scientists (e.g., biostatisticians, econometricians, and quantitative 
scientists in general) wanting to learn about cutting-edge forecasting tools, but 
not necessarily interested in the electricity industry. Another potential audience 
consists of statistically oriented scientists, having already a working knowledge 
of traditional forecasting tools for industrial applications, and wanting to explore 
more flexible semi-parametric functional data analysis models. The most advanced 
material contained in this book should be of interest even to experienced data 
science professionals. 

The book assumes that the reader is familiar with standard statistical concepts 
such as random variables, probability density functions, and expected values. It also 
assumes that the reader has some minimal statistical modelling experience. Little or 
no prior knowledge of the electricity industry is assumed. Some topics covered in the 
book are more advanced than others and might not be easily accessible to all readers. 
An example is Chap. 6 on aggregation of experts, which should be considered an 
advanced topic. Conversely, the book contains several chapters on GAMs which, if 
read in the right order, should be accessible to readers with little background on such 
models. In particular, Chap. 2 introduces this model class, which is then extended 
in Chaps. 3 and 7. Having covered the material in these chapters, the reader should 
be able to get the most out of the case studies covered in Chaps. 10 and 12.
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1.1 Industrial Motivation 

Forecasts are of fundamental importance for energy markets. To guaranty the 
equilibrium between consumption and production at any time on the grid, accurate 
electricity load forecasting at different horizons are needed. Load forecasting is 
usually performed at different horizons of time and different spatial resolutions. 
Horizons of forecasts range from intraday (10 minutes to 24 hours ahead) to daily, 
weekly, monthly, or even a few years in advance, whereas spatial resolution can 
go from an individual house, substations on the grid, regional, or national level. 
Industrial needs cover production planning, demand response, grid management, 
electricity trading, risk management, optimization of production units maintenance, 
and commercialization. Due to the energy transition and the development of IT 
technologies, energy systems face many challenges impacting forecasting activities. 

At an aggregated level, salient features presented in Sect. 1.2.2 are well known 
but can face some changes due to the evolution of socio-economic conditions, 
climate variations, or energy market regulation. The consumption habits constantly 
evolve due to technological progress and energy transition: Low-energy bulbs, air 
conditioners, TVs, smartphones, better insulated buildings, electric cars are all 
examples of new usages which affect or will affect electricity demand. Another 
recent example of social changes is the increase of people working from home 
during the COVID 19 lockdown. Economic development also plays an important 
role regarding the consumption of energy-intensive industrial producers (chemistry, 
paper industry, steel industry, etc.). On the regulatory side, the further opening of 
the energy market which occurred in France in 2004 for professional consumers 
and in 2007 for all consumers entails a need for electricity provider to forecast the 
consumption of time-varying portfolios of customers. 

Electricity production is progressively moving to more intermittency and com-
plexity with the increase of renewable energy and the development of small 
distributed production units such as photovoltaic panels or wind farms. To maintain 
the electricity quality, energy stakeholders are developing smart grids, the next-
generation power grid including advance communication networks and associated 
optimization and forecasting tools. A key component of the smart grids is smart 
meters. They allow two-sided communication with the customers, real-time mea-
surement of consumption, and a large scope of demand side management services. 
These new technologies structure intelligent networks, with more local and high-
resolution information making available in real time individual load curves or 
geographical aggregate. This results into new opportunities such as local optimiza-
tion of the grid, demand side management, and smart control of storage devices. 

Exploiting the smart grid efficiently requires advanced data analytics and opti-
mization techniques to improve forecasting, unit commitment, and load planning at 
different geographical scales. Massive data sets are and will be produced: energy 
consumption measured by smart meters at a high-frequency (a few minutes mainly) 
data from the grid management (e.g., Phasor Measurement Units); data from energy 
markets (prices and bidding, TSOs and DSOs data like balancing and capacity); data
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from production units and equipment for their maintenance and control (sensors, 
periodic measures, so on). A lot of efforts are made by utilities to develop data 
lakes and IT structures to gather and make these data available for their business 
units in real time. Designing new algorithms to analyze and process these data at 
scale is a key activity and a real competitive advantage. In particular, due to the lack 
of stationarity, greater volatility, and the need to consider more flexible, adaptive 
strategies motivate the need to develop and apply new statistical learning methods. 
As they are acting in the real world and used to make critical decisions, these 
methods and models need to be at the same time more and automatic and adaptive 
to preserve their accuracy but also robustness, trustworthiness, and interpretability. 

1.2 Data Sets 

Electrical load forecasting strategies are the result of quite different approaches 
coming from economics, statistics, engineering, and computer science. In general, 
we can state the objective as the most early and accurate anticipation of the 
electrical system needs at some aggregation and resolution levels. One may be 
interested in both pointwise predictions (e.g., peak, median, or mean loads), the 
whole distribution, or at least some prediction interval. In any case, the main inputs 
for the prediction strategies are historical records of electricity demand as well as 
other data describing factors that drive the electricity demand. We highlight one data 
set that is the running data set, the most frequently used. In addition, we complete 
with other real data sets. 

1.2.1 General Considerations 

Electricity data sets we will manipulate in this chapter are composed of two kind of 
information: time series and static features. In a lot of machine learning applications 
to time series, observations are considered as independent and identically distributed 
(i.i.d.) observations, but we can deal with them in many ways as detailed bellow. 

Time Series Data In the time series category we include electricity consumption 
itself but also related time series like meteorological observations/forecasts, calen-
dar information, or economical indicators (other time series data related to other 
kinds of consumption like gas consumption, water consumption, waste production, 
phone communications, etc., could be considered as interesting information to 
forecast or model the electricity load, but we will not consider it in this book). 
Electricity load could be measured at different time and spatial scales. The time 
scale is the frequency at which the observations are measured. Most of the electricity 
data sets consist of half-hourly measurement (mean of electricity load during 30 
minutes), but recent works in the field of nonintrusive load monitoring consider
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high-frequency data at the under second time frequency (see, e.g., the UK Dale data 
presented in Kelly and Knottenbelt (2015)). There are so many alternative ways to 
deal with these time series data. 

Functional Data The above time–frequency measurements of electricity load may 
lead to two different views for handling the daily aspect of such time series data, 
a longitudinal one (LDA) and a functional data analysis (FDA) approach. Mea-
surements treated in the FDA literature typically are recorded by high-frequency 
automatic sensing equipment, whereas those treated in the LDA literature are more 
typically sparsely, and often irregularly, spaced measurements. Despite the differ-
ences between these two aspects, there are many common aims in their objectives, 
many of these objectives entailing smoothing data, either explicitly or implicitly, 
characterizing average or “typical” time trends, and assessing the relationships of 
shapes of daily loads to covariates. Commonly, time series data are treated as 
multivariate data because they are given as a finite discrete time series. In the LDA 
literature, smoothers and extrapolators typically arise from stochastic models, in 
particular from classical time series models, and the data analysis is concerned with 
daily time series in the form of random vectors. This usual multivariate approach 
completely ignores important information about the smooth functional behavior of 
the generating process that underpins the data. The basic idea behind FDA is to 
express discrete observations arising from time series in the form of a function that 
represents the entire measured function as a single observation, using smoothing and 
interpolation procedures, and then to draw modelling and/or prediction information 
from a collection of functional data by applying appropriate statistical concepts from 
data analysis. Therefore, functional data analysis (FDA) goes one big step further 
than LDA, focusing on data that are infinite-dimensional, such as curves or shapes. 
However, proven methods of longitudinal analysis form the backbone for some of 
the prominent techniques of FDA. Areas that FDA draws upon besides longitudinal 
analysis include nonparametric regression, functional analysis (linear operators in 
Hilbert space), and properties of square integrable stochastic processes. Several 
chapters in this book examine the feasibility of suitable nonparametric functional 
models allowing to handle various configurations of observed data. 

Spatial Data Regarding the spatial scale there are two main directions we will 
look at. One way is to consider individual data coming from the development of 
smart meters, data at the household spatial resolution is thus available and can be 
viewed as the basic unit we will manipulate on many kinds of problems: clustering, 
bottom-up forecasting, and peak forecasting. Sub-household data, e.g., by usage, 
can be considered in the field of nonintrusive load monitoring, but we will not deal 
with such a low level of aggregation in this book. An other way is to consider 
data from the grid; thus spatial resolution is constrained by the structure of the 
network. This is the case of substation data we will consider here in the GEFCOM 
data set. Meteorological data used in forecasting model design consists mainly of 
observed features like temperature, cloud cover, wind, humidity, and solar radiation 
at some meteorological stations in an area. Association with load data raises the 
issue of time and spatial correspondence. Time resolution of meteorological data is
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often not the same as electricity load one leading to interpolation questions. Space 
correspondence could be a complex problem depending on whether we have access 
to the localization of electricity data (location of household for the smart meter data, 
end users for grid data). 

Static Data Other information is often provided with time series electricity data. 
For smart meters data this could be household characteristics such as the type of 
heating, tariff, social class, or location. For substation data this could be socio-
economic indicators from census, or static technical data such as the characteristics 
of the lines, and the number and types of customers connected to a node. 

1.2.2 Salient Features of Electricity Demand 

Among other, common salient features of the electricity demand are: a long-
term trend, describing population increase and intensification of electricity usages; 
annual cycles, due to socio-economic and meteorological seasonal patterns; and 
exogenous factors, as for instance the dependence against temperature—explained 
by cooling and heating systems. A more detailed account of these factors can be 
found in Cugliari and Poggi (2020). Notice that these factors and not static ones 
and so may evolve. Load varies across different hours of the day and different days 
of the week, thus making it a highly time-varying quantity. Additional seasonal 
patterns, which accommodate the evolution of winter daily profiles to those during 
summer, add more complexity to the time series. Effects of weather conditions, in 
particular temperature, complicate matters further. Thus, finding reliable models to 
forecast electricity load is a challenging task. Several chapters in this book aimed at 
developing appropriate models for electricity load forecasting. 

1.2.3 Irish Individual Electrical Demand Data 

1.2.3.1 Data Presentation 

This data set was published by the Commission for Energy Regulation (CER) 
Commission for Energy Regulation (2011) as part of the Smart Metering Project, 
which started in 2007. The main goal of the project was assessing the performance 
of smart meters, analyzing their impact on customers’ consumption and quantifying 
the related costs. The full data set is composed of 4623 of individual demand time 
series, each containing 48 half-hourly observations per day and covering the period 
from July 2009 to December 2010. The data set has been studied in a number 
of papers, for example, Quilumba et al. (2015) and Wang et al. (2018a) use  the  
individual loads to improve the forecast of the aggregate demand, while Capezza 
et al. (2020) focus on forecasting the individual time series directly.
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Fig. 1.1 Characteristics of the aggregated load of the 2672 Irish residential customers. See the 
main text for details 

The full data set contains data from both residential and commercial customers. 
In this book we work only on the data from 2672 households. For each household 
the data set contains information about the customer’s tariff as well as survey data 
specifying, among other variables: the type of heating used, whether the windows 
are double-glazed, the number of appliances, and the year of construction. The 
location of each client is unknown to preserve privacy. 

Figure 1.1 shows the characteristics of the aggregated demand of all the 
customers. The top-left plot shows the daily profile of the mean consumption for 
each day of the week, the top-right and bottom-left the consumption over the year at 
an half-hourly and daily resolution, and the bottom-right two weeks of consumption 
in the winter and in the summer. We clearly see the three calendar patterns of the 
load: daily, weekly, and yearly. 

Figure 1.2 shows that the signal-to-noise ratio of the demand data predictive 
decreases with the level of granularity. In particular, Plots 1.2a to d show that, 
while the daily profile is smooth when demand is averaged across the customers, 
disaggregating the demand leads to rough, less predictable profiles. The low 
signal-to-noise ratio characterizing individual household demand might suggest an 
individual demand modelling strategy based on predicting the data from several 
customers using a single model, to reduce the noise. However, Plots 1.2e and f show 
that the behavior of customers is highly heterogeneous; hence naïve aggregation 
would induce much bias. See Capezza et al. (2020) for a discussion of the challenges 
of modelling individual demand trajectories.
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Fig. 1.2 Plots (a–d) show the daily profiles of the demand averaged over increasingly small groups 
of customers from the CER trial (Commission for Energy Regulation 2011). Plots (e) and  (f) show  
the average daily and yearly demand profiles of three customers. The blue profile in Plot (f) has  
been vertically shifted for visibility 

1.2.3.2 Data Processing 

The data contains a number of bad observations, mainly missing or duplicated 
values, which need to be dealt with. We simply remove them from the data set. 
As the first 6 months of data correspond to a control period, after which the 
customers are subjected to incentives aimed at modifying their consumption pattern, 
we keep only data from year 2010. We integrate the demand data with hourly 
temperatures, interpolated at the half-hourly resolution, from the National Centers 
for Environmental Information (NCEI). The temperature data was measured at ten 
different locations in Ireland. We built a single temperature variable by averaging 
these temperatures with uniform weights. 

Modelling the individual or aggregate demand requires dealing with bank 
holidays and other special days, for which a forecast could be produced only if 
we have had several years of data (i.e., to estimate the Christmas effect we would 
need several observed Christmases). In particular, modellers must take into account 
days of the year equal to 1, 2 (first two days of the year), 87 (Sunday before Easter), 
94, 95, 96 (Easter and two following days), 120, 121, 122 (May Day and two days 
before), 143, 144, 145 (Pentecost Monday), 304 (Halloween), 358, 359, 360 (24, 
25, and 26 December), and 365 (New Year’s Eve). 

Depending on the model being used, modelling individual demand data might 
require excluding customers for which the demand data is anomalous. For example, 
Capezza et al. (2020) exclude customers for which the 99-th quantile of the 
electricity demand over the entire year is less than 0.4kWh. The aim is removing
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customers whose demand is near zero for most of the year. They also exclude 
all customers for which the vector of differences of consecutive demand values 
contained more than 2500 zeros, over the entire year. These are customers whose 
demand is constant for long period. The two filtering criteria just mentioned lead to 
a data set of 2565 customers. 

1.2.3.3 Getting the Data 

The full data set, containing demand data from both individual and commercial 
customers, can be obtained from the Commission for Energy Regulation 
website (https://www.ucd.ie/issda/data/commissionforenergyregulationcer/). A 
preprocessed data set, covering residential customers only, is contained in the 
electBook R package and can be loaded by typing: 

library(electBook) 
data(Irish) 

Irish is a list with three elements. In particular, Irish$indCons is a matrix 
where each row is the demand for an individual household over one year, while 
Irish$survey is a data.frame containing the survey information: 

head(Irish$survey) 

## ID meanDem SOCIALCLASS OWNERSHIP BUILT.YEAR HEAT.HOME 

## 1 I1002 0.2081436 DE O 1975 Other 

## 2 I1003 0.6215765 C1 O 2004 Other 

## 3 I1004 0.9617103 C1 O 1987 Other 

## 4 I1005 0.6402214 C1 O 1930 Other 

## 5 I1013 0.2414805 C2 O 2003 Other 

## 6 I1015 0.4631413 DE R 1989 Elec 

## HEAT.WATER WINDOWS.doubleglazed HOME.APPLIANCE..White.goods. Code 

## 1 Elec All 1 1 

## 2 Other All 5 1 

## 3 Elec All 5 1 

## 4 Other All 4 1 

## 5 Elec All 3 1 

## 6 Other All 2 1 

## ResTariffallocation ResStimulusallocation 

## 1 E E 

## 2 A 4 

## 3 A 2 

## 4 D 4 

## 5 D 4 

## 6 C 3 

Here ID is the customer identifier, meanDem is the demand of each customer, 
while the definition of other variables can be found at the link provided above. The 
entry Irish$extra is a data.frame containing meteorological and calendar 
information:

https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
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head(Irish$extra) 

## time toy dow holy tod temp dateTime 
## 1 1 0.9863014 Wed FALSE 0 4 2009-12-30 00:00:00 
## 2 2 0.9863014 Wed FALSE 1 4 2009-12-30 00:30:00 
## 3 3 0.9863014 Wed FALSE 2 4 2009-12-30 01:00:00 
## 4 4 0.9863014 Wed FALSE 3 4 2009-12-30 01:30:00 
## 5 5 0.9863014 Wed FALSE 4 4 2009-12-30 02:00:00 
## 6 6 0.9863014 Wed FALSE 5 4 2009-12-30 02:30:00 

In particular: 

• time is aprogressive time counter. 
• toy is the time of year from 0 (Jan 1) to 1 (Dec 31). 
• dow is a factor variable indicating the day of the week. 
• holy is a binary variable indicating holidays. 
• tod is the time of day, ranging from 0 to 47, where 0 indicates the period from 

00:00 to 00:30, 1 the period from 00:30 to 01:00, and so on. 
• temp is the external temperature in degrees Celsius. 

The electBook data frame also contains the IrishAgg data frame, where 
the individual consumption trajectories have to be aggregated to produce a single 
trajectory: 

data(IrishAgg) 
head(IrishAgg) 

## time toy dow holy tod temp dateTime dem 
## 1 1 0.9863014 Wed FALSE 0 4 2009-12-30 00:00:00 1674.398 
## 2 2 0.9863014 Wed FALSE 1 4 2009-12-30 00:30:00 1404.605 
## 3 3 0.9863014 Wed FALSE 2 4 2009-12-30 01:00:00 1180.766 
## 4 4 0.9863014 Wed FALSE 3 4 2009-12-30 01:30:00 1022.626 
## 5 5 0.9863014 Wed FALSE 4 4 2009-12-30 02:00:00 877.018 
## 6 6 0.9863014 Wed FALSE 5 4 2009-12-30 02:30:00 775.936 
## dem48 temp95 
## 1 NA 4 
## 2 NA 4 
## 3 NA 4 
## 4 NA 4 
## 5 NA 4 
## 6 NA 4 

Here the new variables are: 

• dem48 is the demand in the same half-hourly period of the previous day. 
• temp95 is an exponential smooth of temp, that is, temp95[i] 

= a*temp[i] + (1-a)*temp95[i-1] with a = 0.05.
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1.2.4 French National Demand Data 

1.2.4.1 Data Presentation 

This data set contains aggregate French electricity demand data, at an half-hourly 
resolution and covering the period from the 1st of January 2012 to the 18th January 
2021. The raw demand data was obtained from https://www.rte-france.com/fr/ 
eco2mix/eco2mix. At the time of writing, the demand data corresponding to 2020 
is provisional. 

Figure 1.3 shows some of the characteristics of the data. Plot 1.3a shows that the 
long-term demand trend is negative. This is because the demand contained in the 
data set is net of embedded production from, e.g., solar panels and wind turbines. 
That is, net French demand is decreasing because embedded generation is increasing 
faster than gross demand. The curves in plot 1.3b show the daily demand profiles for 
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Fig. 1.3 The plots show: (a) demand vs. time and the long-term trend; (b) the daily demand 
profiles for each day of the week, the dashed lines are the profiles corresponding to the two national 
lockdowns; (c) seasonal demand dynamics for each year; and (d) temperature effect for each day 
of the week. See the main text for more details

https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
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each day of the week. The consumption is lower during the night than during the day, 
starting increasing around instant 11 (5h30 a.m.) during week days and instant 15 
(7h30 a.m.) on Sunday. Two peaks occur around 12h and 20h30 at lunch and dinner 
times. Another peak at the end of the day is attributable to the water heaters working 
during the off-peak tariff period. Unsurprisingly, demand is lower on weekends with 
a less pronounced morning ramp-up, as people wake up later. The dashed lines are 
the daily profiles during the two national lockdowns that took place in 2020 (17th 
March to 11th of May and 30th of October to 11th of December). As expected the 
demand is lower during these periods, especially during peak hours. Plot 1.3d shows  
how demand varies with temperatures, for each day of the week. The shape of the 
temperature effect is similar across the week days, the cooling effect (.t > 17C◦) 
appearing to be stronger on weekend than during the week. Figure 1.3c shows that 
demand is higher during the winter than during the summer (time of year is 0 on 
January 1 and 1 on December 31). Between-years discrepancies in yearly demand 
profiles are substantial, especially in the winter. The drop in demand corresponding 
to the first national lockdown is clearly visible. 

1.2.4.2 Data Processing 

We integrate the demand data with calendar information such as weekdays, time 
of day, bank holidays, and time of year. We also add temperature data from Metéo 
France (https://donneespubliques.meteofrance.fr/). The temperature data was mea-
sured in the proximity of several large French cities. We built a single temperature 
variable by averaging these temperatures with weights that are proportional to the 
population of each city. 

1.2.4.3 Getting the Data 

This data set is available on the French National Grid website (https://www.rte-
france.com/fr/eco2mix/eco2mix). While we did not include it in the electBook 
R package due to the lack of a redistribution license, the R code we used to process 
the data is available at https://github.com/cugliari/ML4ELF/tree/master/website. 

1.2.5 US Regional Demand Data from the GEFCOM 2014 
Competition 

1.2.5.1 Data Presentation 

The Global Energy Forecasting Competition 2014 (GEFCom2014) was a proba-
bilistic energy forecasting competition comprising of four tracks: load, price, wind, 
and solar production forecasting. Here we describe data from the load forecasting

https://donneespubliques.meteofrance.fr/
https://donneespubliques.meteofrance.fr/
https://donneespubliques.meteofrance.fr/
https://donneespubliques.meteofrance.fr/
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://www.rte-france.com/fr/eco2mix/eco2mix
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
https://github.com/cugliari/ML4ELF/tree/master/website
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Fig. 1.4 The plots show: (a) demand vs. time and the long-term trend; (b) the daily demand 
profiles for each day of the week; (c) seasonal demand dynamic for each year; and (d) temperature 
effect for each day of the week. See the main text for more details 

track, where the aim was to forecast several conditional quantiles of the hourly 
loads for a (undisclosed) US utility. The organizers provided hourly historical load 
and weather data, and the participants were allowed to use calendar information on 
public US federal holidays. The data discussed here covers the period from the 1st 
of January 2005 to the 1st of December 2011. 

Figure 1.4a shows that the long-term demand trend is positive up to around the 
beginning of 2011 and then turns negative. Plot 1.4b shows the daily demand profiles 
for each day of the week. As for the Irish data, the morning peak is delayed on 
weekends, but it reaches higher values, while the evening peak is flatter than that on 
working days. Plot 1.4d shows that the relation between temperature and demand 
has a similar shape across different days of the week and that the heating effect is 
as strong as the cooling effect. Figure 1.4c shows the presence of a winter and a 
summer demand peak. These plots suggest that the data comes from a residential 
area, in a region characterized by cold winters and hot summers.


