

Hamad M. Alkhoori

Concise Introduction to Electromagnetic Fields

Synthesis Lectures on Electromagnetics

Series Editor

Akhlesh Lakhtakia, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA This series of short books focuses on a wide array of applications on electromagnetics, particularly in relation to design and interactions with advanced materials and devices. Topics include cutting-edge applications in bioengineering and biomaterials, optics, nanotechnology, and metamaterials. Hamad M. Alkhoori

Concise Introduction to Electromagnetic Fields

Hamad M. Alkhoori Department of Electrical and Communication Engineering United Arab Emirates University Al Ain, Abu Dhabi, UAE

ISSN 2691-5448 ISSN 2691-5456 (electronic) Synthesis Lectures on Electromagnetics ISBN 978-3-031-60330-3 ISBN 978-3-031-60331-0 (eBook) https://doi.org/10.1007/978-3-031-60331-0

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

As the title suggests, this book serves as an introductory book to the subject of electromagnetics. Moreover, the word 'concise' from the book's title stresses that the book covers the fundamental topics a reader needs to acquire before consulting advanced-level references on electromagnetics. The book is intended to be used in an undergraduate-level course, whether in physics curriculum, or in electrical engineering curriculum. It can, as well, be used as a reference for researchers who wish to solidify their understanding of the subject.

Like any phenomenon being described by governing equations, electromagnetic phenomenon is described by Maxwell equations. In many undergraduate-level textbooks of electromagnetics, Maxwell equations are derived starting from Coulomb law, Biot-Savart law, Faraday law, and, lastly, Maxwell's correction to Ampere law. Consequently, the reader has to be exposed to the subjects of electrostatics and magnetostatics before discussing full-version electromagnetics in which time character emerges. While this approach is perfectly fine, I adopt a different approach in this book, whereby the fullversion electromagnetics is introduced first. Then, electrostatics and magnetostatics can be regarded as special cases. It is to be mentioned that this approach is somewhat similar, in terms of the sequence, at least, to the approach adopted by Landau and Lifshitz, in which Maxwell equations are introduced from relativistic principles. However, due to the complexity of such an approach to be taught at an undergraduate-level course, Maxwell equations in this book are postulated in the beginning.

Electromagnetics can be divided into two regimes. These are (i) time-dependent regime and (ii) time-independent regime. This book is divided into four parts. Part I is about some required mathematical background, and an introduction to electromagnetics. Part II is about time-independent electromagnetics, namely, electrostatics and magnetostatics. Then, Part III discusses time-dependent electromagnetics in source-free regions. Finally, Part IV is about time-dependent electromagnetics in source regions. It should be emphasized that the division into source-free and source regions is made for the sake of facilitating the presentation. Once the concepts from source-free-region problems are grasped, transition to source-region problems becomes smoother.

In terms of chapters, this book comprises 14 chapters distributed in the four aforementioned parts. Chapter 1 presents a brief revision on vector algebra and vector calculus. Chapter 2 introduces Maxwell equations and divides the theory into two regimes. Chapter 3 is about electrostatics in which a static charge distribution gives rise to an electric field. Currents (i.e., moving charges) is discussed in Chap. 4, followed by magnetostatics, in which a current distribution gives rise to a magnetic field, in Chap. 5. Then, Chap. 6 is about the transition from time-independent regime to time-dependent regime. Chapter 7 discusses the propagation of electromagnetic fields in an unbounded, sourcefree region. This is followed by the propagation in the presence of an infinite-extent obstacle in Chap. 8. Chapters 9 and 10 treat the problem of propagation of electromagnetic fields in guided structures. Transition to source regions, namely, radiation problem, is discussed in Chap. 11. Chapter 12 discusses radiators, well known as antennas, and their properties. Chapter 13 discusses simple antenna structures. Finally, Chap. 14 briefly discusses the analysis of group of antennas, well known as antenna arrays.

Since the usage of computer programs to validate analytical procedures, to tackle problems not amendable to analytical solutions, or at least to gain a better visualization has significantly increased, some chapters are supplied with an appendix containing useful *Mathematica* computer programs. These can be used for the purpose of validating the solutions of end-of-chapter problems, validating the solutions of problems from other textbooks, or even validating the solutions of problems a reader can propose and solve. Furthermore, these computer programs can be used by researchers to produce various forms of plots (e.g., two-dimensional and three-dimensional plots for scalars, two-dimensional and three-dimensional streamline plots for vectors, etc.).

The reader is assumed to have some background in standard topics taught in junior undergraduate-level courses, or even in high school, such as differentiation and integration. Also, an exposure to elementary physics courses might be beneficial, though not necessary.

Al Ain, UAE

Hamad M. Alkhoori

Contents

Part I Introduction to Essential Mathematics and Electromagnetics

1	Vector Algebra and Vector Calculus				
	1.1	Vector Algebra	3		
		1.1.1 Definition and Expansion	3		
		1.1.2 Vector Addition and Subtraction	4		
		1.1.3 The Dot Product	4		
		1.1.4 The Cross Product	6		
	1.2	Coordinate Systems and Transformations	7		
		1.2.1 Cartesian Coordinates	7		
		1.2.2 Cylindrical Coordinates	8		
		1.2.3 Spherical coordinates	11		
	1.3	Vector Calculus	17		
		1.3.1 Differential Elements	17		
		1.3.2 Integral Calculus	19		
		1.3.3 Differential Calculus	24		
		1.3.4 Classification of Vectors	28		
	1.4	Vector Calculus in a General Curvilinear Coordinate System	29		
	1.5	Time-Harmonic Vectors			
	Appendix				
2	Maxwell Equations and the Structure of Electromagnetics				
	2.1	Linear Systems and the Green Function			
	2.2	Electromagnetics	39		
		2.2.1 Maxwell Equations	39		
		2.2.2 Maxwell Equations in Isotropic Dielectric-Magnetic			
		Medium	41		

		2.2.3	Input/Output Relation	43	
	2.3	Special	Cases	44	
	Ref	erences		45	
Par	t II	Time-Inc	lependent Electromagnetics		
3	Ele	ctrostatics	F	49	
	3.1	Electric	Field Computation	49	
		3.1.1	Solution of Maxwell Equations	49	
		3.1.2	Gauss Law	54	
		3.1.3	The Method of Potentials	57	
	3.2	Electro	static Energy	60	
		3.2.1	Energy in Free Space	60	
		3.2.2	Energy in a General Medium	63	
	3.3	Electric	Dipole	64	
	3.4	Electro	static Perturbation by a Dielectric Object	66	
		3.4.1	A Dielectric Object	66	
		3.4.2	Interaction Between Electrostatic Field and a Dielectric		
			Object	69	
	3.5	Bounda	rry Conditions	70	
	3.6	Conduc	tors and Capacitance	73	
		3.6.1	Capacitance	74	
	App	endix	* 	78	
	Ref	erences		78	
4	Cm	ronte and	Besistance	81	
T	Cu 4 1			81	
	4.1	The Co	ntinuity Fauation	83	
	13	Conduc	Conduction Current		
	4.5 A A	Resista	Pagistance		
	Pof				
	KU	ciclices		00	
5	Ma	gnetostati	cs	91	
	5.1	Magnet	tic Field Computation	91	
		5.1.1	Solution of Maxwell Equations	91	
		5.1.2	Ampere Law	96	
		5.1.3	The Method of Potentials	98	
	5.2	Magnet	tic Dipoles	99	
	5.3	Magnet	tostatic Perturbation by a Magnetic Object	101	
		5.3.1	A Magnetic Object	101	
		5.3.2	Interaction Between Magnetostatic Field and a Magnetic		
			Object	103	

		5.3.3	A Nonlinear Magnetic Medium	103			
	5.4	Bound	ary Conditions	104			
	5.5	Magne	tic Flux	106			
	5.6	Magne	tic Energy	106			
	5.7	Inducta	ance and Magnetic Circuits	107			
		5.7.1	Mutual Inductance	107			
		5.7.2	Self Inductance	108			
		5.7.3	Magnetic Circuits	110			
	App	endix	-	112			
	Refe	rences .		112			
Pa	rt III	Time-D	Dependent Electromagnetics				
6	Qua	si-static	and Time-Dependent Fields	115			
	6.1	Quasi	Statics	115			
		6.1.1	Quasi Magnetostatics	116			
	6.2	Electro	omagnetics and the Poynting Theorem	118			
		6.2.1	Poynting Theorem	118			
		6.2.2	Average and Complex Poynting Vectors	120			
	Refe	rences .		122			
7	Plan	Plane-Wave Propagation					
	7.1	Source	-Free Maxwell Equations	124			
		7.1.1	The Homogeneous Wave Equation	124			
		7.1.2	Solution of the Scalar Wave Equation	125			
	7.2	Solutio	on of the Frequency-Domain, Source-Free Maxwell				
		Equation	ons	127			
	7.3	Propag	gation in a Dissipative Dielectric-Magnetic Medium	134			
	7.4	Polariz	vation State	139			
		7.4.1	Linear Polarization State	139			
		7.4.2	Circular Polarization State	139			
		7.4.3	Elliptical Polarization State	141			
	Refe	rences .		143			
8	Plan	Plane-Wave Reflection and Refraction 1					
	8.1	Norma	ll Incidence	145			
	8.2	Obliqu	e Incidence	150			
		8.2.1	Perpendicular Polarization	151			
		8.2.2	Parallel Polarization	153			
	Refe	rences .		157			

9	Tran	smission Lines	159	
	9.1	From Field Theory to Circuit Theory		
		9.1.1 Voltage and Current Waves	160	
		9.1.2 Transmission Line Parameters	161	
	9.2	Telegrapher Equations	162	
	9.3	Input Impedance	164	
		9.3.1 Load Power	166	
		9.3.2 Impedance Matching	169	
	9.4	Transmission Line Transients	169	
	Refer	ences	172	
10	Waveguides and Cavities			
	10.1	Boundary-Value Problems	174	
	10.2	Rectangular Waveguides	176	
		10.2.1 Decomposition into Axial Components	177	
		10.2.2 Axial Components Equations	180	
		10.2.3 Some Aspects	182	
	10.3	Transverse Magnetic (TM) Mode	184	
	10.4	Transverse Electric (TE) Mode	187	
	10.5	Power and Attenuation in Waveguides	190	
		10.5.1 Power	190	
		10.5.2 Attenuation	191	
	10.6	Rectangular Cavity	197	
		10.6.1 Transverse Magnetic (TM) Mode	198	
		10.6.2 Transverse Electric (TE) Mode	198	
	Appe	ndix	200	
	Refer	ences	201	

Part IV Radiation and Antennas

11	Elect	romagnetic Radiation and Auxiliary Potentials	205
	11.1	Solution Procedure	205
	11.2	The Magnetic Vector Potential	206
		11.2.1 Definition	206
		11.2.2 Governing Equation	207
	11.3	The Electric Vector Potential	208
		11.3.1 Definition	208
		11.3.2 Governing Equation	208
	11.4	Total Electric Field and Magnetic Field Phasors	209
	11.5	Solution of the Inhomogeneous Vector Helmholtz Equation	210
	11.6	Time-Domain Radiation	213
	11.7	Far-Zone Approximation	213
	11.8	Current Distribution	216
	Refer	ences	218

12	Ante	nna Fun	damentals	219
	12.1	Antenn	a Regions	219
	12.2	Radiati	on Properties	220
		12.2.1	Radiation Power	220
		12.2.2	Radiation Intensity	221
		12.2.3	Antenna Pattern	222
		12.2.4	Directivity	224
		12.2.5	Antenna Polarization	225
	12.3	Circuit	Properties	226
		12.3.1	Input Impedance	226
		12.3.2	Radiation Resistance and Radiation Efficiency	227
		12.3.3	Resonance Frequency	228
		12.3.4	Reflection Mismatch Factor	228
		12.3.5	Bandwidth	229
	12.4	Radiati	on-Circuit Properties	230
		12.4.1	Gain	230
		12.4.2	Effective Area	231
		12.4.3	Friis Transmission Equation	231
	Appe	ndix		233
	Refer	ences .		234
13	Wire Antennas			
	13.1	Dipole	Antennas	235
	10.1	13.1.1	Hertzian Dipole	236
		13.1.2	Small Dipole	242
		13.1.3	Finite-Length Dipole	243
	13.2	Loop A	vntennas	247
		13.2.1	An Equivalence Theorem	250
	13.3	Hertzia	n-Dipole Reflection by an Infinite PEC	251
	13.4	Integral	l Equations	255
		13.4.1	The Method of Moments	255
		13.4.2	An Example from Electrostatics	256
		13.4.3	An Example from Radiation Problems	259
	Appe	ndix	тт.	264
	References			266
14	Antonno Annova			
14	14 1	Drolimi	ayo narias	207
	14.1	1/ 1 1	Single Element Padiation Intensity	269
		14.1.1	Displaced Single Element Dediction Intensity	200
		14.1.2	Multi element Padiation Intensity	209 260
	14.2	14.1.3	mansional Equally Spaced Uniform Array	209
	14.2	One-DI	mensional, Equally-spaced, Onnorm Allay	211

14.2.1	FNBW and HPBW	272
14.2.2	Scanning Arrays	274
References .		277

Part I

Introduction to Essential Mathematics and Electromagnetics

The first part of the book gives a brief review on mathematical topics needed in this book. Then, it gives an overview on electromagnetics from a system perspective. This part consists of two chapters. Chapter 1 discusses vector algebra and vector calculus in three coordinate systems (Cartesian, cylindrical, and spherical), as well as in a general curvilinear system. Chapter 2 presents Maxwell equations as governing equations of electromagnetics. Specialization to electrostatics and magnetostatics is discussed then as special cases from the general setting.

Vector Algebra and Vector Calculus

This chapter is devoted to vector algebra and vector calculus. In Sect. 1.1, we give an overview on vector algebra, including definition, Cartesian bases and vector expansion, vector arithmetic operators, and position and distance vectors. Then, Sect. 1.2 discusses the various coordinates systems encountered in this book (e.g., Cartesian, cylindrical, and spherical), as well as transformation among them. We then discuss vector calculus in Sect. 1.3, including vector integral calculus, and vector differential calculus. These are discussed first in Cartesian, cylindrical, and spherical coordinate systems, and then are extended to a general curvilinear coordinate system in Sect. 1.4. Finally, time-harmonic vectors is discussed in Sect. 1.5. Useful computer programs are given in the appendix at the end of the chapter.

1.1 Vector Algebra

1.1.1 Definition and Expansion

A scalar is a quantity that has a magnitude only (e.g., mass, charge, temperature, etc.), whereas a vector is a quantity that has a magnitude and a direction (e.g., velocity, acceleration, force, momentum, etc.). The magnitude of a vector \mathbf{A} is written as $|\mathbf{A}|$, or A, and its direction is written as $\hat{\mathbf{A}}$ given by

$$\hat{\mathbf{A}} = \frac{\mathbf{A}}{|\mathbf{A}|}.\tag{1.1}$$

The vector $\hat{\mathbf{A}}$ is called a unit vector because its magnitude is unity. A vector \mathbf{A} can be expanded into Cartesian unit vectors as

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}, \tag{1.2}$$

1

where $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ are unit vectors in the direction of the *x* axis, the *y* axis, and the *z* axis, respectively; see Fig. 1.1. These unit vectors can be called Cartesian bases. The scalars A_x , A_y , and A_z are components of the vector **A** in the direction of the *x* axis, the *y* axis, and the *z* axis, respectively.

1.1.2 Vector Addition and Subtraction

In addition to **A**, let us define the vectors $\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$ and $\mathbf{C} = C_x \hat{\mathbf{x}} + C_y \hat{\mathbf{y}} + C_z \hat{\mathbf{z}}$. Addition between two vectors **A** and **B** can be done using

$$\mathbf{A} + \mathbf{B} = (A_x + B_x)\hat{\mathbf{x}} + (A_y + B_y)\hat{\mathbf{y}} + (A_z + B_z)\hat{\mathbf{z}}.$$
(1.3)

Subtraction between two vectors **A** and **B** can be done as $\mathbf{A} + (-\mathbf{B})$. Addition is commutative (i.e., $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$), associative [i.e., $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$], and distributive (i.e., $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$), where α is a scalar.

1.1.3 The Dot Product

The dot product between two vectors A and B can be performed as

$$\mathbf{A} \cdot \mathbf{B} \equiv |\mathbf{A}| |\mathbf{B}| \cos \theta, \tag{1.4}$$

where θ (in *rad*) is the angle between **A** and **B**; see Fig. 1.2.

Fig. 1.2 Dot product

When (i) $\theta = 0^{\circ}$, **A** and **B** are coparallel to each other, (ii) when $\theta = 90^{\circ}$, **A** and **B** are perpendicular (normal or orthogonal) to each other, and (iii) when $\theta = 180^{\circ}$, **A** and **B** are antiparallel to each other. Note that $\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$, whereas $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = 0$. In component form, the dot product can be written as

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z. \tag{1.5}$$

From Eqs. (1.4) and (1.5), we see that

$$\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2 = A_x^2 + A_y^2 + A_z^2.$$
(1.6)

Hence, the magnitude of the vector A is

$$|\mathbf{A}| = \sqrt{\mathbf{A} \cdot \mathbf{A}} = \sqrt{A_x^2 + A_y^2 + A_z^2}.$$
 (1.7)

The dot product is commutative (i.e., $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$), and associative (i.e., $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$).

Example 1.1 Let $\mathbf{A} = \hat{\mathbf{x}} + 2\hat{\mathbf{y}} + 5\hat{\mathbf{z}}$ and $\mathbf{B} = -\hat{\mathbf{x}} + 2\hat{\mathbf{y}} + 3\hat{\mathbf{z}}$. Find the angle θ between \mathbf{A} and \mathbf{B} .

Solution. We have
$$\mathbf{A} \cdot \mathbf{B} = 18$$
, $|\mathbf{A}| = 5.47$, and $|\mathbf{B}| = 3.74$. Therefore, $\theta = \cos^{-1} \left(\frac{18}{5.47 \times 3.74}\right) = 0.498 \, (28.56^{\circ}).$

Position and Distance Vectors

The position vector of a point represented by coordinates (x, y, z) is given in Cartesian coordinates by

$$\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}.$$
 (1.8)

Suppose that another point is represented by (x', y', z'), with a corresponding position vector

$$\mathbf{r}' = x'\hat{\mathbf{x}} + y'\hat{\mathbf{y}} + z'\hat{\mathbf{z}}.$$
(1.9)

Then, the distance vector between the two points is given by

$$\mathbf{R} = \mathbf{r} - \mathbf{r}'.\tag{1.10}$$

The magnitude of the distance vector

$$R = |\mathbf{r} - \mathbf{r}'| = \sqrt{|\mathbf{r}|^2 + |\mathbf{r}'|^2 - 2\mathbf{r} \cdot \mathbf{r}'}$$
(1.11)

gives the distance between two points.

Example 1.2 Find the distance between the two points (1, -1, 3) and (5, 0, 3).

Solution. Let $\mathbf{r} = \hat{\mathbf{x}} - \hat{\mathbf{y}} + 3\hat{\mathbf{z}}$, and $\mathbf{r}' = 5\hat{\mathbf{x}} + 3\hat{\mathbf{z}}$. Then, $\mathbf{R} = \mathbf{r} - \mathbf{r}' = -4\hat{\mathbf{x}} - \hat{\mathbf{y}}$. So, $R = |\mathbf{R}| = 4.12$.

Component of a Vector

The scalar component (projection) of a vector **A** in the direction of a vector **B** is written as A_B , which is given by

$$A_B = \mathbf{A} \cdot \hat{\mathbf{B}}.\tag{1.12}$$

The vector component of a vector **A** in the direction of a vector **B** is written as A_B , which is given by

$$\mathbf{A}_{B} = (\mathbf{A} \cdot \mathbf{B})\mathbf{B}. \tag{1.13}$$

This can be used in defining the normal and tangential components of a vector with respect to a surface characterized by a unit normal $\hat{\mathbf{n}}$. Given a surface with a unit normal $\hat{\mathbf{n}}$, the vector component normal to the surface, denoted by \mathbf{A}_{\perp} , is

$$\mathbf{A}_{\perp} = (\mathbf{A} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}},\tag{1.14}$$

whereas the the vector component tangential to the surface, denoted by A_{\parallel} , is

$$\mathbf{A}_{\parallel} = \mathbf{A} - (\mathbf{A} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}. \tag{1.15}$$

1.1.4 The Cross Product

The cross product between two vectors A and B is performed as

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \, \hat{\mathbf{n}},\tag{1.16}$$

where $\hat{\mathbf{n}}$ is a unit vector perpendicular to both \mathbf{A} and \mathbf{B} . In component form, the cross product can be written as

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \hat{\mathbf{x}}(A_y B_z - A_z B_y) + \hat{\mathbf{y}}(A_z B_x - A_x B_z) + \hat{\mathbf{z}}(A_x B_y - A_y B_x).$$
(1.17)

If we set $\mathbf{A} = \hat{\mathbf{x}}$ and $\mathbf{B} = \hat{\mathbf{y}}$ in Eq. (1.17), we find that $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$. By a similar approach, it can be seen that $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ and $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$. The cross product is distributive (i.e., $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$), but it is not commutative (i.e., $\mathbf{B} \times \mathbf{A} = -\mathbf{A} \times \mathbf{B}$).

A combination of dot and cross products is also encountered in electromagnetics. These are scalar triple product

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}), \tag{1.18}$$

and vector triple product

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{C} \cdot \mathbf{A}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}).$$
(1.19)

1.2 Coordinate Systems and Transformations

A coordinate system in three dimensions is comprised of spatial variables (i.e., coordinates) $\{v_1, v_2, v_3\}$, as well as bases $\{\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_3\}$. We discuss in this section the most common three coordinate systems. These are Cartesian coordinates, circular cylindrical (or simply cylindrical) coordinates, and spherical coordinates. A general curvilinear coordinate system is discussed in Sect. 1.4 after learning vector calculus.

1.2.1 Cartesian Coordinates

Cartesian coordinates $\{x, y, z\}$, where $x \in (-\infty, \infty)$, $y \in (-\infty, \infty)$, and $z \in (-\infty, \infty)$, constitute the simplest coordinate system. The following Cartesian surfaces arise when one coordinate is fixed.

- The equation $x = x_0$ defines an infinite plane on the yz plane with a coordinate $x = x_0$.
- The equation $y = y_0$ defines an infinite plane on the xz plane with a coordinate $y = y_0$.
- The equation $z = z_0$ defines an infinite plane on the xy plane with a coordinate $z = z_0$.

Notice that all of the aforementioned surfaces are infinite because only one coordinate is specified, while the range of the other two are not. If the range of each one of the other two coordinates is specified and is finite, then, the resulting plane will no more be infinite. Figure 1.3 shows Cartesian surfaces.

Cartesian bases $\{\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\}$ can be used for expanding a vector A as

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}.$$
 (1.20)

Fig. 1.3 a x = 0, b y = 0, and c z = 0

Here, we can regard A_x as the projection of **A** into $\hat{\mathbf{x}}$, A_y is the projection of **A** into $\hat{\mathbf{y}}$, and A_z is the projection of **A** into $\hat{\mathbf{z}}$. It is to be noted that, each of A_x , A_y , and A_z is a scalar that can be a function of the variables x, y, and z. That is,

$$\mathbf{A}(x, y, z) = A_x(x, y, z)\,\hat{\mathbf{x}} + A_y(x, y, z)\,\hat{\mathbf{y}} + A_z(x, y, z)\,\hat{\mathbf{z}}.$$
(1.21)

For shorthand notation, we can let $(x, y, z) \rightarrow \mathbf{r}$. Then, Eq. (1.21) can be written as

$$\mathbf{A}(\mathbf{r}) = A_x(\mathbf{r})\,\hat{\mathbf{x}} + A_y(\mathbf{r})\,\hat{\mathbf{y}} + A_z(\mathbf{r})\,\hat{\mathbf{z}}^{\,1} \tag{1.22}$$

We already saw that Cartesian bases satisfy

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$$
 $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$. (1.23)

Figure 1.4 shows streamline plots of Cartesian bases. These bases can be represented more simply as in Fig. 1.1. Notice that Cartesian bases are constant vectors (i.e., do not depend on either x, y, or z). Also, we see that $\hat{\mathbf{x}}$ points in the direction of increase of x, $\hat{\mathbf{y}}$ points in the direction of increase of y, and $\hat{\mathbf{z}}$ points in the direction of increase of z. As to been seen in Sect. 1.3.3, this is not a mere coincidence.

1.2.2 Cylindrical Coordinates

Cylindrical coordinates { ρ , ϕ , z}, as well as cylindrical bases { $\hat{\rho}$, $\hat{\phi}$, \hat{z} } are shown in Fig. 1.5. Cylindrical coordinates are related to the Cartesian coordinates through

$$x = \rho \cos \phi \qquad y = \rho \sin \phi \qquad z = z \}. \tag{1.24}$$

Given a point P in space, we see that $\rho \in [0, \infty)$ is the distance between the z axis and the point P, and $\phi \in [0, 2\pi)$ (called the azimuthal angle) is measured from the x axis to the

projection of the point *P* on the *xy* plane. Equations (1.24) can be used when converting from Cartesian coordinates to cylindrical coordinates. Conversion from cylindrical coordinates to Cartesian coordinates can be done upon inverting Eqs. (1.24), which gives

$$\rho = \sqrt{x^2 + y^2} \qquad \phi = \tan^{-1} \frac{y}{x} \qquad z = z \left\{ \right\}.$$
(1.25)

The following cylindrical surfaces arise when one coordinate is fixed.

- The equation $\rho = \rho_0$ is the equation of an infinite cylinder with a radius ρ_0 . Notice that if the range of z is specified and is finite, then the cylinder will no more be infinite.
- The equation φ = φ₀ is the equation of a semi-infinite plane making an angle φ₀ with respect to the positive x axis. Notice that if the ranges of ρ and z are specified and are finite, then the plane will no more be semi infinite.
- The equation $z = z_0$ is the equation of an infinite plane on the xy plane with a coordinate $z = z_0$.

Fig. 1.6 a $\rho = 1$, b $\phi = \pi/4$, and c z = 0

Figure 1.6 shows examples of cylindrical surfaces.

Cylindrical bases $\{\hat{\rho}, \hat{\phi}, \hat{z}\}$ can be used for expanding a vector **A** as

$$\mathbf{A}(\mathbf{r}) = A_{\rho}(\mathbf{r})\,\hat{\boldsymbol{\rho}} + A_{\phi}(\mathbf{r})\,\hat{\boldsymbol{\phi}} + A_{z}(\mathbf{r})\,\hat{\mathbf{z}},\tag{1.26}$$

where A_{ρ} is the projection of **A** into $\hat{\rho}$, A_{ϕ} is the projection of **A** into $\hat{\phi}$, and A_z is the projection of **A** into \hat{z} . Those cylindrical bases satisfy

$$\hat{\rho} \cdot \hat{\rho} = \hat{\phi} \cdot \hat{\phi} = \hat{z} \cdot \hat{z} = 1 \qquad \hat{\rho} \times \hat{\phi} = \hat{z} \qquad \hat{\phi} \times \hat{z} = \hat{\rho} \qquad \hat{z} \times \hat{\rho} = \hat{\phi} \left\{ . \quad (1.27) \right\}$$

Consequently, like Cartesian coordinates, the dot and the cross products in cylindrical coordinates can be done, respectively, as

$$\mathbf{A} \cdot \mathbf{B} = A_{\rho} B_{\rho} + A_{\phi} B_{\phi} + A_z B_z, \qquad (1.28)$$

and

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\boldsymbol{\rho}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{\rho} & A_{\phi} & A_{z} \\ B_{\rho} & B_{\phi} & B_{z} \end{vmatrix}.$$
(1.29)

Figure 1.7 shows streamline plots of cylindrical bases. These bases can be represented more simply as in Fig. 1.5. Notice that the cylindrical bases $\hat{\rho}$ and $\hat{\phi}$ are not constant vectors. Also, we see that $\hat{\rho}$ points in the direction of increase of ρ , and $\hat{\phi}$ points in the direction of increase of ϕ .

Cylindrical bases can be transformed into Cartesian bases as follows. The basis $\hat{\rho}$, like any vector, can be expanded into Cartesian bases as

$$\hat{\boldsymbol{\rho}} = \alpha \,\hat{\mathbf{x}} + \beta \,\hat{\mathbf{y}} + \gamma \,\hat{\mathbf{z}},\tag{1.30}$$

Fig. 1.7 a $\hat{\rho}$, b $\hat{\phi}$, and c \hat{z}

where α , β , and γ are unknown that have to be determined. Using the fact that Cartesian bases are orthogonal, one can find that $\alpha = \hat{\rho} \cdot \hat{\mathbf{x}} = \cos \phi$, $\beta = \hat{\rho} \cdot \hat{\mathbf{y}} = \sin \phi$, and $\gamma = \hat{\rho} \cdot \hat{\mathbf{z}} = 0$. Therefore,

$$\hat{\boldsymbol{\rho}} = \cos\phi\,\hat{\mathbf{x}} + \sin\phi\,\hat{\mathbf{y}}.\tag{1.31}$$

Equation (1.31) transforms the cylindrical basis $\hat{\rho}$ into the Cartesian bases $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$. Transforming $\hat{\boldsymbol{\phi}}$ can be done similarly. Hence, transformation between cylindrical bases to Cartesian bases can be written in matrix form as

$$\begin{pmatrix} \hat{\boldsymbol{\rho}} \\ \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{z}} \end{pmatrix} = \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix}.$$
 (1.32)

Notice that, unlike Cartesian bases, cylindrical bases $\hat{\rho}$ and $\hat{\phi}$ depend on the coordinate ϕ . Conversion relation from Cartesian bases to cylindrical bases can be established upon inverting the square matrix appearing in Eq. (1.32). Since this matrix is orthogonal, its inverse is simply its transpose. Therefore,

$$\begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \cos\phi - \sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{\rho}} \\ \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{z}} \end{pmatrix},$$
(1.33)

1.2.3 Spherical coordinates

Spherical coordinates $\{r, \theta, \phi\}$, as well as spherical bases $\{\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ are shown in Fig. 1.8. Spherical coordinates are related to the Cartesian coordinates through

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$. (1.34)

Given a point *P* in space, we see that $r \in [0, \infty)$ is the distance between the origin and the point $P, \theta \in [0, \pi]$, called the colatitude (or polar) angle, is an angle drawn from the *z* axis

Fig. 1.8 Spherical coordinates and bases

to the line formed by the origin and the point P, and ϕ is defined same as before. Equations (1.34) can be used when converting from Cartesian coordinates to spherical coordinates. Conversion from spherical coordinates to Cartesian coordinates can be done upon inverting Eqs. (1.34), which gives

$$r = \sqrt{x^2 + y^2 + z^2} \qquad \theta = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z} \qquad \phi = \tan^{-1} \frac{y}{x} \right\}.$$
 (1.35)

The following spherical surfaces arise when one coordinate is fixed.

- The equation $r = r_0$ is the equation of a sphere with a radius r_0 .
- The equation θ = θ₀ is the equation of an infinite cone of an angle θ₀. Notice that if the range of r is specified and is finite, then the cone will no more be infinite.
- The equation $\phi = \phi_0$ is the equation of a semi-infinite plane making an angle ϕ_0 with respect to the positive *x* axis. Notice that if the ranges of *r* and θ are specified, and the range of *r* is finite, then the plane will no more be semi infinite.

Spherical bases $\{\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}\}$ can be used for expanding a vector **A** as

$$\mathbf{A}(\mathbf{r}) = A_r(\mathbf{r})\,\hat{\mathbf{r}} + A_\theta(\mathbf{r})\,\hat{\boldsymbol{\theta}} + A_\phi(\mathbf{r})\,\hat{\boldsymbol{\phi}},\tag{1.36}$$

where A_r is the projection of **A** into $\hat{\mathbf{r}}$, A_{θ} is the projection of **A** into θ , and A_{ϕ} is the projection of **A** into $\hat{\boldsymbol{\phi}}$. Those spherical bases satisfy

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1 \qquad \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \qquad \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{r}} \qquad \hat{\boldsymbol{\phi}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\theta}} \quad \left\{ . \quad (1.37) \right\}$$

Fig. 1.9 a r = 4, b $\theta = \pi/8$, and c $\phi = \pi/4$

Fig. 1.10 a $\hat{\mathbf{r}}$, b $\hat{\boldsymbol{\theta}}$, and c $\hat{\boldsymbol{\phi}}$

Consequently, like Cartesian coordinates, the dot and the cross products in spherical coordinates can be done, respectively, as

$$\mathbf{A} \cdot \mathbf{B} = A_r B_r + A_\theta B_\theta + A_\phi B_\phi, \tag{1.38}$$

and

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_r & A_\theta & A_\phi \\ B_r & B_\theta & B_\phi \end{vmatrix}.$$
(1.39)

Figure 1.10 shows streamline plots of spherical bases. These bases can be represented more simply as in Fig. 1.8. Notice that spherical bases are not constant vectors. Also, we see that $\hat{\mathbf{r}}$ points in the direction of increase of r, and $\hat{\boldsymbol{\theta}}$ points in the direction of increase of θ .

Using the procedure used in cylindrical coordinates, spherical bases can related to the Cartesian bases using Fig. 1.8 as

$$\begin{pmatrix} \hat{\mathbf{r}} \\ \hat{\boldsymbol{\theta}} \\ \hat{\boldsymbol{\phi}} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi \ \sin\theta\sin\phi \ \cos\theta \\ \cos\theta\cos\phi \ \cos\phi \ \sin\phi \ -\sin\theta \\ -\sin\phi \ \cos\phi \ 0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix}.$$
(1.40)

Conversion from Cartesian bases to spherical bases can then be done by

$$\begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi\,\cos\theta\cos\phi - \sin\phi \\ \sin\theta\sin\phi\,\cos\theta\sin\phi\,\cos\phi \\ \cos\theta - \sin\theta\,0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{r}} \\ \hat{\boldsymbol{\theta}} \\ \hat{\boldsymbol{\phi}} \end{pmatrix}.$$
(1.41)

It should be mentioned that transformation between bases formulas can be derived more systematically using the gradient operator (see Sect. 1.3.3).

Example 1.3 Given $f(x, y, z) = x^2y + \frac{z}{x}$, express f(x, y, z) in spherical coordinates [i.e., obtain $f(r, \theta, \phi)$].

Solution.

$$f(r, \theta, \phi) = r^3 \sin^3 \theta \sin \phi \cos^2 \phi + \cot \theta \sec \phi.$$

Example 1.4 Given $\mathbf{A} = y\hat{\mathbf{x}}$, express \mathbf{A} in (a) cylindrical coordinates and in (b) spherical coordinates.

Solution.

(a)

$$\mathbf{A} = y\hat{\mathbf{x}} = \rho \sin\phi(\cos\phi\,\hat{\boldsymbol{\rho}} - \sin\phi\,\hat{\boldsymbol{\phi}}) = \rho \sin\phi\cos\phi\,\hat{\boldsymbol{\rho}} - \rho \sin^2\phi\,\hat{\boldsymbol{\phi}}.$$

(b)

$$\mathbf{A} = y\hat{\mathbf{x}} = r\sin\theta\sin\phi(\sin\theta\cos\phi\,\hat{\mathbf{r}} + \cos\theta\cos\phi\,\hat{\theta} - \sin\phi\,\hat{\phi})$$
$$= r\sin^2\theta\sin\phi\cos\phi\,\hat{\mathbf{r}} + r\sin\theta\cos\theta\sin\phi\cos\phi\,\hat{\theta} - r\sin\theta\sin^2\phi\,\hat{\phi}.$$

Example 1.5 Given $\mathbf{A} = A_0 \hat{\mathbf{r}}$, where A_0 is a constant, determine $\mathbf{A} \cdot \hat{\mathbf{x}}$.

Solution. We have $\mathbf{A} \cdot \hat{\mathbf{x}} = A_0 \hat{\mathbf{r}} \cdot \hat{\mathbf{x}}$. From

$$\begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi\cos\theta\cos\phi - \sin\phi \\ \sin\theta\sin\phi\cos\theta\sin\phi\cos\phi \\ \cos\theta - \sin\theta & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{r}} \\ \hat{\boldsymbol{\theta}} \\ \hat{\boldsymbol{\phi}} \end{pmatrix},$$

we see that $\hat{\mathbf{x}} = \sin\theta\cos\phi\,\hat{\mathbf{r}} + \cos\theta\cos\phi\,\hat{\boldsymbol{\theta}} - \sin\phi\,\hat{\boldsymbol{\phi}}$. Thus,

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{x}} = (\sin\theta\cos\phi\,\hat{\mathbf{r}} + \cos\theta\cos\phi\,\hat{\theta} - \sin\phi\,\hat{\phi}) \cdot \hat{\mathbf{r}} = \sin\theta\cos\phi.$$

Therefore, $\mathbf{A} \cdot \hat{\mathbf{x}} = A_0 \sin \theta \cos \phi$.

 \triangleleft

Example 1.6 Given $\mathbf{A} = \hat{\boldsymbol{\rho}} + 3\hat{\boldsymbol{\phi}} + 6\hat{\mathbf{z}}$, determine the scalar component of **A** parallel to the *y* axis.

Solution. We have

$$\mathbf{A} \cdot \hat{\mathbf{y}} = (\hat{\boldsymbol{\rho}} + 3\hat{\boldsymbol{\phi}} + 6\hat{\mathbf{z}}) \cdot \hat{\mathbf{y}}.$$

Using

$$\begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \cos\phi - \sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{\rho}} \\ \hat{\boldsymbol{\phi}} \\ \hat{\mathbf{z}} \end{pmatrix},$$

we write $\hat{\mathbf{y}} = \sin \phi \, \hat{\boldsymbol{\rho}} + \cos \phi \, \hat{\boldsymbol{\phi}}$. Then,

$$\mathbf{A} \cdot \hat{\mathbf{y}} = (\hat{\boldsymbol{\rho}} + 3\hat{\boldsymbol{\phi}} + 6\hat{\mathbf{z}}) \cdot (\sin \phi \, \hat{\boldsymbol{\rho}} + \cos \phi \hat{\boldsymbol{\phi}}) = \sin \phi + 3\cos \phi.$$

Notice that $\phi = \pi/2$ along the y axis. Hence, $\mathbf{A} \cdot \hat{\mathbf{y}}\Big|_{\phi = \pi/2} = 1$.

Example 1.7 Given $\mathbf{A} = \rho z \cos^2 \phi \,\hat{\boldsymbol{\rho}} + \sin \phi \,\hat{\boldsymbol{\phi}} + \rho \,\hat{\mathbf{z}}$, determine (a) the scalar component of **A** parallel to the *x* axis, (b) the vector component of **A** normal to the surface $\rho = 1$ [i.e., $(\mathbf{A} \cdot \hat{\boldsymbol{\rho}})\hat{\boldsymbol{\rho}}$ when $\rho = 1$], and (c) the vector component of **A** tangential to the plane z = 0.

Solution.

(a) We have

$$\mathbf{A} \cdot \hat{\mathbf{x}} = (\rho z \cos^2 \phi \, \hat{\boldsymbol{\rho}} + \sin \phi \, \hat{\boldsymbol{\phi}} + \rho \, \hat{\mathbf{z}}) \cdot \hat{\mathbf{x}}$$

Using

$$\begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{y}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \cos\phi - \sin\phi \ 0 \\ \sin\phi \ \cos\phi \ 0 \\ 0 \ 0 \ 1 \end{pmatrix} \begin{pmatrix} \hat{\boldsymbol{\rho}} \\ \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{z}} \end{pmatrix},$$

we write $\hat{\mathbf{x}} = \cos \phi \, \hat{\boldsymbol{\rho}} - \sin \phi \, \hat{\boldsymbol{\phi}}$. Thus,

$$\mathbf{A} \cdot \hat{\mathbf{x}} = \rho z \cos^3 \phi - \sin^2 \phi.$$

But since $\phi = 0$ along the *x* axis, we get $\mathbf{A} \cdot \hat{\mathbf{x}}\Big|_{\phi=0} = \rho z$.

(b) We have

$$\mathbf{A}_{\perp} = (\mathbf{A} \cdot \hat{\boldsymbol{\rho}}) \hat{\boldsymbol{\rho}} = \rho z \cos^2 \phi \, \hat{\boldsymbol{\rho}}.$$

But this has to be evaluated at $\rho = 1$. Hence, $\mathbf{A}_{\perp}\Big|_{\rho=1} = z \cos^2 \phi \,\hat{\boldsymbol{\rho}}$. (c) We have

 $\mathbf{A}_{\parallel} = \mathbf{A} - \mathbf{A}_{\perp} = \mathbf{A} - (\mathbf{A} \cdot \hat{\mathbf{z}})\hat{\mathbf{z}} = \rho z \cos^2 \phi \,\hat{\boldsymbol{\rho}} + \sin \phi \,\hat{\boldsymbol{\phi}}.$

But this has to be evaluated at z = 0. Hence, $\mathbf{A}_{\parallel}\Big|_{z=0} = \sin \phi \, \hat{\phi}$.

 \triangleleft

 \triangleleft