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Preface

As the title suggests, this book serves as an introductory book to the subject of elec-
tromagnetics. Moreover, the word ‘concise’ from the book’s title stresses that the book
covers the fundamental topics a reader needs to acquire before consulting advanced-level
references on electromagnetics. The book is intended to be used in an undergraduate-level
course, whether in physics curriculum, or in electrical engineering curriculum. It can, as
well, be used as a reference for researchers who wish to solidify their understanding of
the subject.

Like any phenomenon being described by governing equations, electromagnetic phe-
nomenon is described by Maxwell equations. In many undergraduate-level textbooks of
electromagnetics, Maxwell equations are derived starting from Coulomb law, Biot-Savart
law, Faraday law, and, lastly, Maxwell’s correction to Ampere law. Consequently, the
reader has to be exposed to the subjects of electrostatics and magnetostatics before
discussing full-version electromagnetics in which time character emerges. While this
approach is perfectly fine, I adopt a different approach in this book, whereby the full-
version electromagnetics is introduced first. Then, electrostatics and magnetostatics can
be regarded as special cases. It is to be mentioned that this approach is somewhat similar,
in terms of the sequence, at least, to the approach adopted by Landau and Lifshitz, in
which Maxwell equations are introduced from relativistic principles. However, due to the
complexity of such an approach to be taught at an undergraduate-level course, Maxwell
equations in this book are postulated in the beginning.

Electromagnetics can be divided into two regimes. These are (i) time-dependent regime
and (ii) time-independent regime. This book is divided into four parts. Part I is about some
required mathematical background, and an introduction to electromagnetics. Part II is
about time-independent electromagnetics, namely, electrostatics and magnetostatics. Then,
Part III discusses time-dependent electromagnetics in source-free regions. Finally, Part IV
is about time-dependent electromagnetics in source regions. It should be emphasized that
the division into source-free and source regions is made for the sake of facilitating the



vi Preface

presentation. Once the concepts from source-free-region problems are grasped, transition
to source-region problems becomes smoother.

In terms of chapters, this book comprises 14 chapters distributed in the four afore-
mentioned parts. Chapter 1 presents a brief revision on vector algebra and vector
calculus. Chapter 2 introduces Maxwell equations and divides the theory into two regimes.
Chapter 3 is about electrostatics in which a static charge distribution gives rise to an
electric field. Currents (i.e., moving charges) is discussed in Chap. 4, followed by magne-
tostatics, in which a current distribution gives rise to a magnetic field, in Chap. 5. Then,
Chap. 6 is about the transition from time-independent regime to time-dependent regime.
Chapter 7 discusses the propagation of electromagnetic fields in an unbounded, source-
free region. This is followed by the propagation in the presence of an infinite-extent
obstacle in Chap. 8. Chapters 9 and 10 treat the problem of propagation of electromag-
netic fields in guided structures. Transition to source regions, namely, radiation problem,
is discussed in Chap. 11. Chapter 12 discusses radiators, well known as antennas, and
their properties. Chapter 13 discusses simple antenna structures. Finally, Chap. 14 briefly
discusses the analysis of group of antennas, well known as antenna arrays.

Since the usage of computer programs to validate analytical procedures, to tackle
problems not amendable to analytical solutions, or at least to gain a better visualiza-
tion has significantly increased, some chapters are supplied with an appendix containing
useful Mathematica computer programs. These can be used for the purpose of validat-
ing the solutions of end-of-chapter problems, validating the solutions of problems from
other textbooks, or even validating the solutions of problems a reader can propose and
solve. Furthermore, these computer programs can be used by researchers to produce
various forms of plots (e.g., two-dimensional and three-dimensional plots for scalars,
two-dimensional and three-dimensional streamline plots for vectors, etc.).

The reader is assumed to have some background in standard topics taught in junior
undergraduate-level courses, or even in high school, such as differentiation and integra-
tion. Also, an exposure to elementary physics courses might be beneficial, though not
necessary.

Al Ain, UAE Hamad M. Alkhoori
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Part |

Introduction to Essential Mathematics
and Electromagnetics

The first part of the book gives a brief review on mathematical topics needed in this
book. Then, it gives an overview on electromagnetics from a system perspective. This
part consists of two chapters. Chapter 1 discusses vector algebra and vector calculus
in three coordinate systems (Cartesian, cylindrical, and spherical), as well as in a gen-
eral curvilinear system. Chapter 2 presents Maxwell equations as governing equations of
electromagnetics. Specialization to electrostatics and magnetostatics is discussed then as
special cases from the general setting.
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Vector Algebra and Vector Calculus

This chapter is devoted to vector algebra and vector calculus. In Sect. 1.1, we give an overview
on vector algebra, including definition, Cartesian bases and vector expansion, vector arith-
metic operators, and position and distance vectors. Then, Sect. 1.2 discusses the various
coordinates systems encountered in this book (e.g., Cartesian, cylindrical, and spherical),
as well as transformation among them. We then discuss vector calculus in Sect. 1.3, includ-
ing vector integral calculus, and vector differential calculus. These are discussed first in
Cartesian, cylindrical, and spherical coordinate systems, and then are extended to a general
curvilinear coordinate system in Sect. 1.4. Finally, time-harmonic vectors is discussed in
Sect. 1.5. Useful computer programs are given in the appendix at the end of the chapter.

1.1 Vector Algebra

1.1.1 Definition and Expansion

A scalar is a quantity that has a magnitude only (e.g., mass, charge, temperature, etc.),
whereas a vector is a quantity that has a magnitude and a direction (e.g., velocity, acceleration,
force, momentum, etc.). The magnitude of a vector A is written as |A|, or A, and its direction

is written as A given by
A=A (1.1)
Al .
The vector A is called a unit vector because its magnitude is unity. A vector A can be
expanded into Cartesian unit vectors as

A=AR+AF+ AL (1.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 3
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4 1 Vector Algebra and Vector Calculus

Fig. 1.1 Cartesian bases yA
vectors A

N>

">
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where X, ¥, and Z are unit vectors in the direction of the x axis, the y axis, and the z axis,
respectively; see Fig. 1.1. These unit vectors can be called Cartesian bases. The scalars Ay,
Ay, and A, are components of the vector A in the direction of the x axis, the y axis, and the
Z axis, respectively.

1.1.2 Vector Addition and Subtraction

In addition to A, let us define the vectors B = BX + By§ + B;zZ and C = C,Xx + Cy§ +
C,7. Addition between two vectors A and B can be done using

A+B=(A:+B)X+ (A, + B))y + (A; + B;)z. (1.3)

Subtraction between two vectors A and B can be done as A + (—B). Addition is commuta-
tive (i.e., A + B = B + A), associative [i.e., (A + B) + C = A + (B + C)], and distributive
(i.e., (A 4+ B) = 0A + aB), where « is a scalar..

1.1.3 The Dot Product

The dot product between two vectors A and B can be performed as
A+*B = |A||B|cosH, (1.4)

where 6 (in rad) is the angle between A and B; see Fig. 1.2.
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Fig. 1.2 Dot product

o
L

B

When (i) 6 = 0°, A and B are coparallel to each other, (ii) when 6 = 90°, A and B are
perpendicular (normal or orthogonal) to each other, and (iii) when 6 = 180°, A and B are
antiparallel to each other. Note thatX *X = y*§ = Z*Z = |, whereasX *§ =X *Z=§*Z =
0. In component form, the dot product can be written as

A*B=AB,+A,By,+ A;B;. (1.5)
From Egs. (1.4) and (1.5), we see that
AA=|AP = Al +A] + A2 (1.6)
Hence, the magnitude of the vector A is
Al =VA-A = /A2 + A2+ A2, (1.7)

The dot product is commutative (i.e., A *B = B ¢ A), and associative (i.e., A* (B + C) =
A*B+A-Q).

Example 1.1 LetA =X+2§+5Zand B = —X + 2y + 3 z. Find the angle 6 between A
and B.

Solution. We have A B =18, |A| =5.47, and [B| = 3.74. Therefore, 6 = cos™!

18
——2 ) =0.498 (28.56°).
(5.47 x 3.74) ( ) <

Position and Distance Vectors
The position vector of a point represented by coordinates (x, y, z) is given in Cartesian
coordinates by

r =xX+ yy + zZ. (1.8)

Suppose that another point is represented by (x', y’, z), with a corresponding position vector
/ S &S a
r =xx4+yy+zz 1.9)
Then, the distance vector between the two points is given by

R=r-r. (1.10)
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The magnitude of the distance vector

R=r—r|=V|rP+|r'2=2r-r (1.11)

gives the distance between two points.
Example 1.2 Find the distance between the two points (1, —1, 3) and (5, 0, 3).

Solution. Letr =X —y+ 3z, andr' =5X+ 3z Then,R=r—r' = —4X—¥.S0, R =
IR| = 4.12. 4

Component of a Vector
The scalar component (projection) of a vector A in the direction of a vector B is written as
Ap, which is given by

Ap=A‘B. (1.12)

The vector component of a vector A in the direction of a vector B is written as A g, which
is given by
Az = (A*B)B. (1.13)

This can be used in defining the normal and tangential components of a vector with respect
to a surface characterized by a unit normal fi. Given a surface with a unit normal @, the
vector component normal to the surface, denoted by A | , is

Al = (A-n)n, (1.14)
whereas the the vector component tangential to the surface, denoted by A, is

1.1.4 The Cross Product

The cross product between two vectors A and B is performed as
A x B = |A||B|sin6 n, (1.16)

where 1 is a unit vector perpendicular to both A and B. In component form, the cross product
can be written as
X y 2
AxB=|A Ay A,| =X(AyB; — A;B)) + J(A;Bx — AB;) + Z2(A By — A By).
B: By, B

Z

=

=
<

(1.17)
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Ifweset A = xand B = yinEq. (1.17), we find that X x y = Z. By a similar approach, it can
beseenthaty x Z = XandZ x X = y. The cross product is distributive (i.e., A x (B + C) =
A x B + A x C), but it is not commutative (i.e., B x A = —A x B).

A combination of dot and cross products is also encountered in electromagnetics. These
are scalar triple product

A*BxC)=B+*(CxA)=C-+(A xB), (1.18)
and vector triple product

AxBxC)=B(C-*A)—C(A*B). (1.19)

1.2  Coordinate Systems and Transformations

A coordinate system in three dimensions is comprised of spatial variables (i.e., coordinates)
{v1, v2, v3}, as well as bases {Vi, V2, V3}. We discuss in this section the most common
three coordinate systems. These are Cartesian coordinates, circular cylindrical (or simply
cylindrical) coordinates, and spherical coordinates. A general curvilinear coordinate system
is discussed in Sect. 1.4 after learning vector calculus.

1.2.1 Cartesian Coordinates

Cartesian coordinates {x, y, z}, where x € (—00, 00), y € (—00, o), and z € (—00, 00),
constitute the simplest coordinate system. The following Cartesian surfaces arise when one
coordinate is fixed.

e The equation x = xo defines an infinite plane on the yz plane with a coordinate x = xg.
e The equation y = yg defines an infinite plane on the xz plane with a coordinate y = yg.
e The equation z = z¢ defines an infinite plane on the xy plane with a coordinate z = zp.

Notice that all of the aforementioned surfaces are infinite because only one coordinate is
specified, while the range of the other two are not. If the range of each one of the other
two coordinates is specified and is finite, then, the resulting plane will no more be infinite.
Figure 1.3 shows Cartesian surfaces.

Cartesian bases {X, ¥, Z} can be used for expanding a vector A as

A=A+ AF+ A (1.20)
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Fig.1.3 ax=0,by=0,andcz=0

Here, we can regard A, as the projection of A into X, A, is the projection of A into §, and
A is the projection of A into Z. It is to be noted that, each of A, Ay, and A; is a scalar that
can be a function of the variables x, y, and z. That is,

Ax,y,2) = Ax(x, y, DX+ Ay(x, y, ) ¥+ Az (x, ¥, 2) Z. (1.21)
For shorthand notation, we can let (x, y, z) — r. Then, Eq. (1.21) can be written as
AD) = AKX+ A,@F+ A @2 (1.22)
We already saw that Cartesian bases satisfy
XeX=yy=z2°2=1 Xxy=1% yxz=x ixf(:y}. (1.23)

Figure 1.4 shows streamline plots of Cartesian bases. These bases can be represented more
simply as in Fig. 1.1. Notice that Cartesian bases are constant vectors (i.e., do not depend
on either x, y, or z). Also, we see that X points in the direction of increase of x, § points in
the direction of increase of y, and Z points in the direction of increase of z. As to been seen
in Sect. 1.3.3, this is not a mere coincidence.

1.2.2 Cylindrical Coordinates

Cylindrical coordinates {p, ¢, z}, as well as cylindrical bases {p, (;5 z} are shown in Fig.
1.5. Cylindrical coordinates are related to the Cartesian coordinates through

X = pcos¢ y = psing z=1z}. (1.24)

Given a point P in space, we see that p € [0, o) is the distance between the z axis and the
point P, and ¢ € [0, 27) (called the azimuthal angle) is measured from the x axis to the
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Fig.1.4 ax,by,and c Z

Fig. 1.5 Cylindrical
coordinates and bases

projection of the point P on the xy plane. Equations (1.24) can be used when converting from
Cartesian coordinates to cylindrical coordinates. Conversion from cylindrical coordinates
to Cartesian coordinates can be done upon inverting Eqs. (1.24), which gives

p=x2+y p=tant 2 z=z}- (1.25)

The following cylindrical surfaces arise when one coordinate is fixed.

e The equation p = py is the equation of an infinite cylinder with a radius pg. Notice that
if the range of z is specified and is finite, then the cylinder will no more be infinite.

e The equation ¢ = ¢y is the equation of a semi-infinite plane making an angle ¢y with
respect to the positive x axis. Notice that if the ranges of p and z are specified and are
finite, then the plane will no more be semi infinite.

e The equation z = zg is the equation of an infinite plane on the xy plane with a coordinate
Z = 20-
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Fig.1.6 ap=1,b¢p =m/4,andcz=0

Figure 1.6 shows examples of cylindrical surfaces.
Cylindrical bases {p, ¢, z} can be used for expanding a vector A as

AM) = A,(0) p+ Ap() d + A (1) 2, (1.26)

where A, is the projection of A into p, Ay is the projection of A into (i, and A; is the
projection of A into Z. Those cylindrical bases satisfy

peh=¢rd=ici=1 pxb=12 dxi=p 2x,3=<;5}. (1.27)

Consequently, like Cartesian coordinates, the dot and the cross products in cylindrical coordinates
can be done, respectively, as

A'B:Apo+A¢B¢+AZBZ, (1.28)
and R
p o 1
AxB= Ay, Ay Ayl (1.29)
B, By B,

Figure 1.7 shows streamline plots of cylindrical bases. These bases can be represented more
simply as in Fig. 1.5. Notice that the cylindrical bases p and (i are not constant vectors.
Also, we see that p points in the direction of increase of p, and $ points in the direction of
increase of ¢.

Cylindrical bases can be transformed into Cartesian bases as follows. The basis p, like
any vector, can be expanded into Cartesian bases as

p=aX+pBy+vyi, (1.30)
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T

Fig.1.7 a i),b(?), and ¢ Z

where «, 8, and y are unknown that have to be determined. Using the fact that Cartesian bases
are orthogonal, one can find thata = p*X =cos¢p, 8 = p*y=sing,andy = p+z=0.
Therefore,

p=cosgpX+singy. (1.31)

Equation (1.31) transforms the cylindrical basis p into the Cartesian bases X and y. Trans-
forming ¢ can be done similarly. Hence, transformation between cylindrical bases to Carte-
sian bases can be written in matrix form as

) cos¢ sing 0\ /X
&5 =|—singpcosp O] |y (1.32)
Z 0 0 1) \z

Notice that, unlike Cartesian bases, cylindrical bases p and (i depend on the coordinate
¢. Conversion relation from Cartesian bases to cylindrical bases can be established upon
inverting the square matrix appearing in Eq. (1.32). Since this matrix is orthogonal, its
inverse is simply its transpose. Therefore,

X cos¢p —sing 0\ [/p
| =1sing cosp 0] |o]. (1.33)
Z 0 0 1/ \z

1.2.3 Spherical coordinates

Spherical coordinates {r, 6, ¢}, as well as spherical bases {r, 9, dAb} are shown in Fig. 1.8.
Spherical coordinates are related to the Cartesian coordinates through
X =rsinf cos ¢ y =rsin6sin¢ z:rcose}. (1.34)

Given a point P in space, we see that r € [0, 0o) is the distance between the origin and the
point P, 6 € [0, 7], called the colatitude (or polar) angle, is an angle drawn from the z axis
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Fig. 1.8 Spherical coordinates Z i~
and bases A r

to the line formed by the origin and the point P, and ¢ is defined same as before. Equations
(1.34) can be used when converting from Cartesian coordinates to spherical coordinates.
Conversion from spherical coordinates to Cartesian coordinates can be done upon inverting
Eqgs. (1.34), which gives

2 2
P42 § = tan—! YT ¢ = tan~! X} . (133)
X

Z

The following spherical surfaces arise when one coordinate is fixed.

e The equation r = ry is the equation of a sphere with a radius r.

e The equation 8 = 6 is the equation of an infinite cone of an angle 6y. Notice that if the
range of r is specified and is finite, then the cone will no more be infinite.

e The equation ¢ = ¢y is the equation of a semi-infinite plane making an angle ¢y with
respect to the positive x axis. Notice that if the ranges of r and 6 are specified, and the
range of r is finite, then the plane will no more be semi infinite.

Spherical bases {r, 9, (25} can be used for expanding a vector A as
A() = A, (1)t + Ag(r) 6 + Ay(r) ¢, (1.36)

where A, is the projection of A into F, Ay is the projection of A into 6, and Ay is the
projection of A into ¢. Those spherical bases satisfy

Fer=00=¢p=1 ixb=¢ Ox¢=r dxi=0 } (1.37)
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Fig.1.10 a T, bé, andc&

Consequently, like Cartesian coordinates, the dot and the cross products in spherical coor-
dinates can be done, respectively, as

A*B=A,B, + AgBy + Ay By, (1.38)
and o
r 0 ¢

AxB=|A Ap Agpl. (1.39)
B, By By

Figure 1.10 shows streamline plots of spherical bases. These bases can be represented more
simply as in Fig. 1.8. Notice that spherical bases are not constant vectors. Also, we see that
I points in the direction of increase of r, and ) points in the direction of increase of 6.

Using the procedure used in cylindrical coordinates, spherical bases can related to the
Cartesian bases using Fig. 1.8 as

'y sin@ cos¢ sinfsing cosH X
0| = [cosOcos¢p cosfOsing —sinf y (1.40)
(} —sing cos ¢ 0 Z
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Conversion from Cartesian bases to spherical bases can then be done by

X sinf cos ¢ cos@ cos¢ —sing\ [T
y| = | sinfsing cosfsing cos¢ 0 (1.41)
Z cosf —sin6 0 é

It should be mentioned that transformation between bases formulas can be derived more
systematically using the gradient operator (see Sect. 1.3.3).

Example 1.3 Given f(x,y,z) =x%y + E, express f(x,y,z) in spherical coordinates
X
[i.e., obtain f(r, 6, ¢)].

Solution.
f@r,0,¢)= r3sin’ 6 sin ¢ cos® ¢ + cot O sec .

<

Example 1.4 Given A = yX, express A in (a) cylindrical coordinates and in (b) spherical
coordinates.

Solution.
(@) R )
A=yX=psing(cosp p —singP) = psingcosg p — psin’ ¢ P.

(b)
A=yX=rsinfsinp(sinfcos¢t + cosd cos¢ —sinqb(;S)

= rsin26sin¢cos¢f'+rsin@cos@sinqﬁcosd)é —rsinf sin2¢>$.

Example 1.5 Given A = Agr, where Ay is a constant, determine A *X.

Solution. We have A *X = Apr *X. From

X sinf cos ¢ cos 6 cos¢ — sin ¢ r
y| = | sinfsing cosfsing cos¢ 0]\,
Z cos 6 —sin6 0 é

we see that X = sinecosqﬁf'—l—cos@cosqbé — sinqb(;ﬁ. Thus,
FeXx = (sin@cosd)f'—i—cos@cosd)é — sinqquS) *F = sinf cos ¢.

Therefore, A *X = Ag sin 6 cos ¢. <
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Example 1.6 GivenA = p + 3(5 + 6%, determine the scalar component of A parallel to the
y axis.

Solution. We have
Ay=(p+3p+6Z)°y.

Using
X cos¢g —sing 0\ /p
y]l=1|sin¢ cos¢p 0 (iﬁ ,
z 0 0 1 z

we write § = sin¢ p + cos ¢¢. Then,
Ay= (f)+3$+6i) '(sin¢f)+cos¢$) = sin¢ + 3 cos ¢.

Notice that ¢ = /2 along the y axis. Hence, A *§ )2 =
=

Example 1.7 Given A = pzcos? ¢ p + sin ¢ <i) + p z, determine (a) the scalar component
of A parallel to the x axis, (b) the vector component of A normal to the surface p =1 [i.e.,
(A * p)p when p = 1], and (c) the vector component of A tangential to the plane z = 0.

Solution.
(a) We have
Ak = (pzcos’pp+sinpd+ pi) %
Using
X cos¢ —sing 0\ /p
§|=1sing cosgp 0] |o],
Z 0 0o 1 z

we write X = cos¢ p — sin $¢. Thus,
A X = pzcos® ¢ — sin’ .

But since ¢ = 0 along the x axis, we get A * )2’¢_0 = pz.
(b) We have
AL =(A*p)p = pzcos’ ¢ p.
But this has to be evaluated at p = 1. Hence, A | ‘p_l = zcos? ¢ p.
(c) We have

A =A—A| =A— (A*2)2=pzcos’p p +sine .

~

= sin ¢ ¢. <

But this has to be evaluated at z = 0. Hence, A 0
Z:




