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Preface 

A qualitatively new level of development of various branches of modern natural 
science is closely connected with theoretical and applied problems of the interaction 
of various media and fields. The problems of interaction are also fundamental in a new, 
rapidly progressing field of mechanics of a deformable solid body—in the theory of 
magnetoelasticity, the subject of which is the study of conjugate fields and processes 
in deformable bodies under the influence of external electromagnetic fields. Interest in 
research in this area is due to the importance of quantitative study and evaluation of the 
observed effects of the interaction of mechanical and electromagnetic processes and 
their practical application. The problems of interaction of various fields of physical 
origin are relevant and cover a wide class of general theoretical and applied problems 
that arise when considering a physical experiment, creating measuring equipment, 
solving problems of electromagnetic flaw detection, creating strong magnetic fields, 
electro-magneto-mechanical energy converters, signal processing, etc. 

At present, a significant number of works are known in which various problems 
of magnetoelasticity are studied. In particular, the issues of oscillation and stability 
of thin elastic non-ferromagnetic conducting plates and shells in an electromagnetic 
field have been studied quite fully, and the interaction effects here turned out to 
be very significant. But similar questions for thin bodies made of ferromagnetic or 
superconducting material have received comparatively little attention in the literature. 
This is explained, firstly, by the fact that the solutions of the arising boundary value 
problems are associated with great mathematical difficulties, and secondly, by the fact 
that the interaction pattern becomes much more complicated when the material of the 
body has the property of magnetic polarizability. With this book, the authors intend 
to partially fill these gaps. It is devoted to the study of oscillations and stability of 
thin plates and shells (both magnetically active ferromagnetic and superconducting) 
in a magnetic field. 

The purpose of this book is to introduce the reader to the methods of mathematical 
modeling and solving non-stationary (dynamic) problems of the theory of magne-
toelasticity, as well as to give an idea of the richness of physical effects caused by the 
interaction of electromagnetic and mechanical phenomena in magnetoactive elastic
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thin bodies. Consideration is mainly limited to a model of isotropic body under the 
assumption of small deformations. The International System of Units (SI) is adopted. 

Chapter 1 of the book is based on the basic connected nonlinear equations and 
relations of mechanics and quasi-static electrodynamics of continuous media; by 
linearization, a system of magnetoelasticity equations, surface conditions, and consti-
tutive equations describing the behavior of perturbations in a magnetoactive medium 
(both magnetically soft or magnetostrictive ferromagnetic and superconducting), 
interacting with an external magnetic field, are obtained. On this basis, in the next 
two chapters (Chaps. 2 and 3), using the hypothesis of non-deformable normals, 
two-dimensional linearized equations and relations of magnetoelastic oscillations 
and the stability of magnetically soft thin plates and shells are derived. Mathematical 
modeling of dynamic processes occurring in the considered thin bodies is given. 
As a result, the problems of magnetoelastic oscillations and the stability of these 
thin bodies are reduced to solving a two-dimensional system of differential equa-
tions under the boundary conditions for fixing the edges of the body and the derived 
conditions for conjugation on its surface. On this basis, by solving specific applied 
problems, a number of qualitative and quantitative results were revealed, due to the 
interaction of mechanical and magnetic phenomena in ferromagnetic thin bodies, 
including loss of static stability under the action of both transverse and longitu-
dinal constant magnetic fields; a significant increase in the damping effect of the 
magnetic field in the case of conducting ferromagnetic thin bodies; regulation of para-
metric oscillations (caused by external non-stationary forces) using a given constant 
magnetic field (e.g., a magnetic field with a magnetic induction of less than one tesla 
can significantly reduce the width of the main region of dynamic instability); excita-
tion of controlled parametric oscillations by a harmonic magnetic field; by varying the 
magnitude of the induction of a given magnetic field, one can significantly increase 
or significantly decrease the amplitude of forced magnetoelastic oscillations. More-
over, it was found that with the help of a magnetic field, it is possible to regulate 
the location of resonance points and exclude the possibility of dangerous resonant 
oscillations, etc. An approximate formula is obtained for determining the magneto-
hydrodynamic pressure on the oscillating surfaces of a plate in a supersonic flow of 
an ideally conducting gas in the presence of a magnetic field. It is a generalization 
of the well-known formula, obtained on the basis of the piston theory of classical 
gas dynamics, for the case of magneto-gas-dynamic flow around thin bodies. On this 
basis, it became possible to solve complex problems of aero-magnetoelasticity and 
show the possibility of favorable control of the characteristics of supersonic linear 
and nonlinear flutter of thin bodies using a magnetic field. 

In Chaps. 4 and 5, magnetoelastic processes in superconducting thin shells in 
stationary and non-stationary magnetic fields are studied. Here, based on the main 
provisions of the classical theory of thin shells, the theory of superconductivity and 
the results of previous chapters, on the basis of the hypothesis of non-deformable 
normals, two-dimensional equations and the corresponding conditions that charac-
terize the oscillations and stability of superconducting deformable thin cylindrical 
and spherical shells under the action of a given magnetic field are obtained. On this 
basis, by solving specific problems, the possibility of losing both static and dynamic
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stability of thin superconducting bodies under the action of an external magnetic 
field has been established. The conditions are formulated under which in supercon-
ducting thin bodies, due to the presence of a constant magnetic field of relatively 
low strength, it is possible: to control resonant and flutter oscillations; to excite both 
transverse forced oscillations with the help of a magnetic field harmonic in time, and 
accompanying transverse oscillations under the action of a non-stationary longitu-
dinal force; get rid of the appearance of bending stresses of magnetoelastic origin, 
exceeding the elastic limit of the shell material, etc. 

Chapter 6 is devoted to mathematical modeling and research of the dynamics of 
magnetostrictive plates in magnetic fields (stationary and non-stationary) of various 
orientations. To achieve this goal (study of the processes of magnetoelastic interaction 
in the considered plate with complex physical properties of its material), the main 
provisions of the following theories and methods were used: the linearized theory of 
elastic stability of magnetostrictive solids; the classical theory of elastic plates; and 
the asymptotic method for solving boundary value problems in a rectangular region. 
As a result, the corresponding boundary value problems of mathematical physics 
are formulated, which describe dynamic processes in the considered magnetoelastic 
systems. By solving specific practically interesting problems, it has been established 
that: (a) there is a region of change in the geometric parameters of the plate and the 
magnetostrictive characteristics of its material, where the unperturbed state of the 
plate is stable at any value of the induction of the external magnetic field; (b) in the 
specified region, the magnetic field can lead to a significant increase in the frequency 
of magnetoelastic oscillations; (c) outside this region, the magnetostrictive effect 
has a destabilizing effect, leading to a significant decrease in the critical value of 
the magnetic induction (at which the plate loses stability) compared to the indicated 
critical value obtained in the absence of the magnetostrictive effect . It is also shown 
that due to the magnetostrictive effect, it is possible: to lose the static stability of the 
plate under the action of a constant transverse magnetic field; using a magnetic field to 
change significantly the value of the frequency of natural oscillations. The influence 
of the inhomogeneity of the plate on the processes under consideration was also 
investigated. Dynamic processes in layered plates are studied, and it is established 
that a magnetostrictive plate inhomogeneous in thickness (two-layer) in a harmonic 
magnetic field can become a source of disturbance propagation. In the case of a three-
layer magnetostrictive plate, the material of the middle layer of which is a composite 
non-magnetic dielectric, it is shown that the inhomogeneity, magnetostrictive, and 
compositional properties of the layers are sufficient to optimally control dynamic 
processes, especially those that arise due to interaction. Here, an important role is 
played by the optimal choice of the angle of reinforcement of the composite material 
of the middle layer. 

The last chapter (Chap. 7) is devoted to the stability of dielectric thin plates 
in a supersonic flow of an ideally conducting gas in the presence of a magnetic 
field. The problems are studied in both linear and nonlinear formulations. Here, 
as well as in the classical flutter problems, in determining the forces acting on the 
body caused by the flow and the magnetic field, the asymptotic property of the 
supersonic flow is used, according to which gas particles move mainly in directions
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normal to the streamlined surface (the law of plane sections). Based on this, an 
approximate formula for determining the magnetodynamic pressure on the oscillating 
surface of a thin elastic plate is obtained. The formula for pressure is a certain 
generalization of the well-known formula, obtained on the basis of the “piston” 
theory of classical gas dynamics, for the case of magneto-hydrodynamic flow around 
thin bodies. On the basis of this formula, as well as the equations of the theory of 
magnetoelasticity of thin plates, specific stability problems are solved in order to 
identify the influence of a magnetic field and the effects of interaction on the critical 
flutter velocity and on the amplitude of steady flutter oscillations. It is shown that in 
the presence of a magnetic field: (a) the critical flutter velocity of a rectangular plate 
decreases significantly, (b) the critical velocity of divergence (static instability) in 
the case of a cylindrical shell with an internal flow increases significantly due to the 
conductivity of the gas inside the shell and is a monotonically increasing function 
of the parameter characterizing strength of a given magnetic field. The study of 
nonlinear magnetoelastic flutter oscillations of plates is given taking into account 
both types of nonlinearities: aerodynamic (square and cubic) and geometric (cubic). 
It is established that the presence of both a flow and a magnetic field can become a 
source of both quantitative and qualitative changes in the monotonically increasing 
nature of the amplitude-frequency dependence of steady-state flutter oscillations, 
which occurs in the absence of a magnetic field and a gas flow. 

Based on the above, we can conclude that this book is useful not only for students, 
graduate students and researchers specializing in the fields of mechanics and elec-
trodynamics of continuous media, but also of interest to specialists associated with 
applied physics and mathematics and their numerous applications. 

The main part of the book consists of the results obtained by the authors and 
Ph.D. students of Gevorg Baghdasaryan: D. Hasanyan, P. Mkrtchyan, E. Danoyan, 
R. Saghoyan, I. Vardanyan. A lot of work on preparation of the manuscript was made 
by Iren Vardanyan. The authors express sincere gratitude to her, as well as to all the 
persons who assisted them in the work on the book. 

Yerevan, Armenia Gevorg Y. Baghdasaryan 
Marine A. Mikilyan
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Chapter 1 
Basic Equations and Relations 
of Magnetoelasticity of Magnetoactive 
Deformable Bodies 

In this chapter, based on the basic coupled nonlinear equations and relations of 
mechanics and quasi-static electrodynamics of a continuous medium, by lineariza-
tion, a system of magnetoelasticity equations, surface conditions and constitutive 
equations are obtained that describe the behavior of perturbations in a magnetically 
active (both soft ferromagnetic or superconducting, and magnetostrictive) medium 
interacting with an external magnetic field. The presentation is given in curvilinear 
coordinates with the use of tensor analysis and the Lagrange method for describing the 
motion of a continuous medium. We also note that in this chapter, when presenting 
the well-known basis of the theory of magnetoelasticity of magnetoactive bodies, 
the methods of presentation from the monograph Bagdasaryan G.Y., Mikilyan M.A. 
Effects of Magnetoelastic Interactions in Conductive Plates and Shells. Springer, 
2016 are widely used. 

1.1 Deformed State of Magnetically Active Elastic Bodies 
Interacting with Magnetic Fields 

In continuum mechanics, a deformable body is considered as a set of material points 
(particles) that continuously fill a part of the space occupied by the body. When 
moving (deforming), the body at different moments of time t occupies different 
regions Ωt of the three-dimensional Euclidean space, called its configurations. Each 
material particle P of the body at a certain moment in time t occupies a certain point 
M in the area Ωt . One of the body configurations Ω0, at  t = t0, is considered the 
main (initial) and everything related to the body and its movement refers to this 
configuration. 

To describe the motion (deformation) of a continuous medium, we introduce a 
curvilinear coordinate system αn(n = 1, 2, 3). When formulating the basic equations 
and relations of the nonlinear theory of magnetoelasticity, as in the usual theory of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
G. Y. Baghdasaryan and M. A. Mikilyan, Magnetoelastic Vibrations and Stability of 
Magnetically Active Plates and Shells, https://doi.org/10.1007/978-3-031-60307-5_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60307-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-60307-5_1
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elasticity, it is necessary to distinguish the coordinates of the initial and current 
configurations. We can individualize the material particles of the body in the initial 
configuration, by assigning to each material point from the region Ω0 the triple 
of values

(
α1, α2, α3

)
, which specifies the position of an arbitrary point M (0) in the 

regionΩ0 before deformation. This set of numbers will characterize the same material 
particle occupying the point M in the region of the current configuration Ωt and in 
the process of deformation. That is, we will use the Lagrangian approach, according 
to which the coordinates of the points of the deformable body are expressed in terms 
of the coordinates of the points before the deformation. 

The position of an arbitrary point M (0) of the medium in the initial configuration 
is determined by the radius vector →r(0)

→r(0) = →r(0)
(
α1 , α2 , α3

)
. (1.1.1) 

Here and below, the index “0” means that the value refers to the undeformed state. 
Let us briefly summarize some well-known facts from tensor analysis [22, 45], 

which are necessary for what follows. 
Covariant basis vectors →g(0) 

λ at the point M (0) are defined by the formulas

→g(0) 
λ = 

∂→r(0) 

∂αλ . (1.1.2) 

Using the covariant basis vectors (1.1.2), we define the covariant metric tensor 
g(0) 
ij : 

g(0) 
ij = →g(0) 

i · →g(0) 
j = g(0) 

ji , (1.1.3) 

contravariant metric tensor gij 0 : 

gik 0 g
0 
kj = δi j (1.1.4) 

and the contravariant basis vector →gλ 
0 at the point M (0):

→gλ 
0 = gλk 

0 →g(0) 
k . (1.1.5) 

In these relations, δi j is the Kronecker symbol, and the notation →a · →b means the 

scalar product of the vectors →a and →b. 
From relations (1.1.2)–(1.1.5) we obtain:

→gλ 
0 · →g0 k = δλ 

k ,

→g0 λ = g0 λk →gk 0 . 
(1.1.6) 

Here and in what follows, summation over repeated indices is assumed.
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The derivative of the covariant →g(0) 
k and contravariant →gλ 

0 basis vectors with respect 
to the coordinate αν is defined as follows: 

∂→g0 k 
∂αν = [̇λ 

kν →g0 λ, 

∂→gλ 
0 

∂αν = −→gk 0[λ 
νk = −[λ 

νkg
ik 
o →g(0) 

i , (1.1.7) 

where [λ 
νk are the Christoffel symbols, defined by the formula 

2[λ 
kν = gνs 

o

(
∂g(0) 

νs 

∂αk 
+ 

∂g(0) 
ks 

∂αν − 
∂g(0) 

kν 
∂αs

)

. (1.1.8) 

Using (1.1.7), one can determine the partial derivatives of arbitrary vectors and 
tensors with respect to curvilinear coordinates. Bearing in mind that the vectors →g0 k 
and →gλ 

0 are basic vectors, any vector →a can be represented as follows:

→a = aλ→gλ 
0 = ak →g0 k , (1.1.9) 

where aλ and ak , respectively, are the covariant and contravariant components of this 
vector. 

From (1.1.9), on the basis of (1.1.7), we obtain 

∂→a 
∂αm 

= ∇ma
k →g0 k = ∇mak →gk 0 , (1.1.10) 

where the following notation is introduced for the covariant derivative of the covariant 
and contravariant vector components: 

∇ma
k = 

∂ak 

∂αm 
+ [k 

nma
n , 

∇mak = 
∂ak 
∂αm 

− [n 
kman . (1.1.11) 

Similarly, the covariant derivative of the covariant and contravariant components 
of any tensor Â of the second rank is calculated and the following expressions are 
obtained: 

∇mA
ij = 

∂Aij 

∂αm 
+ [i 

mkA
kj + [

j 
mkA

ik , 

∇mAij = 
∂Aij 

∂αm 
− [k 

imAkj − [k 
jmAik . (1.1.12) 

Let us proceed to the description of the deformed state of the medium, mainly 
relying on the approaches described in [6, 7, 18, 22].
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Let at an arbitrary moment of time t the considered material particle M (0) of a 
continuous medium occupy a point M in the region Ωt , the position of which is 
determined by the radius vector →r(α1, α2, α3, t

)

→r = →r0(α1 , α2 , α3
) + →u(α1 , α2 , α3 , t

)
(1.1.13) 

where →u is the displacement vector of the material particle M (0) corresponding to the 
transition of the point from the initial configuration Ω0 to the current configuration
Ωt . 

In a similar way, as was done above in the case of the undeformed state, the 
corresponding vector and tensor quantities of the deformed state are introduced and 
the actions on them are determined. In particular, the covariant and contravariant 
basis vectors and their corresponding covariant and contravariant metric tensors of 
the deformed state are introduced as follows:

→gλ = 
∂→r 
∂αλ , gλk = →gλ · →gk ,

→gλ = gλk →gk , gλk gkl = δλ 
l , →gn→gm = δn m. (1.1.14) 

All other values of the deformed state are determined according to formulas 
(1.1.7)–(1.1.12) with the replacement of →g0 λ, →gκ 

0 , g0 ij and g
ij 
0 , respectively, by →gλ, →gk , gij 

and gij. 
Let us consider the changes in the distance between two infinitely close material 

particles after deformation. Let dl0 be the distance between two infinitely close 
material particles in the initial configuration, and dl—the distance between the same 
material particles in the current configuration. Then 

(dl)2 − (dl0)2 = d→r · d→r − d→r0 · d→r0 . (1.1.15) 

Taking into account (1.1.2), (1.1.10), (1.1.13) and (1.1.14), we calculate the 
differentials d→r0 and d→r in the form 

d→r0 = 
∂→r0 
∂αn 

d αn = →g0 nd αn 

d→r = 
∂→r 
∂αn 

d αn = →gndαn = (→g0 n + →g0 m∇nu
m
)
dαn = (→g0 n + →gm 0 ∇num

)
d αn , (1.1.16) 

where um and um are covariant and contravariant components of the displacement 
vector →u(→u = →g0 mum = →gm 0 um

)
. 

Substituting (1.1.16) into (1.1.15), after a series of transformations, we obtain 
relations for determining the covariant components of the Green’s strain tensor in 
the form [22, 27, 32]
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dl2 − dl2 0 = 2εijd αi d αj , 
2εij = ∇iuj + ∇jui + ∇iu

k∇juk , 
εij = εji, gij = g0 ij + 2εij, (1.1.17) 

where εij are covariant components of the Green’s strain tensor ε̂ . 
Based on the above relationships, it is possible to calculate the change in other 

physical and geometric quantities during the deformation process. In particular, the 
velocity →v and acceleration →w vectors of the particles of the material medium for a 
given law of motion (1.1.13) are determined by the formulas [22, 32]

→v = 
∂→r 
∂t 

= 
∂un 

∂t
→g0 n = 

∂um 
∂t

→gm 0 ; →v = vn→g0 n = vm→gm 0 ,

→w = 
∂2→r 
∂t2 

= 
∂2un 

∂t2
→g0 n = 

∂2um 
∂t2

→gm 0 ; →w = wn→g0 n = wm→gm 0 , (1.1.18) 

The values vn and vn; wn and wn are called covariant and contravariant components 
of the velocity and acceleration vectors in the Lagrangian description of the motion 
of a continuous medium. When obtaining (1.1.18), it was taken into account that the 
basis vectors and Lagrangian coordinates do not depend on time. 

In conclusion of this section, we present the change in the components of the 
normal vector to the material surface in the process of motion. Let us denote by →N 0 
the unit vector of the normal to the surface of the initial configuration, and by →N —the 
unit vector of the normal to the same material surface in the current configuration. 
Then, the contravariant components of the vector →N are expressed in terms of the 
covariant components of the vector →N 0 as follows [22, 27]: 

N j = 
gkn

(
δ
j 
n + ∇nuj

)

/
gαβN 0 α N 

0 
β 

N 0 k , →N = N i→g0 i , (1.1.19) 

where gαβ, taking into account (1.1.7) and (1.1.3), are determined according to 
(1.1.14). 

1.2 Description of the Stress State of a Magnetically Active 
Deformable Body 

To describe the stress state of a continuous medium, we will use the stress vector 
related to elementary areas before deformation. In the initial configuration, let us 
consider an infinitesimal tetrahedron dQ0, three faces dS0 

n0 of which are formed by 
the coordinate surfaces α = const , and the fourth face dS0 

n0 is determined by the 
normal vector →N 0. In the process of deformation, the indicated material tetrahedron
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transforms into an infinitely small tetrahedron dQ in the current configuration. As 
applied to the tetrahedron dQ, we introduce the following notation [22]: →t(n) is the 
stress vector on the elementary area dSn referred to the area dS0 

n0 ; →t(N ) is the stress 
vector on the elementary area dSN referred to the area dS0 

N 0 . 
From the condition of dynamic equilibrium of an infinitely small material 

tetrahedron dQ, the following vector relation is obtained [22, 27]:

→t(N ) = 
3∑

k=1 

N 0 k

/
gkk 0

→t(k);

→N 0 = N 0 k →gk 0 , (1.2.1) 

which relates the stress vector on the inclined area dSN with ort →N with the stress 
vectors on the coordinate areas dSn in the current configuration. 

In accordance with (1.2.1), the Kirchhoff stress tensor t̂ and the Lagrange tensor 
ŝ are introduced as follows [22, 27, 32]:

→t(n) √gnn 0 = tnm→g0 m = snm→gm,

→t(N ) = tnm→g0 mN 0 n = snm→gmN 0 n . (1.2.2) 

Taking into account, that

→gm = →g0 m + →g0 k∇mu
k , (1.2.3) 

which follows from (1.1.13), from (1.2.2) we obtain the following relation between 
the components of the tensors t̂ and ŝ 

tnl = snm
(
δl m + ∇mu

l
)
. (1.2.4) 

To compose the equations of motion and reveal the symmetry properties of stress 
tensors, let us consider in the current configuration an infinitely small material paral-
lelepiped formed by the coordinate surfaces αi = const and αi + d αi = const. From  
the conditions of equality to zero of the main vector and the main moment, applied 
to the specified infinitely small material parallelepiped of all forces (surface and 
volume) and volume moments, respectively, we obtain [12, 22, 39] 

∇it
ik + ρ0f k = ρ0 

∂2uk 

∂t2 
,

→gi × tij→g0 j + ρ0→c = 0, 

∇it
ik ≡ 

∂tij 

∂αi 
+ tin[j 

in + tnj[i 
in,

→f = f k →g0 k , (1.2.5)
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where ρ0→f and ρ0→c are volume forces and volume moments of the current 
configuration, respectively; ρ0 is the density of the medium in the initial configuration. 

Substituting (1.2.4) into (1.2.5) we obtain the following equations of motion of a 
continuous medium with respect to the Lagrange stress tensor ŝ [12, 22]: 

∇i
[
sim

(
δk m + ∇mu

k
)] + ρ0f k = ρ0 

∂2uk 

∂t2 
, 

√
g εimks

im + ρ0ck = 0; →c = ck →gk , (1.2.6) 

where g = det
||
||||g0 pq

||
||||, and εimk the Levi–Civita tensor, whose components have the 

form 

εimk = εimk = 

⎧ 
⎨ 

⎩ 

+1 if(i, m, k) is(1, 2, 3) or (2, 3, 1) or (3, 1, 2) 
−1 if(i, m, k) is (3, 2, 1) or (1, 3, 2) or (2, 1, 3) 
0 ifi = m or m = k or i = k. 

It follows from (1.2.5) and (1.2.6) that the stress tensors t̂ and ŝ are asymmetric. 
If →c = 0, then the Lagrange stress tensor ŝ, due to the second equation of system 
(1.2.6), will be symmetric. 

1.3 Determination of Mass Forces and Mass Moments 
of Magnetic Origin. Equations of a Quasi-Stationary 
Magnetic Field 

If a dielectric ferromagnetic medium is in a magnetic field, then body forces ρ0→f and 
mass moments ρ0→c arise in it, and are determined by the following formulas [26, 37, 
43]: 

ρ0→f = μ0 →M∇ →H , 
ρ0→c = μ0 →M × →H , (1.3.1) 

where →H is the magnetic field strength, →M is the medium specific magnetization 
vector (the magnetic moment per volume unit), ∇ is the nabla operator, μ0 is the 
magnetic constant

(
μ0 = 4π × 10−7N/A2

)
. 

The vectors →H and →M are related to the magnetic induction vector →B by the rela-
tion →B = μ0

( →H + →M
)
and satisfy (in the quasistatic approximation) the following 

Maxwell equations [26, 43]: 

rot →H = 0, 
div→B = 0. (1.3.2)
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In component form, Eq. (1.3.2) can be written as 

εijk∇iHj = 0, 
∇mB

m = 0. (1.3.3) 

Similarly, from (1.3.1) we have  

ρ0f 
i = μ0M n∇nH 

i , 
ρ0ci = μ0 

√
g εnmiM̄ n H̄ m ,

→M = M n→g0 n = M̄ n→gn,
→H = H i→g0 n = H̄ i→gi. (1.3.4) 

Substituting (1.3.4) into (1.2.6), we obtain the following symmetry conditions 

εnmi

(
sim + μ0M̄ i H̄ m

)
= 0, (1.3.5) 

from which it follows that the tensor sim can be represented in the form 

sim = sim c + 
1 

2 
μ0

[
M̄ m H̄ i − M̄ i H̄ m

]
, (1.3.6) 

where sim c is the symmetric part of tensor sim. 
In accordance with (1.3.3) and (1.3.4), the expressions for ρ0f i can be represented 

as [6, 34, 37] 

ρ0f 
i = ∇mT 

mi , (1.3.7) 

where the Maxwell stress tensor T mi is [6, 17, 28, 30, 37] 

T mi = H m Bi − 
1 

2 
μ0g

mi 
0

→H 2 . (1.3.8) 

Considering (1.2.5) [or  (1.2.6)] and (1.3.1), we notice that the problem of 
mechanics of a continuous deformable medium turns out to be related to the problem 
of magnetostatics of a deformable non-conducting ferromagnetic body. In the future, 
when writing the equations of state and boundary conditions, we will see that there 
is also a reverse bond, so that both problems turn out to be interconnected.
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1.4 State Equations of Magnetically Active Elastic Media 

Let us consider the formulation of relations for the characteristics of the deformed 
state (elastic stresses, deformations, magnetic field strength and magnetization) for 
an elastic ferromagnetic medium, expanding one of the thermodynamic potentials 
into a power series in powers of a small parameter. In this case, we will consider 
quasi-static processes, neglecting the thermoelastic effects. Let us choose the specific 
free energy F as the initial thermodynamic potential and expand it into a series in 
powers of the strain tensor components and the specific magnetization vector. 

Changes in the free energy of a unit mass, as shown in [6, 26, 34, 47], can be 
represented as 

δF = 
1 

ρ 
sij αkiδβjk + μ0H 

k δ

(
1 

ρ 
Mk

)
, 

αki = δki − ∇ku
i , βjk = δjk + ∇ju

k , (1.4.1) 

where αki and βjk are Euler and Lagrange strain gradient components respectively, 
δki is Kronecker symbol. 

In what follows, the specific free energy F will be considered as a function of the 
quantities βjk and magnetization →I = ρ−1 →M . In this case, for the variation of the 
chosen thermodynamic potential, we obtain the following relation: 

δF = 
∂F 

∂βij 
δβij + 

∂F 

∂Ik 
δIk . (1.4.2) 

From (1.4.1) and (1.4.2) we obtain relations for determining the contravariant 
components of the tensor ŝ and the magnetic field strength vector in the following 
form: 

sij = ρβik

(
∂F 

∂βjk

)

Mk 

, 

H k = 
1 

μ0

(
∂F 

∂Ik

)

εij 

. (1.4.3) 

In (1.4.3), subscripts indicate which variables are considered constant during 
differentiation. 

Thus, having the expression for the specific free energy, we obtain the dependence 
of the components of the stress tensor ŝ and the magnetic field strength vector on the 
components of the Lagrange deformation gradient and the specific magnetization 
vector.
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1.5 The Boundary and Initial Conditions 

The system of Eqs. (1.2.6) and (1.3.3), which determine the behavior of a magnetic 
field and an elastic ferromagnetic body moving in it, must be accompanied by condi-
tions on the surface that bounds the body, the initial conditions, and the conditions 
at infinity. 

Let us confine ourselves to considering the case when a dielectric ferromagnetic 
body is in contact with an external non-polarizable non-conductive medium. Then 
the surface of the body serves as the interface between two media with different 
magnetic properties and is the surface of a strong discontinuity. 

Let us formulate the conditions that must be satisfied on the discontinuity surface. 
Let us first of all consider the boundary conditions for the magnetic field, assuming 
that there are no external electric charges on the surface of the body. From the equa-
tions of magnetostatics written in an integral form, based on the accepted assump-
tions, the continuity of the normal component of the magnetic induction vector →B 
and the continuity of the tangential components of the magnetic field strength vector
→H on the surface of the ferromagnet S of the current configuration [9, 26, 28, 43]

(→B − →B(e)
)

× →N = 0,
( →H − →H (e)

)
× →N = 0. (1.5.1) 

In (1.5.1), →N is the vector of the outer normal to the surface S of a ferromag-
netic medium, determined according to (1.1.19), and the index “e” here and in what 
follows means that the quantity under consideration belongs to the external medium. 
According to the accepted assumptions that the external medium is non-conductive 
and non-polarizable, and the process is quasi-static, the equations of the magnetic 
field in this medium relative to →B(e) and →H (e) will have the form 

div →H (e) = 0, 
rot →H (e) = 0,
→B(e) = μ0 →H (e) . (1.5.2) 

The boundary conditions for the functions characterizing the mechanical part of 
the problem, if they are formulated in displacements, have the form

→u|S0 = →u∗, 

where →u∗ is the given vector of the surface points moving, S0 is the body surface in 
the initial configuration. 

If surface forces →F are given on the surface of the body, then the boundary condi-
tions must be formulated in stresses. To obtain such conditions, we single out the 
volume V containing part of the discontinuity surface S, and with respect to this
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volume we apply the momentum equation. Using (1.3.8) and the Gauss-Ostrogradsky 
theorem, we transform the volume integrals in the momentum equation into surface 
integrals over the S1 surface of volume V . Then, constricting the surface S1 from 
both sides to the discontinuity surface S and proceeding similarly as in [39], taking 
into account (1.2.2)–(1.2.4) and (1.4.1), we obtain the following conditions at the 
points of the surface S0 [6, 36, 39]: 

βmi
[
skm − skm(e)

]
N 0 k = Ri . (1.5.3) 

Here skm and skm(e) are the components of tensor (1.2.2), respectively, for the body 
and the medium; R is the surface plane of distribution on S of the external forces 
acting on the body; 

Ri = Fi + [
T km(e) − T km

]
βmiN 

0 
k ,

→R = Ri→g0 i , →F = Fi→g0 i , 
T ki(e) = μ0H 

k(e) H i(e) − 
1 

2 
μ0g

ki 
0

[ →H (e)
]2 ; (1.5.4) 

T ki and T ki(e) are the Maxwell stress tensors for the body and the medium, respec-
tively, →H (e) is the magnetic field outside the ferromagnet, N 0 k are the covariant compo-
nents of the unit vector of the normal to the body surface S0 in the undeformed 
state. 

In particular, when the external medium is a vacuum, conditions (1.5.3) take the 
form [6, 9, 28, 37, 38]

[
skm

(
δi m + ∇mu

i
)]
N 0 k = Fi + [

T km(e) − T km
](

δi m + ∇mu
i
)
N 0 k . (1.5.5) 

In specific problems of magnetoelasticity, the initial conditions should also be 
appropriately specified and limits on the behavior of the solution at infinity should 
be set. The initial conditions, in the study of unsteady processes, in most cases, are 
reduced to setting at a fixed point in time the main sought-for functions and their 
time derivatives. The conditions at infinity must be such as to ensure the uniqueness 
of the solution of the considered problems [10, 11, 13, 20, 21, 27, 31]. 

1.6 Equations and Boundary Conditions of the Perturbed 
State and Their Linearization 

In the future, under the concept of a magnetoelastic system, we mean either an 
elastic magnetically active ferromagnetic or elastic superconducting medium and a 
magnetic field. Moreover, in the general case, the magnetic field will exist not only 
in the area occupied by the body (the inner area), but also in the outer area, where 
it will satisfy Eq. (1.5.2). For definiteness, it is further assumed that the body under
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consideration is in a medium whose electrodynamic properties are identified with 
the properties of vacuum. 

Let us consider two states of a magnetoelastic system. The first state will be 
called unperturbed, and all quantities related to this state will be marked with the 
index “non” from above or below, depending on convenience. The second state will 
be called perturbed. All quantities related to the second state will be marked with the 
sign “~ ” and presented as the sum of quantities related to the unperturbed state and the 
perturbations of the corresponding quantities

(
Q̃ = Qnon + q

)
[33]. The perturbations 

will be considered small compared with the corresponding values of the unperturbed 
state and we will not give them with any additional indices. The derivation of the 
basic equations and the corresponding conditions is given for two types of considered 
media: elastic dielectric magnetoactive and elastic superconducting. 

1.6.1 The Case of Elastic Magnetoactive Ferromagnetic 
Materials 

So, according to the above, we will represent the quantities characterizing the 
perturbed state of the considered magnetoelastic system in the form 

s̃ik = sik non + sik , ũi = ui non + ui , 
f̃ k = f k non + f k , Ñk = N non k + Nk , 
B̃n = Bn 

non + bn , H̃ n = H n non + hn , 
M̃ n = M h non + mn , B̃(e)n = Bn(e) 

non + b(e)n , 
H̃ (e)n = H n(e) non + hn(e) non , 
T̃ km = T km non + T km , T̃ km(e) = T km(e) 

non + T km(e) , 
ρ̃ = ρnon + ρ, ρ̃ = ρ0

(
1 − ∇k ũ

k
)
, 

ρnon = ρ0
(
1 − ∇k ũ

k 
non

)
. (1.6.1) 

moreover, the formulas for ρ̃ and ρnon follow from the law of conservation of mass. 
Here, all quantities with index “non” characterize the unperturbed state and, 

according to (1.2.6), (1.3.3), (1.3.4), (1.5.1)–(1.5.5), satisfy the following equations 
and boundary conditions: 

The unperturbed state equations 

∇i
[
sim non

(
δk m + ∇mu

k 
non

)] + ρ0f k non = ρ0 
∂2uk non 
∂t2 

, 

ρ0f 
k 
non = μ0M n non∇nH 

k 
non, 

εijk∇iH 
non 
j = 0, ∇mB

m 
non = 0, 

rot →H (e) non = 0, div →H (e) non = 0 , →B(e) 
non = μ0 →H (e) non; (1.6.2)
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the boundary conditions of the unperturbed state:

(→Bnon − →B(e) 
non

)
· →Nnon = 0,

( →Hnon − →H (e) non

)
× →Nnon = 0 ,

[
skm non

(
δi m + ∇mui non

)]
N 0 k = Fi + [

T km(e) 
non − T km H

](
δi m + ∇mui non

)
N 0 k . 

(1.6.3) 

The characteristics of the perturbed state Q̃ must also satisfy equations and 
boundary conditions of the type (1.6.2) and (1.6.3) with the subscript “non” replaced 
by the sign “~” in (1.6.2) and (1.6.3). Substituting into the equations and boundary 
conditions of the perturbed state obtained in this way instead of Q̃ their expres-
sion according to (1.6.1) and taking into account that the quantities Qnon obey 
Eqs. (1.6.2) and boundary conditions (1.6.3), we obtain the following equations for 
perturbations q: 

∇i
[
sik + sim non∇mu

k + sim∇m
(
uk non + uk

)] + ρ0f k = ρ0 
∂2uk 

∂t2 
, 

ρ0f 
k = μ0M i non∇ih

k + μ0m
i∇i

(
H k non + hk

)
, 

rot→h(e) = 0, div→h(e) = 0, →b(e) = μ0→h(e); (1.6.4) 

and boundary conditions

(→Bnon − →B(e) 
non

)
· →N +

(→b − →b(e)
)

· →Nnon +
(→b − →b(e)

)
· →N = 0,

( →Hnon − →H (e) non

)
× →N +

(→h − →h(e)
)

× →Nnon +
(→h − →h(e)

)
× →N = 0, 

skm non∇mu
i N 0 k + skm

[
δi m + ∇m

(
ui non + ui

)]
N 0 k 

= [
T km(e) 
non − T km non

]∇mu
i N 0 k +

[
T km(e) − T km

][
δi m + ∇m

(
ui non + ui

)]
N 0 k . (1.6.5) 

We note once again that all the quantities included in (1.6.4), (1.6.5) and not 
marked with the index “non” are the perturbations of the corresponding quantities. 

Now we use the conditions for the smallness of the deformations of the unper-
turbed state and the conditions for the smallness of the perturbations to linearize the 
equations and boundary conditions for both the initial and the perturbed states. The 
following simplifications are based on the version of the theory of small deforma-
tions, according to which the relative elongations, shifts and covariant derivatives of 
the components of the displacement vector are small compared to unity and can be 
neglected compared to unity [6, 9, 22, 33]. To linearize the equations and boundary 
conditions of the unperturbed state, the characteristics of the unperturbed magnetic 
field, according to the above, can be represented as

→Mnon = →M∗ + →m0,

→Hnon = →H∗ + →h0,
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→Bnon = →B∗ + →b0, (1.6.6) 

where →M∗, →B∗ and →H∗ are the magnetization, magnetic induction, and magnetic field 
strength of the non-deformed body, and →m0, →b0 and →h0 are the additions to the indicated 
quantities due to the deformation of the unperturbed state. The quantities marked with 
“∗” are the solution to the following magnetostatics problem: 

Equations of magnetostatics in the inner region 

rot →H∗ = 0 , 
div→B∗ = 0 ,

→B∗ = μ0

( →H∗ + →M∗
)
, (1.6.7) 

equations in the outer region 

rot →H (e) ∗ = 0 , 
div→B(e) 

∗ = 0 ,
→B(e) 

∗ = μ0 →H (e) ∗ ,

→M∗ = 0; (1.6.8) 

conjugation conditions on the surface S0 of a non-deformed body and conditions at 
infinity

(→B∗ − B(e)∗
)

· →N 0 = 0 ,
( →H∗ − →H (e)∗

)
× →N0 = 0,

→H (e)∗ → →H0 for |r| → ∞, 

(1.6.9) 

where →H0 is the given external magnetic field in which the considered ferromagnetic 
body is placed. 

In addition to the accepted assumptions of the geometrically linear theory, it is 
considered that the additions →m0, →b0 and →h0 are small values in comparison with the 
corresponding values characterizing the magnetic field of an undeformed body. 

By virtue of the accepted assumptions, it follows from (1.6.2) that the character-
istics of the unperturbed state must satisfy the equations 

∇is
ik 
non + ρ0f k non = ρ0 

∂2uk non 
∂t2 

, 

f k non = μ0M∗i∇i
(
H k ∗ + hk 0

) + μ0m
i 
0∇iH 

k 
∗ , 

εijk∇ih
0 
j = 0, ∇mb

m 
0 = 0, bm 0 = μ0

(
mm 

0 + hm 0
)

(1.6.10) 

in the inner region and equations
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rot→h(e) 
0 = 0 , 

div→b(e) 
0 = 0 ,

→b(e) 
0 = μ0→h(e) 

0 (1.6.11) 

in the outer region. 
The solutions of Eqs. (1.6.10) and (1.6.11), according to (1.6.3) and the accepted 

assumptions, satisfy the following conjugation conditions on the surface of the body 
in the initial configuration: 

ski nonN 
0 
k = Fi + [

T ki(e) non − T ki non

]
N 0 k ,[

bk 0 − bk(e) 0

]
N 0 k −

[
B∗
m − B∗(e) 

m

]∇mui nonN 
i 
0 = 0, 

εnmk

{[
hn 0 − hn(e) 0

]
N m 0 −

[
H n∗ − H n(e)∗

]
∇mui nonN 

i 
0

}
= 0; 

(1.6.12) 

where, due to (1.3.8) and (1.5.4), we have 

T ki non = H k ∗ B
i 
∗ − 

1 

2 
μ0g

ik 
0

→H 2 ∗ + H k ∗ b
i 
0 + hk 0B

i 
∗ − μ0g

ik 
0

→H∗ · →h0, 

T ki(e) non = μ0H 
k(e) 
∗ H i(e) ∗ − 

1 

2 
μ0g

ik 
0

[ →H (e) ∗
]2 + μ0H 

k(e) 
∗ hi(e) 0 

+ μ0h
k(e) 
0 H i(e) ∗ − μ0g

ik 
0

→H (e) ∗ · →h(e) 
0 . (1.6.13) 

The systems of Eqs. (1.6.10), (1.6.11) must also be supplemented with the initial 
conditions and the conditions at infinity. 

Let us proceed to the linearization of the equations and boundary conditions of the 
perturbed state, accepting the main assumptions of the geometrically linear theory 
and the smallness of the perturbations. Then, with the accuracy of the accepted 
assumptions, taking into account (1.1.19), we obtain the following simplified 
relations:

[
T km(e) − T km

][
δi m + ∇m

(
ui H + ui

)] ≈ T ki(e) − T ki, 
sim

[
δk m + ∇m

(
uk non + uk

)] ≈ sik . 
(1.6.14) 

Taking into account (1.6.14), from (1.6.4) and (1.6.5), within the accepted accu-
racy, with respect to the perturbations of the corresponding magnetoelastic values of 
the unperturbed state, we obtain the following linearized equations: 

∇i
[
sik + sim non∇mu

k
] + μ0M i non∇ih

k + μ0m
i∇iH 

k 
non = ρ0 

∂2uk 

∂t2 
, 

εijk∇ihj = 0, ∇kb
k = 0 (1.6.15) 

in the inner region and the equations


