
Mauricio Porto Pato

Pseudo-Hermitian 
Random Matrices



Pseudo-Hermitian Random Matrices



Mauricio Porto Pato

Pseudo-Hermitian Random
Matrices



Mauricio Porto Pato
Institute of Physics
University of São Paulo
São Paulo, São Paulo, Brazil

ISBN 978-3-031-60293-1 ISBN 978-3-031-60294-8 (eBook)
https://doi.org/10.1007/978-3-031-60294-8

Mathematics Subject Classification: 15A52

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-60294-8


To my parents



Preface

This book comes as the result of a decade-long collaboration with the late Oriol
Bohigas. After years dedicated to the study of Hermitian random matrices, he
proposed the change of our interest to the non-Hermitian ones. We then started
studying the structure of the trajectories, in the complex plane, of eigenvalues of a
model constructed with the matrices of the non-Hermitian Unitary Ginibre ensemble.
Once this investigation finished, the idea came of studying the removal of the
Hermitian condition of the tridiagonal matrices of the so-called β-ensembles. That
is, to do with the tridiagonal form of the Random Matrix Theory (RMT), the
equivalent of what J. Ginibre, a long time before, did with the Gaussian matrices,
just after E. Wigner had proposed them. The β-ensembles were a subject in which
O. Bohigas was particularly interested. It is not well known but he was one of the
first of the RMT community to ponder about what would happen if the Gaussian
matrices were reduced to the tridiagonal form using Householder unitary trans-
formations. Immediately engaged in the project, we were able to publish an article
about non-Hermitian random matrices with real eigenvalues [1]. Chapter 3 is based
on this article with the addition of the discussion of a Dyson 2 β effect recently
discovered [2]. Unfortunately, just after the publication of the article Oriol died and I
could not anymore count with his collaboration to develop the research field open by
that article.

It is important to remark that at that time, we knew nothing about PT symmetry
and pseudo-Hermitian operators. As a matter of fact, it was by chance that I came to
learn about these matters and, moreover, to know that, concomitantly, there was an
effort of working out random matrix models to deal with the subject of this new class
of operators. Once the article was published, I found on the internet the announce-
ment of a Conference to be held at the Koç University of Istanbul organized by Ali
Mostafazadeh. My talk at the meeting with the discussions it ensued especially those
with Naomichi Hatano and Eva-Maria Graefe were very important to me. After this
meeting, it became fundamental to me to participate in the annual meetings of the PT
community to talk as much as to learn.
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viii Preface

By coincidence, just after my return from Istanbul, a student, Gabriel Marinello,
came to me interested in doing his graduate studies having me as supervisor.
Immediately, I accepted him, and we started to work in a project inspired by the
Hatano article on the delocalization of the eigenvectors of complex eigenvalues. The
results of our investigation were published [3] and turned out to become Gabriel’s
master’s degree thesis and contribute in part to Chap. 4. To Gabriel’s PhD project,
the idea was to extend the concept of the pseudo-Hermitian condition to the RMT
Gaussian matrices. This was done by turning complex the coupling constant of an
RMT model used by me and the late nuclear physicist M. S. Hussein, another
longtime collaborator of mine, to deal with the partial conservation of a quantum
number. Imposing the pseudo-Hermitian condition, the model was obtained and a
sequence of articles followed that constituted his doctorate work [4–8]. Chapters 10,
11, 12, 13, and 14 are based on these articles co-authored by me and Gabriel.

After Gabriel obtained his PhD, another student, Cleverson Andrade Goulart,
started to work with me on the idea of applying the pseudo-Hermitian condition to
the Laguerre ensembles. As is well known, Laguerre ensembles play a special role in
the study of quantum random pure states. We were able to show that pseudo-
Hermitian states can be used to investigate the behavior of the von Neumann entropy
in the transition from real to complex eigenvalues. Chapter 15 is based on an article
which Cleverson is co-author [9]. Another subject in which I could count with the
collaboration with Cleverson was in the extension of the 2 β effect to the three β-
ensembles whose results were published in an article with him [2] and parts of it
appears in Chaps. 3, 6, and 9.

It is important to inform that my co-authors are aware of the use of our articles in
this book.

São Paulo, Brazil Mauricio Porto Pato
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Chapter 1 
Introduction 

By the end of last century, evidence has been gathered that the complex Hamiltonian 
may have a real spectrum [1, 2]. The breakthrough was the study of the deformed 
harmonic oscillator Hamiltonian 

H = 
p2 

2m
- ixð ÞN ð1:1Þ 

that revealed that the eigenvalues are real for N ≥ 2 and move in conjugate pairs into 
the complex plane for N < 2. It also has been identified that this property is a 
consequence of the invariance of the complex Hamiltonian under the combined 
parity and time-reversal transformations, the so-called PT-invariance [3]. This result 
led to the question if an extension of quantum mechanics can be constructed to 
include this special class of non-Hermitian Hamiltonians [4–6]. For instance, if the 
scalar product of two wave functions satisfying the Schrödinger equation with the 
non-Hermitian Hamiltonian is preserved in time. It was then realized that for this to 
happen, the scalar product must be modified by introducing an appropriate metric. 

The connection of the PT-invariance with the class of pseudo-Hermitian opera-
tors was set by A. Mostafazadeh in a series of papers [7–9]. He took a clue from two 
main features of the PT systems, namely, that they have eigenvalues which are real 
or complex conjugate and that they require an internal product with a metric that 
makes it invariant under a time evolution obeying the Schrödinger equation. To see 
the consequence of these two demands, let us consider the η-internal product (Φ, ηΨ) 
of two wave functions that are supposed to satisfy the Schrödinger equation with a 
Hamiltonian H. Under this circumstance, we deduce that 

i∂t Φ, ηΨð Þ= Φ, ηH-H{ η Ψ = 0 

such that the preservation in time of the internal product implies in the relation 
ηH = H{ η, that is, in the condition 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

H{ = ηHη- 1 ð1:2Þ 

that shows that the operators of this non-Hermitian class must be connected to their 
respective adjoints by a similarity transformation. This condition defines the class of 
pseudo-Hermitian operators whose main property is to have a spectrum of real or 
complex conjugate eigenvalues. We observe that the metric η is not unique, for 
instance, the product Cη, where C is a real number, satisfies the above equation. 
More general, if μ is an invertible Hermitian matrix that commutes with H, then the 
matrix μημ-1 is also a valid metric. Along the book, we will see cases of metric 
constructed with the elements of the matrix itself but, also, metrics fixed indepen-
dently from the matrix. 

It is important to observe that, independently of the Schrödinger equation, the 
above pseudo-Hermitian condition (1.2) also can be deduced by considering that, 
given an internal product with a metric η, to an operator A to be Hermitian, it should 
satisfy 

Φ, ηAΨð Þ= AΦ, ηΨð Þ: ð1:3Þ 

At the same time, however, using the adjoint A{ of the operator we also have the 
relation (AΦ, ηΨ) = (Φ,A{ ηΨ) such that by comparing with the left-hand side of 
(2.3), the pseudo-Hermitian condition follows without requiring time independence 
of the metric [10, 11]. This fact poses the question if the Schrödinger equation can be 
extended to the case of time-dependent metric, this will be treated in the last chapter 
of the book. 

Turning now to random matrices, everything started when, in the late 1950s of the 
last century, E. Wigner borrowed from J. Wishart the Gaussian matrices then used by 
this statistician to construct his ensemble of invariant matrices and create the random 
matrix theory (RMT) (see Ref. [12] with a collection of articles). Spectral properties 
of these ensembles, the so-called Wigner-Dyson statistics [13–15], are characterized 
by the correlations generated by the repulsion among the levels and properties which 
are directly connected to the classical polynomials, namely, the Hermite ones, in the 
Wigner case, and the Laguerre ones, in the Wishart case. From the symmetry point of 
view, these ensembles are invariant under unitarity transformations and define three 
classes: the Orthogonal, the Unitary, and the Symplectic labeled by the Dyson index 
β with values 1, 2, 4, respectively. These values correspond to matrices with real, 
complex and quaternion elements. These three values have been named by F. Dyson 
the threefold way and physically correspond to systems invariant under time reversal 
with integer spin (β = 1) and half integer spin (β = 4), while (β = 2) refers to system 
without the time-reversal invariance [16]. A huge boost in the RMT applications 
came with the already proved Bohigas-Giannoni-Schmit conjecture that states the 
connection between Wigner-Dyson statistics and the manifestations of chaos in the 
quantum systems [17]. 

More recently, this picture had undergone a generalization with the introduction 
of the families of tridiagonal matrices parametrized by a real positive value of β



whose spectral statistical properties are the same of the full matrices for the values 
1, 2, 4 of the parameter β [18–21]. The tridiagonal ensembles are three: the β-
Hermite, the β-Laguerre, and the β-Jacobi ensembles and as their designations 
denote, their properties are related to the classical orthogonal polynomials as it 
occurs with the Gaussian matrices. This does not exclude the possibility of other 
β-ensembles. 

1 Introduction 3

The effort to construct random matrix ensembles as tools to simulate PT-sym-
metric systems started right from the early days of the subject, initially, considering 
small matrices of size 2 × 2 [22–24]. In our case, the breakthrough was the 
realization that the tridiagonal form of the β-ensembles constitutes a very convenient 
framework to impose the pseudo-Hermitian condition, Eq. (1.2), to non-Hermitian 
matrices. This led to the development of pseudo-Hermitian models based on the β-
ensembles. On the other hand, for the full Gaussian matrices, inspired by Eq. (1.1), 
the idea was to use complex coupling constants in the RMT ensembles that have 
been built to describe the partial conservation of a quantum number. By imposing the 
pseudo-Hermitian condition, the appropriate form of the constants was derived, and 
the pseudo-Hermitian Gaussian models were then introduced. 

It is important to mention that non-Hermiticity has already a notable history in 
RMT. In fact, few years after Wigner had proposed the Hermitian Gaussian ensem-
ble, J. Ginibre undertook the task of investigating Gaussian matrices with no 
Hermitian condition imposed [25]. As a matter of fact, the present book is the result 
of a research project that started with the idea of removing the Hermitian condition 
from the tridiagonal matrices of the β-ensembles as J. Ginibre successfully had done 
in the Gaussian case. Our investigation, naturally, leads to the pseudo-Hermiticity 
concept. 

It is important to remark that the pseudo-Hermitian condition, Eq. 1.2, has been 
considered in the context of the Cartan classification of non-Hermitian random 
matrices [26]. It is one of the discrete symmetries used to classify the classes of 
non-Hermitian ensembles. These symmetries entail a characterization of the forms 
the matrices and the metrics that they can have. The results obtained in our 
investigation of the tridiagonal and full pseudo-Hermitian matrices agree with the 
prediction of the Cartan classification [27]. 

The book starts by showing in the present chapter how the concept of pseudo-
Hermiticity historically emerged from the studies of PT-symmetric systems, studies 
that also aroused the interest of the RMT community. Chapter 2 discusses the 
consequences of the pseudo-Hermitian condition to the eigen-decomposition of the 
non-Hermitian matrices. The following chapters can be divided in two parts: one 
constituted by Chaps. 3 to 9 is dedicated to the sparse random matrices in the 
tridiagonal form, while Chaps. 10 to 15 discuss full matrices. The six chapters 
dedicated to pseudo-Hermitian random matrices in tridiagonal form, the cases with 
real eigenvalues, and the appearance of complex eigenvalues generated by unbound 
and/or nonpositive metrics are discussed for the β-Hermite, Chaps. 3, 4, and 5; β-
Laguerre, Chaps. 6, 7, and 8; and, finally, β-Jacobi, Chap. 9. Chapter 10 introduces 
the pseudo-Hermitian Gaussian matrices, and some of its properties are described in 
the following four chapters. Finally, in the last Chap. 15, the time invariance of the



metric is suspended and a pseudo-Hermitian model with a time dependent metric is 
constructed to discuss the time evolution of the von Neumann entropy of entangled 
states. 

4 1 Introduction
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