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Preface

The imperative of managing uncertainty and facilitating informed decision-making ren-
ders evident the criticality of using probabilistic and reliability disciplines. This can
be seen in the most recent advances in infrastructure maintenance and management,
especially those related to safety under extreme events and security to non-conventional
threats and dangers. Additionally, the escalating significance of climate change phe-
nomena is incontrovertible, mostly affecting the likelihood and consequences of various
natural hazards. Consequently, there is a need to develop deeper studies on probability
and statistics for data science, as well as on its application to system analysis, combining
these tools to face huge uncertainties.

The International Probabilistic Workshop (IPW) series started in 2003 as the Dres-
den Probabilistic Symposium at the Technical University of Dresden and repeated in
2004. In 2005, the 3rd edition held in Vienna was renamed as International Proba-
bilistic Workshop. Subsequent IPWs took place in Berlin (2006), Ghent (2007), Darm-
stadt (2008), Delft (2009), Szcecin (2010), Braunschweig (2011), Stuttgart (2012), Brno
(2013),Weimar (2014), Liverpool (2015),Ghent (2016),Dresden (2017),Vienna (2018),
Edinburgh (2019) and Stellenbosch (2022).

The IPW 2020, planned to take place in September 2020 at the University of Minho,
was postponed toMay 2021 and transitioned to a digital format due to the global COVID-
19 pandemic. IPW 2024 offers a renewed opportunity to gather the IPW Community
in Guimarães, Portugal. Undoubtedly, IPW 2024 keeps the high-quality level of previ-
ous editions by bringing together high-calibre scientific contributions (51 papers span-
ning 22 countries) covering different applications and approaches to probabilistic-based
methods.

The editors express their profound gratitude to all contributing authors, keynote
speakers and attendees for their valuable contributions, to the members of the Scientific
Committee for theirmeticulouswork, and to theWorkshop Secretariat for their dedicated
teamwork.

May 2024 José C. Matos
Paulo B. Lourenço
Daniel V. Oliveira

Jorge Branco
Dirk Proske
Rui A. Silva

Hélder S. Sousa
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Life-Cycle Probabilistic Multi-objective
Optimum SHM Planning

Dan M. Frangopol1(B) and Sunyong Kim2

1 Lehigh University, Bethlehem, PA 18015-4729, USA
dan.frangopol@lehigh.edu

2 Wonkwang University, Iksan, Jeonbuk 54538, South Korea

Abstract. Structural HealthMonitoring (SHM) is widely utilized to detect poten-
tial damage and predict the structural performance of deteriorating structures.
Timely damage detection and accurate structural performance prediction are cru-
cial for ensuring structural safety and managing the service life of deteriorating
structures. This paper addresses a life-cycle probabilistic multi-objective opti-
mization for SHM planning. The life-cycle probabilistic multi-objective optimum
SHM planning can be based on availability, damage detection, reliability, service
life, life-cycle cost, and risk. When initial information is insufficient for reliable
damage prediction, an availability-based objective is useful for optimum SHM
planning. Otherwise, the damage detection delay, maintenance delay, reliability
index, service life, life-cycle cost, and risk can be used for optimum SHM plan-
ning. They are formulated by integrating damage initiation and propagation, dam-
age detection, and the effects of inspection and maintenance actions on service
life, reliability, life-cycle cost, and risk. Approaches to solving the multi-objective
optimization efficiently and multi-attribute decision-making to select the most
appropriate solution among the Pareto optimal set are presented. Furthermore, an
updating process incorporating information from SHM is outlined to enhance the
accuracy of SHM planning.

Keywords: Availability · Damage Detection · Life-Cycle Cost · Maintenance ·
Multi-Objective Optimization · Reliability · Risk · Service Life · SHM planning

1 Introduction

Deteriorating structures demand maintenance interventions to sustain performance
above the predefined threshold during their service life [1–3]. By implementing main-
tenance interventions, it’s possible to delay the deterioration process, repair existing
damage, enhance structural performance, and extend the service life of the structure
[4–6]. For cost-effective maintenance, accurate assessment and prediction of the dete-
rioration process and timely damage detection are crucial [7, 8]. However, they pose
challenges for practical bridge management due to epistemic and aleatory uncertainties
[9–11]. Consequently, the adoption of periodic inspections and maintenance has been a
prevalent practice for several decades. To address the cost-effectiveness and uncertainty
associatedwithmanagement, it is necessary to adopt structural healthmonitoring (SHM)
optimally [12–14].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. C. Matos et al. (Eds.): IPW 2024, LNCE 494, pp. 3–11, 2024.
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In this paper, a life-cycle probabilistic multi-objective optimization for SHM plan-
ning is presented. The life-cycle probabilistic optimum SHM planning can be based on
multiple objectives considering availability, damage detection, maintenance, reliability,
service life, life-cycle cost, and risk. When initial information is insufficient for reliable
damage prediction, objectives based on the availability of monitoring data are useful for
optimum SHM planning. Otherwise, optimum SHM planning can be based on objec-
tives considering damage detection, reliability index, service life, life-cycle cost, and
risk. Their formulations require integrating damage initiation and propagation, damage
detection, and the effects of inspection andmaintenance actions on service life, reliability,
life-cycle cost, and risk. In addition to formulating objectives for optimal SHM plan-
ning, this study presents efficient approaches for solving multi-objective optimization
and employing multi-attribute decision-making to select the most suitable solution from
the Pareto-optimal set. Furthermore, an updating process that incorporates information
from SHM is outlined to enhance the accuracy and reliability of SHM planning.

2 Framework for Life-Cycle Probabilistic Multi-objective
Optimum SHM Planning

The framework for life-cycle probabilistic multi-objective optimum SHM planning con-
sists of three parts: (a) formulations of the objectives, (b) multi-objective optimization
and decision making, and (c) updating process with the monitored data, as shown in
Fig. 1. Through the presented framework, the monitoring starting time and duration can
be optimized. Through the multi-objective optimization process, multiple well-balanced
solutions are obtained, which provide flexibility for managers in determining the best
Pareto optimal solution. The monitored data is utilized to update the parameters related
to the formulations of objectives, and thereby reducing the uncertainties associated with
SHM planning. The three parts of the framework are iteratively applied throughout the
life-cycle of deteriorating structures.

3 Objectives for Probabilistic Optimum SHM Planning

The formulation of objectives for optimum SHM planning considers the availability of
monitoring data, damage detection, reliability index, service life, life-cycle cost, and
risk [15]. The availability of monitoring data can be used when the initial information
for damage initiation and propagation is insufficient. If there is sufficient information
for damage initiation and propagation, the objectives based on damage detection, ser-
vice life, reliability, life-cycle cost, and risk can be applied for SHM planning [4, 16].
Table 1 summarizes the nine objectives (i.e., O1 to O9) and required estimations for the
formulations of objectives.

The availability-based objectives are O1 = maximization of expected availability
of monitoring data and O2 = minimization of expected monetary loss. The damage
detection-based objectives include O3 = minimization of expected damage detection
delay (or minimization of expected damage detection time), O4 = maximization of
probability of damage detection, andO5=minimization of expectedmaintenance delay.
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Formulation of probabilistic objectives for SHM planning
• Availability-based objectives 

• Damage detection-based objectives

• Reliability-based objectives

• Service life-based objectives

• Life-cycle cost-based objectives

• Risk-based objectives

Multi-objective optimization and decision-making process
• Computing Pareto optimal set using multi-objective optimization tool 

• Identifying essential and redundant objectives

• Determining weights of the essential objectives

• Selecting the best Pareto optimal solution

Use of monitoring data for updating existing damage propagation 
and performance prediction
• Determining the random variables associated with damage 

propagation and performance prediction models to be updated

• Computing the posterior PDFs through updating approach

• Updating the damage propagation and performance prediction models 

using the posterior PDFs 

Fig. 1. Framework for life-cycle probabilistic multi-objective optimum SHM planning.

Table 1. Objectives and required estimations for their formulations

Objectives Required estimations

O1 = maximization of expected availability of monitoring data RE1

O2 = minimization of expected monetary loss RE1 + RE2

O3 = minimization of expected damage detection delay
(or minimization of expected damage detection time)

RE3

O4 = maximization of probability of damage detection RE3

O5 = minimization of expected maintenance delay RE3 + RE4

O6 = maximization of expected extended service life
(or expected service life extension)

RE3 + RE4 + RE5

O7 = maximization of reliability RE3 + RE4 + RE5

O8 = minimization of expected total life-cycle cost RE3 + RE4 + RE5

O9 = minimization of risk RE3 + RE4 + RE5 + RE6

Note: RE1 = monitoring cost during a given monitoring period; RE2 = monetary loss due to
unavailable monitoring data; RE3 = damage initiation and propagation; RE4 = relation between
the degree of damage and probability of maintenance; RE5 = effects of damage detection and
maintenance application on reliability, service life, and life-cycle cost; RE6 = direct and indirect
monetary loss due to structural failure
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The objectives O6, O7, and O8 are based on service life, reliability, and life-cycle cost,
respectively. Optimum SHM planning can also be based on O9 = minimization of
risk. The detailed formulations of O1 – O8 are available in Kim & Frangopol [15] and
Frangopol & Kim [4, 16].

The risk is the probabilistic performance indicator to integrate the occurrence proba-
bility of an adverse event (e.g., structural failure,malfunction) and the resultingmonetary
loss [17]. The risk due to the failure of the ith component of a system RSi is expressed
as [17, 18]

RSi = RSdir,i + RSind ,i (1)

The direct risk RSdir,i and indirect risk RSind,i in Eq. (1) are estimated, respectively,
as

RSdir,i = pf ,i · Cdir,i (2a)

RSind ,i = pf ,i · pf ,sub|i · Cind ,i (2b)

where pf,i = probability of failure of the ith component; pf,sub|i = probability of system
failure caused by the failure of the ith component; Cdir,i = direct monetary loss; and
Cind,i = indirect monetary loss. Using the damage detection time tdet , the probability of
failure of the ith component pf,i can be computed as [4, 16]

pf ,i = P
(
tcrt,i − tdet,i < 0

)
(3)

where tcrt,i is the time to reach the critical degree of damage of the ith component,
and tdet,i is the damage detection time. Since the damage initiation and propagation
are uncertain, tcrt,i, and tdet,i can be treated as random variables. The damage detection
time tdet,i is estimated considering the relation among the damage initiation/propagation,
monitoring starting time, and monitoring duration [4, 15, 16]. The direct monetary loss
Cdir,i is the required cost for the replacement of the ith component. The indirect monetary
loss Cind,i includes operating cost, time-loss cost, and accident cost [17, 19]. The SHM
planning can be optimized to minimize the risk caused by the failure of the monitored
components.

4 Multi-objective Optimization and Decision Making

When more than two objectives for optimum SHM planning are considered simultane-
ously, the multiple-objective optimization problem can be solved using various meth-
ods such as genetic algorithms (GA), weight sum method, lexicographic method, and
bounded objective, among others [20]. As a result, the Pareto optimal solutions can be
obtained. The GA is widely used to find all Pareto optimal solutions regardless of the
continuity or differentiability of the objective functions [16, 20]. The general formulation
of the multi-objective optimization for SHM planning can be expressed as

Find tms = {
tms,1, tms,2, . . . , tms,Nmon

}

tmd = {
tmd ,1, tmd ,2, . . . , tmd ,Nmon

} (4a)
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which minimizes �(−) = {O2,O3,O5,O8,O9}
and/or maximizes �(+) = {O1,O4,O6,O7} (4b)

subject to gk(tms, tmd) ≤ 0 k = 1, 2, . . . nc (4c)

t−ms ≤ tms ≤ t+ms and/or t
−
md ≤ tmd ≤ t+md (4d)

where tms and tmd are the vectors of design variables (i.e., monitoring starting times
tms,i and monitoring duration tmd,i), Nmon is the number of monitorings, �(−) and �(+)

indicate the objective sets to be minimized and to be maximized, respectively, gk(tms,
tmd) is the kth inequality constraint among nc constraints, and t− and t+ are the vectors
of lower and upper bounds of the design variable t.
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Fig. 2. Bi-objective optimization for SHM planning: (a) feasible objective space and Pareto opti-
mal solutions; and (b) monitoring starting times and monitoring durations for the Pareto solutions
P1, P2 and P3 presented in (a).

Figure 2(a) shows the feasible objective space and Pareto optimal solutions when
two objectives to be minimized are considered. Any solution among the Pareto optimal
solutions can be used for the optimum SHMplanning. Themonitoring starting times and
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monitoring durations of the representative Pareto solutions P1, P2 and P3 in Fig. 2(a)
are illustrated in Fig. 2(b).

Decision making is the process to select the best solution from the computed Pareto
optimal set, which determines the weight of the essential objectives, and estimates the
overall assessment value of the Pareto optimal solutions [4, 15, 16]. The essential objec-
tive set indicates theminimal set of objectives that generates an equivalent Pareto front of
the multi-objective optimization when compared to the original objective set. Through
the dominance relation-based approach [21], the essential objective set can be iden-
tified. When depicting Pareto optimal solutions in multi-objective optimization with
fewer than four objectives, the Cartesian coordinate system is useful. However, visual-
izing solutions with more than three objectives becomes challenging. To address this,
the parallel coordinate system can be employed for the effective representation of Pareto
optimal solutions. As shown in Fig. 3, in the parallel coordinate system, the vertical axes
denote the values of the objective, and each Pareto solution is represented by a polyline
connecting the corresponding values along the vertical axes.

f1 f2 f3 f4
Objective functions

f1,min

f1,max

f2,min

f2,max

f3,min

f3,max

f4,min

f4,max

O
bj

ec
tiv

e 
va

lu
es

One of Pareto 
optimal solution

Pareto optimal 
solutions

Fig. 3. Pareto solutions of a multi-objective optimization problem with four objectives in the
parallel coordinate system.

The weights for essential objectives are calculated using various objective weight
determination methods such as the standard deviation (SD) [22], criteria importance
through the inter-criteria correlation (CRITIC) [23], and correlation coefficient and stan-
dard deviation (CCSD) [24] methods. Subsequently, multiple attribute decision-making
approaches, including simple additive weighting (SAW) [25], technique for order prefer-
ence by similarity to ideal solution (TOPSIS) [26], and elimination and choice expressing
the reality (ELECTRE) [27] methods, are applied to estimate the overall assessment val-
ues of Pareto optimal solutions with the computed weights of essential objectives. The
best optimal solution results in the largest overall assessment value.
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5 Updating with Monitored Data

The optimum SHM planning is based on the multiple objectives considering damage
propagation prediction, as shown in Table 1. Therefore, improving the accuracy of dam-
age propagation prediction is crucial for enhancing the effectiveness of SHM planning.
It can be achieved through the updating the damage propagation prediction with moni-
toring data [7, 8, 10, 16]. During the last two decades, various approaches for use of the
monitoring data to update the damage propagation and structural performance prediction
have been developed [4, 15, 16]. Most of updating approaches are based on the Bayesian
theorem, which is generally expressed as [28]

f ′′
�(θ) = k · L(θ) · f ′

�(θ) (5)

where f ′′
�(θ) = updated probability density function (PDF) of the parameter θ; k = nor-

malizing constant; L(θ) = likelihood function; and f ′
�(θ) = initial PDF of the parameter

θ. The parameter θ is the involved in the PDF fX (x) of a randomvariableX. The likelihood
function L(θ) with n monitored data associated with the underlying random variable X
is expressed as

L(θ) =
n∏

i=1

fX (xi|θ ) (6)

The updated PDF of the underlying random variable X can be obtained as [29]

f ′′
X (x) =

∫ ∞

−∞
fX (x|θ ) · f ′′

�(θ)dθ (7)

Markov Chain Monte Carlo (MCMC) methods are widely used in Bayesian statis-
tics, particularly for updating posterior distributions with new information [31]. In the
context of SHM, these methods allow for the integration of monitoring data to update the
structural performance and SHM planning. One of the main strengths of MCMC meth-
ods is their ability to sample from complex, high-dimensional posterior distribution. It
is useful in cases where direct computation of the posterior distribution is impractical
or impossible due to its complexity [32]. MCMC methods generate a Markov chain
that converges to the target distribution as the number of iterations increases. They are
suitable for updating the parameters of complex damage propagation prediction. The
accuracy and reliability of the updating can improve as the Markov chain converges
to the true underlying distribution [33, 34]. Metropolis–Hastings, Slice Sampling, and
Gibbs Sampling arewell-knownMCMCmethods [35].Metropolis–Hastings is a general
algorithm applicable in various contexts, including those with high-dimensional spaces.
Gibbs sampling is useful when dealing with multivariate distributions and can simplify
computations. Slice sampling is a technique that can be effective when dealing with
unnormalized distributions. The MCMC techniques allow for the sequential updating of
the damage propagation, performance prediction, and optimum SHM planning as new
SHM data becomes available [4, 8, 15, 16, 30].
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6 Conclusions

This study presents a comprehensive framework for life-cycle probabilistic multi-
objective optimum SHM planning. The framework effectively integrates various objec-
tives based on availability, damage detection, maintenance, reliability, service life, life-
cycle cost, and risk.Multi-objective optimization techniques can be utilized to efficiently
identify Pareto optimal solutions. In the decision-making process, multi-attribute meth-
ods are employed to select the best SHM planning from the computed Pareto optimal
solutions. Furthermore, the incorporation of SHM data updates the planning process,
thereby enhancing its accuracy and reliability throughout the life cycle of the moni-
tored structures. This presented framework can lead to improving structural safety but
significant economic benefits by efficiently managing risks.
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Abstract. The transportation infrastructure serves as a cornerstone for economic
prosperity, enabling market expansion and fostering a more efficient division of
labor. Ensuring its continued functionality in the face of disruptive events is imper-
ative. This paper introduces a practical method for assessing the functionality of
road networks and outlines a procedure for estimating their resilience. While
many of these disruptive events are stochastic in nature, such as natural hazards,
planned maintenance interventions can also significantly impact the functionality
of high-volume road networks. The proposed framework for resilience evaluation
takes into account both stochastic events and planned interventions. It specifically
examines the impact of recovery timeon resilience, particularly in cases of stochas-
tic disruptive events. Furthermore, the framework also separates resilience from
the overall costs that are associated with achieving a certain level of resilience,
facilitating a comparison between resilience levels and corresponding costs in
decision-making processes. Additionally, the paper explores measures that target
different aspects of resilience.

Keywords: Resilience · Road Infrastructure · Stochastic processes ·
Functionality · Disruptive event · Maintenance

1 Introduction

The term “resilient” can be traced back to as early as 1674, although its usage likely
predates this. It originates from the Latin verb “resilire,” which conveys the idea of
rebounding or recoiling. In accordance with this definition, the adjective “resilient’
emerged to describe an object’s ability to endure a disturbance without suffering perma-
nent deformation or rupture. The noun resilience has the same meaning as a property of
objects to recover from deformation caused by mechanical forces.

The modern application of the term “resilience” gained prominence in the 1970 and
1980 by psychologist Emmy Werner. She conducted a 40-year study of 698 infants, the
entire multiethnic birth cohort for the year 1955 on the Hawaiian island of Kauai. In her
work [1] Werner employed the term “resilience” to describe “three kinds of phenomena:
good development outcomes despite high-risk status, sustained competence under stress
and recovery from trauma”. The high-risk status means that these children were born
in chronic poverty, had experienced perinatal stress and lived in a family environment
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troubled by chronic discord, divorce, or parental psychopathology. By the age 10, two
thirds of children have indeed developed serious learning and behavior problems or had
delinquency records and mental health problems by the age of 18. However, one third
of the children who had experienced four or more such risk factors defied the odds
and matured into competent, confident and caring adults. Emmy Werner used the term
“resilient” for these children.

The term “resilience” entered the engineering realm firstly in ecology [2], and then in
structural engineering [3]. It quickly spread into fields of infrastructure and transportation
Engineering. However, its rapid popularization also had a downside as it led to the
emergence of multiple competing definitions. A clear delimitation to other related terms
such as robustness, resistance, reliability and risk is missing.

World Road Association (PIARC) defines the resilience as follows [3]:

The ability of a system or systems to survive and thrive in the face of a complex,
uncertain and ever-changing future.

This is a quite generic definition applicable to all kinds of systems that need to be
explained in detail to be useful in practice. Drawing from its usage in psychology, it’s
intuitively clear that resilient infrastructure can maintain its function during or restore
its function after disruptive events. However, there’s a significant difference compared
to biological and ecological systems, where recovery from disruptive events occurs
within the system itself. In the case of non-living matter such as road infrastructure,
recovery after a disruptive event happens through deliberate action by society. Therefore,
it’s necessary to extend the system boundary for resilience evaluation to include the
organization responsible for maintaining the functioning of the infrastructure.

In this paper the practice-oriented resilience evaluation for road infrastructure and
the measures to improve the resilience of road infrastructure are discussed.

2 The Benefit of Transportation Infrastructure

The effect of road infrastructure or more generally of transportation infrastructure on
economic prosperity was already recognized in the eighteenth century by Adam Smith
[4]. He astutely identifies the division of labor or specialization as a key productivity
driver and therefore essential for economic prosperity. Adam Smith recognized that the
division of labor results in production surpassing the needs of the producer, leading to a
surplus that must be traded for other goods. He emphasized that

“… it is the power of exchanging that gives occasion to the division of labour, so
the extent of this division must always be limited by the extent of that power, or, in
other words, by the extent of the market.”

Adam Smith found it self-evident that the extent of the market is determined by
the capacity to transport products. Given the era in which he lived, he identified water
transport as a means to expand the market.

Efficient utilization of transportation infrastructure facilitates market expansion and
enhances the division of labor. Affordable transportation of goods enables the concen-
tration of production facilities, leading to higher productivity. Additionally, it stimulates
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demand for niche products that require further specialization, thereby increasing produc-
tivity. These effects unfold gradually as the economy adjusts to improved transportation
capabilities.

However, it’s important to note that increased productivity isn’t solely attributable
to readily available transportation infrastructure. It is also influenced by factors such as
technological innovation, education, and political stability. Therefore, accurately eval-
uating the long-term benefits of transportation infrastructure, akin to the benefits of
education and political stability, is complex and multifaceted.

The lower limit of annual macroeconomic benefit of road traffic can be estimated
by the contribution of road traffic to the Gross Domestic Product (GDP). It lies between
4% [5] and 10% [6] and [7], of Gross Domestic Product (GDP). The inconsistency in
the contribution of road transportation to GDP stems from the differences in financing
and accounting practices in different countries, as discussed in [8]. Apart from purely
economic benefit, road infrastructure enables road users to be involved in various activ-
ities that yield other private, public, and social benefits [9] and [10]. In addition to these
beneficial externalities, road traffic and indirectly the road infrastructure also have neg-
ative health, societal and environmental impact (e.g. accidents, noise, pollution), which
is mostly difficult to ponder against the benefits. However, despite these detrimental
externalities, which are indeed significant, they do not substantially diminish the overall
benefit of mobility and, consequently, of road infrastructure to society.

It appears that measuring resilience based on the benefits of road transport, as pro-
posed in [11] would be the most logical choice consistent with the preceding discussion.
However, even if the benefit of road transport could be evaluated in sufficient granularity
the portion attributable to road infrastructure is nearly impossible to estimate. Therefore,
one resorts to proxies that serve as resilience measure.

3 Measuring Resilience

3.1 Functionality

One can assume that the benefit of road infrastructure, even if unknown, is fully exploited
if the road network doesn’t impose any impediments to the free flow of traffic, which is
the primary purpose of road infrastructure. In the literature one associates this situation
with a functionality1 level of 100%. However, evaluating the functionality following a
disruptive event, i.e., the reduction from 100%, is not straightforward. It is intuitively
clear that this reduction is associated with network topology, traffic volume, and traffic
composition. In the literature, there are suggestions to use network (or graph) properties
such as connectivity [12] and centrality [13] as functionality measures. While these
measures are quite useful, they do not adequately model the loss of benefit due to a
disruptive event.

On the other hand, traffic-related models can capture the disbenefit of a disruptive
event. For example, the disruption in the network, such as the loss of a road link between
two junctions, will lead to a redistribution of traffic. The new traffic patterns can be
determined using macroscopic or microscopic simulations, which are widely used in

1 The terms “level of service” and “performance level” are also used with the same meaning.



Toward a More Resilient Road Infrastructure 15

practice for transport planning. Macroscopic simulations provide traffic equilibrium
solutions before and after the disruption [14]. Assuming that the origins and destinations
of road users remain unchanged, one can evaluate the additional travel time i.e. the
difference between cumulative travel time before T0 and after disruption Tdis for all
vehicle categories.

This approach allows for the estimation of the throughput time for each origin and
destination pair, as well as for each vehicle type, which can be compared between
undisrupted and disrupted networks. The difference, i.e., the reduction in functionality,
is illustrated in Fig. 1. The integral of the functionality reduction over time, depicted by
the light grey area in Fig. 1, represents the loss of resilience.
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Fig. 1. Resilience on the basis of functionality.

Expanding upon the traffic composition, one can also assign monetary values to
these additional travel times, resulting in a monetary disbenefit due to disruptions in
the road network. Following this rationale, it can be argued that reintroducing the same
link would result in an increased benefit equal to the disbenefit caused by the lost link.
Therefore, this value can be assumed as the benefit of the said link [15].

Similarly, this reasoning applies if multiple links are affected simultaneously. How-
ever, it’s crucial to note that this approach cannot be applied if the disruptive event severs
the existing network into disconnected networks. In such cases, other transport modes
need to be considered, or as a last resort, a macroeconomic analysis of the disconnected
region needs to be conducted.

The functionality as defined in this chapter, is constrained to traffic throughput times,
which may or may not be monetized. While this definition aligns with the concept of
functionality, it raises questions about whether this should be the sole criterion when
evaluating resilience.

3.2 Safety and Environmental Impact During Recovery

The redistribution of traffic due to disruptive event can in certain cases lead to change
in accident rates. The detour on two-lane two-way roads with increased traffic density
can lead to higher accident rates. Conversely, in some cases, slower traffic may result
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in lower or less severe accident rates. Considering that safety is one of the most critical
performance indicators in Asset Management, the impact of safety should be included
in resilience evaluations.

The same principle applies to environmental impact, as traffic redistribution resulting
from disruptive events can lead to longer travel times, including congestion and higher
gas consumption, thus contributing to negative environmental impacts. Similar to safety,
environmental impact is an important performance indicator in Asset Management that
should be included in resilience evaluations.

Evidently, once full functionality is restored, the original traffic regime, along with
associated accident rates and environmental impacts, are also restored. If necessary,
these effects can be monetized and added to monetized functionality.
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Fig. 2. Alternative consideration of safety and environmental impact.

Alternatively, in accordance with the chosen evaluation and decision-making frame-
work, safety and environmental impact can be integrated into costs (see Sect. 3.5). Both
alternatives are illustrated in Fig. 2. Accidents and environmental impact can be treated
as the reduction of functionality (area with striped area in the upper part of the figure)
or as separate performance indicator (striped area in the lower part of the figure).

3.3 Consequences of Disruptive Event

Disruptive events such as flooding or earthquakes not only abruptly alter the functionality
of the road network but also have unrecoverable consequences. Loss of life, physical
injuries, and damage to cultural heritage are examples of such consequences.While these
consequences are typically considered in risk analysis [16], they are seldom included in
resilience assessments due to their irrecoverable nature. These unrecoverable losses are
depicted as a separate performance indicator in Fig. 3.

There are also consequences of disruptive events that generally can be alleviated or
even eliminated, but the costs of doing so are disproportionally high. In rare cases, even
the affected infrastructure can be abandoned altogether. A tragic example is the Lower
Ninth Ward in New Orleans, which now has less than 35% of its pre-Hurricane Katrina


