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Foreword 

For the past decade, I have run a for-profit incubator (Weinberg Medical Physics) that 
has launched multiple medical imaging companies. Our spin-outs have included Promaxo 
and Tesoro Imaging, which market low-field MRI systems for urology and dental prac-
tices (respectively). For the past two years, we have been working on a new system for 
brain health, that will include both MRI and transcranial magnetic stimulation in a sin-
gle compact system. In the process of that effort, our team has had the good fortune to 
collaborate with the authors of this book (Dr. Ariando and Dr. Mandal), who already 
had extensive experience in diverse compact magnetic resonance applications (including 
downhole scanners). 

This timely book provides readers with an accessible and up-to-date introduction to 
the field of low-field magnetic resonance sensing and imaging, both highly dynamic areas 
of both research and commercial activity. It begins with a historical overview of MRI sys-
tem design and a discussion of current developments. It goes on to analyze the underlying 
physics of MRI from a semi-classical perspective before describing the major hardware 
components of low-field scanners (including the magnet, coils, transmitters, receivers, gra-
dient systems, and digital processors) in detail. Several examples of each component are 
described, thus helping readers to understand the major challenges and trade-offs involved 
in designing these complex devices. Finally, the book highlights the issues involved in 
integrating these components within a working system by presenting the architecture, 
design, and test results of several low-field MRI scanners (and non-imaging sensors, such 
as nuclear quadrupole devices) developed by the authors. 

An important advantage of this book is that it emphasizes a system-level approach to 
the design of low-field MRI scanners. As someone who has personally been involved in 
the design of novel compact imaging systems for diagnosis and image-guided therapy, I 
can attest to the importance of such a system-level approach in solving the multi-domain 
challenges that arise within these devices. I expect the book to be valuable for both 
students and working engineers in this growing field. 

Bethesda, MD, USA 
February 2024 

Irving Weinberg
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Preface 

Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique that is widely 
used for studying the physical and molecular composition of complex samples. Advance-
ments in NMR have led to the invention of magnetic resonance imaging (MRI), which 
is widely used in medical imaging due to its ability to create contrast in soft tissues. In 
addition, MRI has also been applied to studies of porous media (such as rocks), quality 
control for food products, inspection of polymers, the study of agricultural products, and 
many other applications. 

Despite its diverse applications, the use of MRI is largely limited to large hospitals 
and academic or industrial laboratories. This can be mostly attributed to the fact that 
MRI scanners generally utilize large superconducting magnets or complicated perma-
nent magnet geometries to generate strong and uniform magnetic fields. As a result, they 
are generally very expensive, require installation within special shielded rooms, and use 
extremely complex hardware and data acquisition methods. 

Recent years have seen increasing interest in MRI scanners that avoid these disad-
vantages by using much weaker magnetic fields. Such “low-field” scanners are now 
commercially available from several sources, including startup companies. Some of these 
devices are even available in portable form factors, thus enabling point-of-care imaging 
in patient wards, doctor’s offices, ambulances, and other scenarios. Others feature pro-
grammable magnetic fields that can be used for therapeutic purposes (such as delivering 
magnetic nanoparticles to tumors) in addition to imaging. However, the use of a weaker 
magnetic field is generally accompanied by a reduction in signal quality, while the need 
for portable form factors or programmable magnetic fields introduces significant chal-
lenges in hardware design, data acquisition, and signal processing. This book aims to 
provide a unified and accessible introduction to the unique advantages, challenges, and 
applications of such low-field MRI systems. It also discusses how these systems can be 
used for studying samples without explicitly generating images, for example, via relax-
ation or diffusion measurements. The book is organized into eleven chapters, as discussed 
below.
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Chapter 1 provides a brief introduction to the history of nuclear magnetic resonance 
(NMR), which is the physical phenomenon utilized by magnetic resonance imaging (MRI) 
scanners. It also discusses the many applications of NMR and MRI, with a particular focus 
on those enabled by portable and low-cost devices. 

Chapter 2 begins with an introduction to the theory of NMR, including the processes 
of signal generation, decay, and detection. It continues by describing common NMR mea-
surement methods (known as pulse sequences) and the resulting precision (as quantified 
by the signal-to-noise ratio). Finally, it discusses the use of magnetic field gradients for 
spatial localization (which is the basis of MRI) and mechanisms for generating contrast 
in MRI images. 

Chapter 3 provides a brief introduction to the design of magnets for portable low-field 
MRI systems. It begins by reviewing the state-of-the-art before describing two design 
examples. The first is an enclosed geometry based on a Halbach dipole array, while the 
second is a single-sided (open) geometry for a hand-held scanner. 

Chapter 4 begins by describing the probe circuits that are commonly used in NMR 
measurements. The analysis shows the importance of probe dynamics for low-field NMR 
and MRI, where the probe bandwidth becomes comparable to or smaller than the mea-
surement bandwidth. The results also provide the theoretical basis for the probe designs 
that are discussed in the book. Finally, this chapter discusses the design of RF coils and 
probe circuits for both enclosed and single-sided geometries. 

Chapter 5 describes the development of high-bandwidth and high-power transmitters 
for tuned probes, which are common in low-field NMR. This effort is useful for portable 
NMR systems, especially low-cost systems like those described in this book, due to the 
gross inhomogeneity of the B0 field generated by inexpensive magnets. In such fields, 
an increase in excitation bandwidth generally results in the excitation of a larger sample 
volume, which in turn improves the signal-to-noise ratio (SNR) of the measurement. 

Chapter 6 describes the design of custom receivers for improving the noise figure 
(NF) of low-field NMR detection. Suitable design techniques for the receiver include the 
use of a differential high-input impedance pre-amplifier, capacitive feedback damping, 
frequency-tunable tuned load, and input damage protection. 

Chapter 7 discusses both major components of the gradient systems required by low-
field MRI systems, namely the gradient driver and the gradient coil. It begins with the 
design of portable pulsed field gradient drivers that are lightweight and battery-powered. 
A practical implementation of such a gradient driver is shown to be capable of generating 
at least 3 A of current over a duration of at least 2 ms, which is sufficient for many 
portable low-field NMR/MRI systems. Next, the chapter discusses the design of gradient 
coils for both enclosed and single-sided systems. 

Chapter 8 discusses the design of digital controllers for low-field MRI systems. 
It begins by describing the data transport architecture of the digital processor, which 
typically includes both a field-programmable gate array (FPGA) and a system-on-chip 
(SoC). Additionally, it describes the concept of bitstream programming for defining pulse
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sequences within the FPGA. Finally, it discusses the various programming domains used 
by the system, as well as their unique roles. 

Chapter 9 focuses on nuclear quadrupole resonance (NQR), which is a magnetic reso-
nance technique closely related to NMR that is commonly used to characterize crystalline 
solids. Spatially-resolved NQR is of particular interest for studying the position, struc-
ture, and function of such solid samples. The chapter discusses a “single-shot” method 
for accelerating spatially-resolved NQR measurements (thus enabling the rapid genera-
tion of NQR images). This method utilizes the fact that certain NQR relaxation rates are 
field-dependent, which in turn allows measured relaxation time distributions measured in 
a static field gradient to be converted into spatial distributions. 

Chapter 10 brings together many of the topics discussed in the previous chapters by 
discussing the design and operation of complete low-field MRI systems. Several examples 
are presented, including an autonomous low-field NMR console, a low-cost desktop MRI 
system for studying food products, a hand-held single-sided MRI sensor, and a complete 
low-cost portable MRI scanner. 

Chapter 11 concludes the book. It begins with a brief summary of the work described 
in the earlier chapters. It then discusses various hardware improvements and signal pro-
cessing techniques for further improving the performance of low-field MRI systems based 
on both single-sided and enclosed sensor geometries. 

We hope that readers will come away from this book with enough knowledge to effec-
tively study and appreciate the research literature. The text should be particularly useful 
to graduate students in Electrical Engineering, Computer Engineering, Biomedical Engi-
neering, Physics, and related disciplines who are involved in research on low-field NMR 
and MRI. It may also be of interest to practicing engineers and scientists in the field, par-
ticularly those working in companies that are developing such imaging and therapeutic 
devices. 

San Carlos, CA, USA 
Merrick, NY, USA 
February 2024 

David J. Ariando 
Soumyajit Mandal
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1Introduction 

1.1 Historical Overview of NMR and MRI Systems 

1.1.1 Background 

Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique that studies the 
dynamics of atomic nuclei in time-varying electromagnetic fields. NMR is widely used in 
the fields of physics and chemistry for studying the physical and molecular composition of 
complex samples. Advancements in NMR have led to the invention of magnetic resonance 
imaging (MRI), which is widely used in medical imaging due to its ability to create contrast 
in soft tissues. In addition, MRI has also been applied to studies of porous media (such as 
rocks), quality control for food products, inspection of polymers, the study of agricultural 
products, and many other applications. This book focuses on MRI systems for such non-
clinical applications. 

1.1.2 A Brief History of NMR 

The basic concept of NMR is to detect magnetic dipole transitions between nuclear energy 
levels in the presence of an external magnetic field. As will be discussed in later chapters, such 
transitions occur at a specific resonance frequency, known as the Larmor frequency, which  is  
proportional to the strength of the applied magnetic field. The possibility of detecting NMR 
transitions was originally proposed in the 1930s. The first experimental attempts were made 
by Dutch physicist Cornelius Gorter in 1936 using calorimetric methods, but with negative 
results [ 5]. A few years later, American physicist Isidor Isaac Rabi, working at Columbia 
University, demonstrated NMR phenomena for the first time by using radio frequency (RF) 
fields to induce transitions between the nuclear energy levels of a molecular beam. In 1938, 
Rabi’s team observed the decrease in signal intensity of a lithium chloride (LiCl) beam at the 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
D. J. Ariando and S. Mandal, Portable Low-Field MRI Scanners, Synthesis Lectures 
on Biomedical Engineering, https://doi.org/10.1007/978-3-031-60230-6_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60230-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1
https://doi.org/10.1007/978-3-031-60230-6_1


2 1 Introduction

detector under a resonance condition between the Larmor frequency of the sample (which 
was determined by the static magnetic field generated by a variable electromagnet) and fixed-
frequency continuous-wave RF excitation produced by a hairpin coil. The significance of 
this result was recognized by the Nobel Prize in Physics, which was awarded to Rabi in 
1944 for “his resonance method for recording the magnetic properties of atomic nuclei”. 

In the early 1940s, research groups led by Felix Bloch [ 1] and Edward Purcell [ 10] inde-
pendently discovered the principles of NMR spectroscopy and developed the first NMR 
spectrometers. At Harvard University, Purcell observed the resonance absorption peak of 
nuclear magnetic moments. Meanwhile, at Stanford University, Bloch demonstrated the 
voltage induced by a water sample when polarized with an oscillating magnetic field per-
pendicular to the static magnetic field, thus demonstrating the precessional motion of protons 
(. 1H nuclei) expected during NMR experiments. Both Purcell and Bloch utilized continuous-
wave (CW) measurement techniques. A few years later, American physicist Erwin Hahn, 
working at the University of Illinois, pioneered pulsed NMR techniques, including the gen-
eration of free induction decays (FIDs) and spin echoes [ 2]. Since then, pulsed NMR has 
become dominant due to its so-called multiplexing advantage, namely the ability to excite 
multiple resonant frequencies simultaneously in a single scan. The result is greatly increased 
measurement speed compared to CW techniques. Another advantage of pulsed NMR is the 
ability to combine multiple pulses with different properties (frequencies, amplitudes, and 
phases) into complex pulse sequences that provide a wide variety of measurement capabil-
ities. 

1.1.3 The Development of MRI 

Since the early developments noted above, NMR has been utilized in numerous scientific 
disciplines, including chemistry, biology, physics, and material science. In the subsequent 
decades, NMR technology has continued to develop and improve, resulting in the invention 
of magnetic resonance imaging (MRI), which is now a common tool for the clinical diagnosis 
of living tissues. The widespread use of MRI in medicine can be attributed to several factors, 
including its non-invasive nature, its ability to image a wide variety of tissues, and its capacity 
to generate high-resolution two- or three-dimensional (2D or 3D) images that provide both 
anatomical and functional information. 

MRI technology originated in the 1970s. American physician Raymond Damadian was 
the first to suggest that the distributions of NMR signal decay times (known as the relaxation 
time constants .T1 and . T2) differ between normal and cancerous tissues [ 3]. The first imag-
ing method, namely back-projection using static magnetic field gradients, was proposed by 
American chemist Paul Lauterbur a few years later [ 8]. Lauterbur named the resulting images 
zeugmatograms, while the method itself was known as zeugmatography. The introduction 
of pulsed field gradients, together with use of the fast Fourier transform (FFT) for image 
reconstruction, greatly increased the speed of data acquisition compared to imaging methods
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based on back-projection. This approach, known as Fourier zeugmatography, was originally 
introduced by Swiss physicist Richard Ernst and his co-workers in 1975 [ 7]. Since then, 
the use of the FFT in NMR and MRI has become commonplace due to its computational 
efficiency. Soon afterwards, English physicist Sir Peter Mansfield used time-dependent mag-
netic field gradients to develop multi-planar imaging, which made 2D imaging practical by 
further speeding up image acquisition [ 9]. Finally, in 1978, the development of selective 
excitation methods [ 11] enabled 3D imaging and the first whole-body MRI scanners [ 6]. 

1.2 Summary of Current Developments 

Despite the variety of potential applications, the use of MRI is mainly limited to large 
hospitals and academic or industrial laboratories. This can be largely attributed to the fact that 
MRI scanners generally utilize large superconducting magnets or complicated permanent 
magnet geometries to generate strong and uniform magnetic fields. As a result, they are 
typically very expensive (in the range of $800k–$5 million for the scanner and $3.25 to $15 
per liter for liquid helium coolant), require installation within special shielded rooms, and 
use extremely complex hardware and data acquisition methods. Creating a more affordable 
class of devices would make MRI systems more accessible, thus providing the benefits of 
non-invasive biomedical imaging to less privileged segments of society. 

Recent years have seen increasing interest in MRI scanners that reduce size and cost by 
using much weaker magnetic fields (less than 0.5 T). Such “low-field” scanners are now 
commercially available from several sources, including well-funded startups such as Hyper-
fine and Promaxo. However, the use of a weaker magnetic field is generally accompanied by 
a reduction in signal quality. In particular, the signal-to-noise ratio (SNR) of an NMR mea-
surement increases approximately as .B7/4

0 , where  .B0 is the strength of the magnetic field. 
Thus, low-field systems suffer from low values of SNR, i.e., have intrinsically poor measure-
ment precision. Nevertheless, some low-field MRI scanners are available in portable form 
factors, thus enabling point-of-care imaging in patient wards, doctor’s offices, ambulances, 
and other scenarios. Other low-field scanners feature programmable magnetic fields that can 
be used for therapeutic purposes (such as delivering magnetic nanoparticles to tumors) in 
addition to imaging. Unfortunately, realizing these desirable features (portable form factors 
and programmable magnetic fields) introduces significant challenges in hardware design, 
data acquisition, and signal processing. 

Another important challenge in low-field MRI is the decreasing sensitivity of conventional 
inductive detectors with resonant frequency (which is proportional to the field strength). 
Inductive detectors (also known as coils) detect the rate of change of sample magnetiza-
tion over time. As a result, their sensitivity is proportional to the detection frequency. The 
authors in [ 4] provide a good introduction to ultra-low-field NMR and MRI using alterna-
tive detectors based on superconducting quantum interference devices (SQUIDs) or atomic 
magnetometers. The results are of great technical interest since these devices directly detect
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the sample magnetization (not its rate of change), and thus have better sensitivity than coils 
at low frequencies. However, the sensitivity of such detectors to static and low-frequency 
magnetic fields is a double-edged sword since it also makes them very susceptible to exter-
nal interference. Important sources of interference include the Earth’s magnetic field, AC 
power lines (at multiples of 50 or 60 Hz), and switching power converters. Reducing such 
interference to tolerable levels generally requires a significant amount of magnetic shield-
ing. In addition, SQUIDs (but not atomic magnetometers) require cryogenic cooling; they 
are generally operated in liquid helium at 4K. Thus, ultra-low-field scanners using such 
detectors are generally operated within shielded rooms, i.e., are not particularly portable. 
As a result, most low-field NMR and MRI systems continue to use conventional inductive 
detectors (RF coils). 

1.2.1 Applications of Low-Field MRI 

Addressing and solving the challenges discussed above can improve current NMR and MRI 
systems and also lead to their adoption into new industries and scenarios. The use of low-
field NMR is particularly useful for studying fluids inside porous media, such as sandstone 
and carbonate rocks, bones, and electrodes in electrochemical systems. The relaxation and 
diffusion spectra of fluids within such media are used to study molecular structure, dis-
tinguish between fluid types, and quantify key metrics such as porosity and permeability. 
For example, a key goal of fluid typing in sedimentary rocks is to distinguish between 
water and various types of hydrocarbons (crude oils and natural gas). Such answer products 
are important for optimizing the exploration and production strategy for oil and gas fields. 
Accordingly, the field of well-logging has pioneered many low-field NMR technologies for 
characterizing rocks and fluids (water, oil, and natural gas) deep underground [ 12– 14]. 

Research in NMR well-logging and rock core analysis has also advanced the study of 
NMR physics and sample analysis [ 15– 17]. In a porous medium, the relaxation of the NMR 
signal back to thermal equilibrium is driven by two main mechanisms, namely (1) bulk 
relaxation within the fluid [ 18], and (2) surface relaxation on the pore walls due to the 
presence of paramagnetic ions such as iron or manganese at grain boundaries [ 19]. The 
latter component increases for smaller pores due to their increased ratio of surface area, . S, 
to volume, . V . For example, a spherical pore has 

. 
S

V
∝ 1

r

where. r is the radius. Thus, the observed relaxation spectrum of the fluid denoted by (. ρ(T1)
or .ρ(T2)) provides information on the pore size distribution, which in turn determines both 
the porosity and the permeability of the medium. 

An increased static field, .B0, generates higher internal gradients within the porous 
medium due to local variations in magnetic susceptibility [ 20, 21]. Additional relaxation
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due to molecular diffusion within these gradients obscures variations in relaxation times 
with pore size, making it more difficult to determine porosity and permeability. It is possible 
to reduce relaxation due to internal gradients by using NMR pulse sequences that rapidly 
generate a series of spin echoes. Specifically, the sequence should ensure that .B0 × tE is 
kept low (e.g.,.< 0.1Gauss-second), where.tE is the time interval between successive echoes 
(also known as the echo period). However, the required value of .tE can become too short 
for the transceiver hardware as .B0 increases. For this reason, conducting such studies using 
high-field NMR is not ideal. 

By contrast, longer values of .tE can be used at lower values of .B0, which relaxes the 
specifications of the transceiver. Consequently, low-field NMR (often at.B0 ≈ 0.05 T) is (1) 
popular for characterizing liquid relaxation inside porous media, and (2) of great interest in 
the petroleum industry. Advancements in low-field NMR thus have the potential to enable 
new applications of magnetic resonance in the oil field and beyond. Making NMR and MRI 
devices (known as spectrometers or scanners, respectively) more portable and autonomous 
is one way to make progress in this area. 

In modern usage, the term “portable” generally refers to something that can fit within 
a pocket and then taken and operated anywhere. The definition of portable NMR/MRI is 
slightly more convoluted due to the fact that conventional systems require large shielded 
rooms and cryogenic cooling in order to operate. There are many devices in the literature that 
do not require shielded rooms or cryogenic cooling and are thus labeled as portable. However, 
their form factors range from hand-held devices to systems that can be transported within 
vehicles [ 22– 27]. From a pragmatic viewpoint, an NMR/MRI device can be considered 
portable if it can be easily moved from one location to another. 

A common strategy for improving portability in biomedical imaging applications is to 
develop scanners for individual body parts, rather than the entire body. A number of research 
studies have been conducted on systems designed for imaging specific body parts, such as 
the lungs [ 28, 29], brain [ 23, 30– 35], and elbow [ 36]. Other attempts along similar lines 
include small imaging systems for pediatrics [ 37] and low-cost full-body scanners [ 38]. 

In addition to its widespread use in medicine, low-field NMR has a great deal of potential 
for use in educational institutions [ 39] and various industries, such as the food industry [ 40– 
46]. Aside from being less expensive, low-field MR systems are also potentially small and 
lightweight, making them suitable for field applications. It is often unfeasible or impractical 
to transport samples in several applications, e.g., examinations of live stems or trees. These 
measurements were previously performed in controlled environments [ 47, 48], such as a 
laboratory or office, which occasionally caused destruction of the sample [ 49, 50]. Recent 
advances in MR technology, including low-field magnet design and miniaturized gradient 
amplifiers, have addressed this issue by enabling in-situ measurements. Modern magnet 
designs significantly reduce the total weight of MR systems. Examples include sparse Hal-
bach arrays [ 51– 54], low-field electromagnets [ 55], custom C-shaped magnets [ 56– 59], 
and other custom geometries [ 60, 61]. Circuit design innovations, such as the use of high-
efficiency switching amplifiers, have also significantly reduced the size and weight of the
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gradient amplifiers [ 62, 63]. The aforementioned research has enabled the construction of 
desktop-sized NMR systems that can image moderately-sized samples with diameters in the 
1–20 cm range. For example, the benchtop research MRI system developed by Pure Devices 
(Rimpar, Germany) uses a 0.55 T Halbach-type permanent magnet and has a useful field of 
view (FOV) of 1 cm. 

1.2.2 Autonomous Operation 

One key assumption made in the references above, as well as many others, is that there will 
always be a trained operator and an external computer available for running the aforemen-
tioned systems. However, this is not always true in reality, which in turn places limitations 
on the operating envelope of the system. One specific example is in the context of well 
logging tools, which are often required to operate tens of thousands of feet below the earth’s 
surface with a relatively low-bandwidth data link to the surface. Accordingly, recent work 
has focused on automating the parameter selection and measurement optimization processes 
for NMR well logging tools [ 65]. 

The advantages to having an automated system is obvious for well logging, but many 
other industries such as agriculture, in-line quality assurance, food, materials, and medicine 
can take advantage of NMR or MRI if such automated tools exist. A more in-depth discussion 
of such applications is included in Sect. 10.1. Briefly, a fully functional, autonomous, and 
portable NMR or MRI system usable in a variety of applications needs to be (1) low power, 
(2) portable, (3) low cost, and (4) automated in terms of data acquisition, signal processing, 
and decision making. The appropriate form factor of the system is application-specific, but 
should be as small as possible to meet the user requirements. 

The general theme of this book is to describe both theoretical and experimental approaches 
to address the challenges described above, thus making low-field NMR/MRI systems more 
portable and accessible. The size and hardware complexity challenges are addressed by 
developing (1) simplified, optimized, and miniaturized magnets, and (2) modern technolo-
gies to miniaturize the electronics (both digital and analog) needed to drive an NMR/MRI 
system. The power requirements are addressed by (1) developing lower power hardware, 
and (2) utilizing numerically-optimized broadband pulses [ 66, 67] in inhomogeneous mag-
netic fields featuring large static gradients. The process of data acquisition is automated 
by developing algorithms for adapting measurement parameters to maximize user-selected 
metrics such as the signal to noise ratio (SNR) per unit time. Such algorithms can also enable 
autonomous operation of the proposed MR systems in situations where manual operation is 
not feasible or when continuous operation is needed. Finally, we describe the use of modern 
machine learning (ML) techniques for quantification and/or classification of sample proper-
ties. These automation steps help to eliminate the need for a trained operator to collect and
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analyze the NMR data, thus paving the way for MR systems to become consumer devices 
suitable for use by the general public. 
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