Electronics for
Musicians

Build Intuitive Electronics and
Electroacoustic Music Interfaces

Second Edition

Alexandros Drymonitis

ApPress

Maker Innovations Series

Jump start your path to discovery with the Apress Maker Innovations
series! From the basics of electricity and components through to the most
advanced options in robotics and Machine Learning, you'll forge a path to
building ingenious hardware and controlling it with cutting-edge software.
All while gaining new skills and experience with common toolsets you can
take to new projects or even into a whole new career.

The Apress Maker Innovations series offers projects-based learning,
while keeping theory and best processes front and center. So you get
hands-on experience while also learning the terms of the trade and how
entrepreneurs, inventors, and engineers think through creating and
executing hardware projects. You can learn to design circuits, program Al,
create IoT systems for your home or even city, and so much more!

Whether you're a beginning hobbyist or a seasoned entrepreneur
working out of your basement or garage, you'll scale up your skillset to
become a hardware design and engineering pro. And often using low-
cost and open-source software such as the Raspberry Pi, Arduino, PIC
microcontroller, and Robot Operating System (ROS). Programmers and
software engineers have great opportunities to learn, too, as many projects
and control environments are based in popular languages and operating
systems, such as Python and Linux.

If you want to build a robot, set up a smart home, tackle assembling a
weather-ready meteorology system, or create a brand-new circuit using
breadboards and circuit design software, this series has all that and more!
Written by creative and seasoned Makers, every book in the series tackles
both tested and leading-edge approaches and technologies for bringing
your visions and projects to life.

More information about this series at https://1link.springer.com/
bookseries/17311.

https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311

Digital Electronics for
Musicians

Alexandros Drymonitis

Apress’

Digital Electronics for Musicians: Build Intuitive Electronics and
Electroacoustic Music Interfaces, Second Edition

Alexandros Drymonitis
Argyroupoli, Greece

ISBN-13 (pbk): 979-8-8688-0393-2 ISBN-13 (electronic): 979-8-8688-0394-9
https://doi.org/10.1007/979-8-8688-0394-9

Copyright © 2024 by Alexandros Drymonitis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Miriam Haidara

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York,
NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0394-9

To Katia and Alina.

Table of Contents

About the AUthOrccccimimmmnmssne s Xvii
About the Technical REVIEWETcssessssessssnsssassssassssnsssassssnsssassssanssns Xix
Acknowledgments......ccccerumsssssssnnsnmssssssssssssnssnsssssssssssnssnnsssssssssssnnnnns XXi
Introduction..........ccconvmmmmnmmmnesnnns s ——————— xxiii
Chapter 1: Introduction to Pure Data.............coccmmmmmmnininnnsssssssnnnnnnennnnes 1
Before We Start ... 3
Pd Basics: HOW [EWOTKS........ccovcrierercserese s sss s 8
OUr FirSt PAtCh ... 10
The Control DOMAINccceeienereerrnesere s s sessessssenens 14
EXECULION OFAEY ...t s 15
BaNg! ..o s 17
COMIMENTS ... e e r e nra s 19
6T T N 5 T | o RS 20
GUIS ..eveeeeresese e se e ne s 22
Pd Patches Behave like Text Files ..o 23
Making OSCillators in Pdccoucvviinninsnenn s sse s ssesnens 24
Making a Triangle Wave 0SCillator..........c.ccovcvvrirennsninesssesse e 26
Making a Sawtooth OSCillator.............cccvirecncninesr s 28
Making a Square Wave OSCillatorcccovvvvninennsninese e 29
Using Tables in Pd.........ccvvriirsrinss e s snens 30
Making Wireless CONNECLIONScocueernererenensse s ses s sessesenns 34

vii

TABLE OF CONTENTS

Subpatches and ADSIraCtioNscccvvvvvriern e 37
The $0 NUMDET ..ot snssens 41
Control Domain vs. Signal DOMAIN...........cccovevnrenernscrnserene e 42
Basic Electronic Music TeChNiqUES.........ccccvcriiininin e 45
Additive SYNTESISc.voeeereerecrrere e 45
RiNG MOAUIALION ... 47
Amplitude Modulation ... 48
Frequency Modulation.............coveeerercrnncnreere e 49
ENVEIOPES ...ttt e e e s 52
Audio INPUL N Pd....c.ee e e 54
Delay LiNeS iN Pcccvveernnenensnerresesessssessssess s sesssse s ssssesesssssssesessnss 55
(21214 R 58
T R 58
Audio and MIDI SELHNGSeeerrerererrerereserssesessesessse s sessesessesessssesessssessenens 61
Additional TROUGALScccveeerreerrierrresenese e 63
0] T 111 (0] o 64

Chapter 2: Introduction to Arduino.......ccceivversmnsssssssssnnnesssssssssssssneenn67

Arduino Jump STart........ccver e —————— 68
L 1 S I S 70
The BIINK SKELCHcoveeeeeeeeeeee e 71
Digital INPUL......oeceeeeecerece e s 80
Defining Variables in Arduino..........cooeevnnenrnenesssesssesesese s sessesessesesenses 82
Further Explanation of the Code.........ccccrirnininininnsn e 82
Classes in Arduino and the Serial Communication...........cccoevrvrrnserereserennes 83
Further EXplanation ... 83
Building Circuits on @ Breadboard............c.cuoueervnernsesessesesssmsnsesessesessssessnnes 85

viii

TABLE OF CONTENTS

Pull-Up vs. Pull-Down ReSiSIOrSccverirvnnenneniinsnnsse s e ssesses e s s ssesnas 88
Both Digital Input and QUEPUL..........ccoericririr e 89
ANAIOG INPUL....ce e e 94
Analog Input and QULPUL ... ———— 97
Reading More Than One Pin, Arrays, and the for Loop.......ccceevrvnernsenenesernnnes 102
Explaining the for LOOP.......cccuuvernserneninesessse s ss s sessessssenens 103
Using Arrays in ArdUINOccoveeerenernsesenesese s ss s ssnnes 103
Analog and Digital INPUL..........coecrvrirrirrr e 106
Communicating With Pd..........ccucvierivnrnrnenssensesesesessessessesessessessessessssessessens 112
Sending Data from Pd t0 Arduing........cccccvveeresnnicnre e 125
L] 0 (e 11 o S 132
Chapter 3: Embhedded COMPURErSccccusssemmmmssssnnnmmssssnsssssssssnsnssssnnns 135
Before YOU BegiN.......ccoveevrerereerssesesesessse s sesssse e sesse e e s sessssessssessnns 136
PartS LiST......cciierireeree s 137
Why Use Embedded COMPULEIS?.......cccvcrerrnnrenenenis e sessesessessssessessesnes 138
Getting Started With the Pi.........cccvevrininnnsrsere s ssesessessessens 139
Logging In to the Pi from mac0S and LiNUXccccevrervererenserserseresessensenees 141
Logging In from WindOWS........cccevirininninnn e s sse s s 141
Navigating Through the Linux SYStem.........cccvvrierrrnrenierienensensesesessensensens 142
Editing Text FileS in LiNUXccccvvirininninne s ssessessee s ssessens 145
INStAlliNG SOfIWANE......ccrevrereriere et naennes 146

I 101 011 10 0o S 148
Setting a Static IP 0N the Pi.......cccvcvverevrrrire e sesese s sesaees 150
Shutting Down or Rebooting the Piccccvvvierevnnninenn s sessessenes 152
Setting a Static IP on Your COMPULET.........ccvcvrerennrnsenere s sessesessssesesaees 152
Getting Started with the Bela.........ccccovvvrerrecrn e 153

ix

TABLE OF CONTENTS

Exchanging Files Between Your Computer and the Pi or Bela........c.ccocecevvernene. 156
Transfer Files from macOS and Linux to the Pi or Bela and Vice Versa....... 156
Transfer Files from Windows to the Pi or Bela and Vice Versa 157

CONCIUSIONS....cviviriueecreresre e e s e s se s nenennans 160

Chapter 4: Going WiIreleSscccurrssssnnnsrsssssnnsssssssnssssssssnsssssssssnnsssssnns 161

Before YOU BeQiN.......ccoeoverererecrereresesese s 162

XBEE VS. WiFi ..eveereecrescsenreerrsse s s s e sesss e e ssssssessssnsnnaens 162

Using the XBee With Arduino...........ccoveemrenernsesnesens e 163
Configuring the XBEE........cccucerrererenernsesinesessse s sesse s ssanes 166
Writing AT Commands to Configure the XBee..........ccocvvrervrernienenenernnsenene 168
Testing the Wireless CONNECHioN.........c.cccvverresernsesnnese e 171

Using the Arduino Nano ESP32 With WiFi..........ccccvvrvnnsnieniennsensene s sessensens 173

{0 T 11T (0] o 178

Chapter 5: Getting Started with Musical Applicationsccceeussaees 179

g 1o S I ST 180

Frequency Modulation INterfaceccooeerrerrienresernserereser s 180
Making the Pd PatCh ... 180
Arduino Code for Frequency Modulation Patchcccccoeenneennccscrnccene 186
Circuit for Arduing COde.........cocveeeeererrecreresere e 188

A Simple Drum Machine Interfaceccccvrivvnvnininnnn e 190
Building the Pd PatCh ..o 190
Arduino Code for Drum Machine Patchc.ccccovvnnrnrressnnesenenesessenens 203

Drum Machine and Frequency Modulation Combinationc.cccoovvevvciennane. 207
Arduing COUEcccrrvererrerernse s 207
Pd Patch for Drum Machine—FM Interfaceccocovevrnvesnnenennsesnsesenenens 212

{0] T 11 (0] o 217

TABLE OF CONTENTS

Chapter 6: An Interactive GIOVe........ccccvsseemmnrsssssnnsmsssssnsssssssssnssssssnns 219
o 1 S I 220
Writing the Arduing COTEcccovreeereereere e 220
Building the Circuit of the Accelerometercccovvrrnsrnnenn s 224
Building the Pd PatCh...........cccuvcrncenninnnse s ssenes 225

The Graph-0n-Parent Subpatches..........cccccvvrirnininininnsrre s 227
The [pd freq_modulation] Subpatch..........cccrirrininininnrrcr e 230
The [pd pitch_shift] SubpatCh ... 234
THE GIOVE ...t 235
{0 T 11T (0] o 239

Chapter 7: An Interactive Drum Set...........cccuccmnsmmmsanmssnnssnsssassssasssns 241
o 1 S I 242
First Approach to Detecting Drum HitS.......ccccovvnvrincnvncne e 242

First Version of the CirCUitocvveeereereceree e 243
Read the Drum HitS in Pd ... 245
Getting the Maximum ValUe..........ccocvcrininnnncness e 246
Finalizing the Circuit and Arduino Codeccovrerererernsesesesesssesessesessesesennes 250
Adding Switches and LEDs to the Circuit and Codecccvvrierinrerieniennens 251
Building the Pd PatCh...........cccuvcrnvenninirnsenssesssese e 258
Building the Audio File AbStraction............ccoueevnererssesssesnesesesesssesesseens 258
Building the Abstraction to Receive Input from the Arduino..........cccccveeenens 271
The Main PatCh..........ccoviieriienncsenese s 272
Making the Circuit ENCIOSUIEccccevvverrriererir e sessesesne s 277
{0 T 11T (0] o O 281

TABLE OF CONTENTS

Chapter 8: A DIY Theremin.......ccccvusssennsmssssssnssssssssnssssssssnsssssssnsnssssnans 283
o 1o S I ST 283
Using a Proximity Sensor with the Arduing...........ccceeernennesn s 284

Smoothing Out the Sensor Valuescccoverrenrenresc e 286
Using Two Proximity Sensors and Four Potentiometerscccerieviiniennenn 289
The Arduing COOEccveeerrrerereserese s s 291
THE CIFCUIL ...cveerveeresese s s 294
THe Pd PatChcoveieresersserenesere s se e s 295
Building the Oscillators for the Theremin..........ccoceevvirnsnnnesnnnse e 296
Creating Band-Limited Waveforms.........c.cccocvvnrnsesnnennnnsesssesessesesssessnns 297
Reading the Stored Band-Limited Waveforms...........ccccoevvvvnnncerenensensennens 299
Finalizing the INTErfaceccoovvvvrirernsrre e 300
Adding Switches to the Arduino Code to Control the Waveforms of the
OSCIllALOrS......ovrviericrcrerr s 300
Making the CirCUIL........ccccevvierreriere s se e snens 308
Putting It All TOQETNETcveveeercerere et nnens 310
Adding a Push Button for Switching Off the Embedded Computer.............. 320
Reading the Extra Push Button in Pd and Shutting Down the Pi.................. 321
Loading the Pd Patch on Bootccccoevrvrvnenenn e sesaennes 323
L1011 = T RS 324
{0 T[T (0] o TS 325

Chapter 9: Making @ LOOPEccccusemrcsssmsssssnsssssssesssnsssssssssssnnssssnnsss 327
o 1o CS) I ST 327
WRAL IS @ LOOPEI? ...ttt se s s 329
Recording Our First Sounds in Pdccoecrniennennnsc s 330

Playing Back the Recorded Sound............cccovvevnennenennsesnesenesess e 331
Controlling the Speed and Direction of the Playback...........ccccovvvvericernnne. 334

xii

TABLE OF CONTENTS

Making Recordings of Arbitrary Lengths..........cccccvvvnnnininnnnninsnss s 336
Retrieving the Length of the Recording.........cccccvvvvninvninninincen e nenenens 338
OVErdubDINg....ccceeeeir e e e e 339
Getting Rid Of ClipPiNg.....ccceecverrrerrrerrcerire s 340
Getting the Start Position of the Overdubbing........cccooevvecnnvnnccinecce, 341
Knowing When to Stop Overdubbing.........ccoecvrievrnnnnccnneseneserseneneens 342
Playing Back a Portion of the Recording..........ccoveerrerrncnneserescrresesesenene 343
Synchronizing End of Recording with Beginning of Playback...........c...cocvcenu.. 344
Start Building the Interface..........cccoovvrnvnncnncs s 345
Building the Circuit on a Breadboard..............ccoovvevrenrnsennesnssesssesenseens 346
Working Further on the Pd Patch............ccoouveinvinnnnnesensse s 348
Putting [t All TOGELNETc.cceeeiieree e 367
MaKing an ENCIOSUIEcccceerrererieriereserserese s ses s sss e s e s saesassessesaessssessessenes 368
Running the Pd Patch on BOOt ... 371
3 T0] 1< 0 0O 371
Including the [tabwrite_dir~] External Object..........ccccvvviinvninncnccnenne, 371
Creating a Shield for the Circuitcccovevrerrncrnre e 372

L] 0 (e 11 o S 374
Chapter 10: A Patch-Bay Matrix Synthesizerccccccernsssnnnnnnnnnnnas 375
o 1 (S I SR 375
What We Want to Achieve in This Chapter..........cccocvvevrininnnnnesennse s 378
Extending the Arduino Analog Pinscccvevnrniniennnensessese s sesessesessessessens 379
How a MURIPIEXEr WOTKS......ccccerererirserere st sere e ses s s e e ssesessessesnens 381
Writing Code to Control @ MURIPIEXEX........cccveerevvinieriere e sessenaens 383
Wiring 16 Potentiometers to the MultipleXer.........ccocvvvievnnnieriennnensensennens 388

xiii

TABLE OF CONTENTS

Extending the Arduino Digital PinS..........ccccvvvvmninininnenieniessee s see e sessens 390
Using the Input Shift REGISTEr........ccvcvrerieverrrerere e sesse e 391
Using the Output Shift REgISter........ccvvriervrrrriere e 398
Combining the Input and Output Shift Registersccecvrvvvrrvriernvenserienne 407

Making a Patch-Bay MatriX..........ccccvrvrninininnsnsne s 410
Implementing a Patch-Bay Matrix with the Arduino.........cccccovvvvniincencnne. 410
Making the Pd Patch That Reads the Connections..........ccccceereeernccnernnens a7
Making the Patch-Bay Matrix CirCUit..........ccceeevrierrirnrnienrsereresersceneneens 421

Start Building the Audio Part of the Pd Patchccoooreirncnneececrneen 423
A Signal MatriX in Pd ... 424
Building the Modules for the Synthesizer............ccccooeerrennienresrrcesereens 426

The Final PatChccoveirere s 440
The arduino_stuff Subpatch ... 441

The Final Arduing COdEccoveerrerrnenenesessessse e sessessssenens 446
Using Binary Numbers for Masking........c.cuccovenrnsesnnenennsesnsesessesesssensnns 453
The checkConnections() FUNCLIONccoveevisernnesnese e 454
The Main 100p() FUNCLION........ccovecercccrrc e 454
Controlling the LEDs with the Switches of the Shift Registers.................... 455

The Final CirCUIL.......co i 456

Making an ENCIOSUIEcocvvereiiirinsin e se s e s s se s e s sseas 457
Shutting Down the Embedded COMPULETcccevevevrerrerereenensersesessssessensees 459

{0 T[T (0] o OO 459

Chapter 11: Interactive Projects with Alccccvvssennninsssnnnnnnssnnns 461

What Are Neural NetWOrkS?.........ocorerererrcresesese s 462

o 1 (S I SR 463

An Interactive Drum Synthesizer..........cooceveirssnncsnese e 465
The [neuralnet] External ODJECt..........ccuevrrerresernsesrnese s 466

Xiv

TABLE OF CONTENTS

The Main Pd PatCh...........ccoivnninmnirncs e 467
The NN Settings SUDPALCRES........ccvvererrrerrre e 470
The [pd percussion] SUDPALCh.......cccvcvvvriri e 474
The [pd sliders] SUDPALCh.........ccvcvirirrrrrre s 475
How to Train the NetWOrKS ..o 476
RS0 11 L= I R 478

An Augmented MIDI Keyboard with Al-Waveshaping..........ccccocevenvnrennnnnseniennes 480
Creating the CirCUIL..........ccovvevrieiererrr e 482
Controlling the LCD......c.ccvrevrenireccrir et 483
Configuring the Pi to Receive MIDI Through Its GPIO Pins........cccccevveennne. 494
Making the Pd PatCh ... sesennens 495
The ai_synth_voice.pd AbStraction............cccccvvevenercrcnseneercerrer e renenns 517
Training the NEtWOrK ... 519
Writing the Scripts to Launch the Project........ccoooovvivnnicncnccecrcnens 519
RS0 T O 522

L] 0 (e 11 o S 523
INA@X..ueeeiiienssiansssnnnssssnsssssnsssssnsssssn s s ssn s s s ssnn s s ssnnsnssnnnnssnnnnssnnnnssnnnnnnns 525

About the Author

Alexandros Drymonitis is a sound and new
media artist. He has a PhD from the Royal
Birmingham Conservatoire, Birmingham City
University, on the creation of musical works
with the Python programming language, while
his previous studies were on the classical guitar
at the Conservatorium van Amsterdam, where

he got his first stimuli on music technology.
Ever since, he has been making electronic
music using open source software and hardware, like Pure Data, Arduino,
and Python. Besides this book, he has used Pure Data and Arduino to
develop the modular synthesizer system 3dPdModular. He is currently
doing postdoc research at the Cyprus University of Technology on
instant synthesis for computer-controlled acoustic instruments with live
coding and Al

xvii

About the Technical Reviewer

Sai Yamanoor is an embedded engineer
based in Oakland, CA. He has over ten years
of experience as an embedded systems

expert, working on hardware and software
design. He is a coauthor of three books on
using Raspberry Pi to execute DIY projects,
and he has also presented a Personal Health
Dashboard at Maker Faires across the country.
! Sai is also working on projects to improve
quality of life (QoL) for people with chronic

health conditions. Check out his projects at
https://saiyamanoor.com.

https://urldefense.com/v3/__https:/saiyamanoor.com__;!!NLFGqXoFfo8MMQ!s2DnkmiWDLVPSSl8gnRAUmxzx7VhwBs0aJPu6cSuF-2hrMWMgy8nUoa5Jo3hoWKQ9eHYCCuF6TpaCU78KtOcrjESHsXxZ5c$

Acknowledgments

I would like to thank Miriam Haidara for proposing this second edition
to me, as well as the whole Apress team for being helpful and responsive
throughout the writing and proofreading of this second edition. The Pure
Data community and its developers have contributed by developing this
great open source software that I daily use, as well as the Arduino team.
These two software have opened up a whole universe of exploration and
creativity.

Introduction

This book aims at giving insight on a few of the most widely used tools in
the fields of creative coding and DIY digital electronic musical interfaces.
It is a result of personal exploration in these fields and an attempt to gather
information about the combination of the popular prototyping platform,
the Arduino, with the also popular visual programming language for
multimedia, Pure Data (Pd).

The main focus of the book is interactivity with the physical world and
how to make this musical. It is split among several projects where each
project brings a fresh idea on how to combine musical instruments with
computers, whereas the use of programming builds up gradually. Also, this
book uses only open source software, because of the great advantages one
can have from an open source community, but also in order to bring the
cost of every project to its minimum.

The first edition of this book, which was published in late 2015,
used Pd-extended, a version of Pd that included a number of external
packages, in addition to the ones that come with Pd’s core - called Pd-
vanilla. Since then, a lot has changed, and Pd-extended is now no longer
maintained. Still, at the time of writing (early 2024), it is easier than ever
to install Pd-vanilla and any external packages in any operating system
(OS). Additionally, the version of the Arduino Integrated Development
Environment (IDE) has also moved up by a significant number, and it is
now much more feature-rich and easy to use. All this, together with the
advent of artificial intelligence (AI) in the field of creative coding, rendered
this second edition necessary.

xxiii

INTRODUCTION

Besides software versions, a significant addition to this second edition
is the Bela, a prototyping platform for interactive musical projects. This is
introduced in Chapter 3, together with the Raspberry Pi, and a project is
built with it in Chapter 9. An extra chapter has been written, focusing on
Al This is Chapter 11. The initial Chapter 5 has been completely removed,
as I felt it didn’t really add to this book. This chapter covered MIDI, which
has been taken up by the second project of Chapter 11.

Chapter 3 of the first edition has been split in two, and now these are
Chapters 3 and 4, where Chapter 3 focuses on embedded computers -
namely, the Raspberry Pi and the Bela - and Chapter 4 focuses on wireless
communication. In addition to the XBee radios used in the first edition,
wireless communication over WiFi has been added, while the Bluetooth
communication has been removed, as it seems to not be very popular and
requires a few steps in its configuration, both in software and hardware,
rendering it not easy enough to include it in this edition.

I hope the reader finds this book useful for their own projects and that
it will kick-start their own endeavors in the fields of creative/interactive
coding and DIY electronics.

XXiv

CHAPTER 1

Introduction to Pure
Data

Pure Data (Pd) is a visual programming language and environment for
audio, visuals, and multimedia. It is open source, and it was developed

by Miller Puckette during the 1990s. Pd is a very powerful and flexible
programming language, still actively developed, used by professionals and
hobbyists alike around the world.

Visual programming means that instead of writing code (a series of
keywords and symbols that have a specific meaning in the context of a
programming language), you use a graphical interface to create programs,
where in the most usual cases, a “box” represents a certain function, and
you connect these “boxes” with lines. This kind of programming is also
called data flow programming because of the way the parts of a program
are connected, which indicates how its data flows from one part of the
program to another.

Visual programming can have various advantages compared to textual
programming. One advantage is that a visual programming language
can be very flexible and quick for prototyping, where in many textual
programming cases, you need to write a good number of lines of code
before you can achieve even something simple. Another advantage is
that visual programming can be considered more intuitive than textual

© Alexandros Drymonitis 2024 1
A. Drymonitis, Digital Electronics for Musicians, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0394-9_1

https://doi.org/10.1007/979-8-8688-0394-9_1

CHAPTER 1 INTRODUCTION TO PURE DATA

programming. There seems to be a consensus among nonprogrammers
where textual code is considered as something coming out of a horror
movie, making visual programming languages more attractive.

Throughout this book, we will use Pd for all of our audio and
sequencing programming, most of the times in combination with
the Arduino. The Arduino is a prototyping platform used for physical
computing, which enables us to connect the physical world with the world
of computers. A thorough introduction to Arduino is given in Chapter 2.
This chapter is an introduction to Pd, where we will go through its basics,
its philosophy, as well as some general electronic music techniques. If
you are already using Pd and know its basics, you can skip this chapter
and go straight to the next one. Still, if you are using Pd but have a
fuzzy understanding on some of its concepts, you might want to read
this chapter. Mind that the introduction to Pd made in this chapter is
centralized around the chapters that follow, and even though some generic
concepts will be covered, it is focused on the techniques that will be used
in this book’s projects.

In order to follow this chapter and the rest of this book, you will need to
install Pd on your computer. Luckily, Pd runs on all three major operating
systems (OS), macOS, Linux, and Windows. At the time of writing, there are
a few different versions of Pd. The basic one is called Pd-vanilla, and it is the
core on which all other versions are based. This is the version developed
by Miller Puckette. Other versions include Pd-L20rk (standing for Linux
Laptop Orchestra), Purr Data (a Pd-L20rk version for all OSes), and
PlugData. All these extra versions have a different Graphical User Interface
(GUI) than Pd. Pd-L20rk and Purr Data are monolithic versions that ship
with a large collection of external objects (packages) in addition to the core
set of native Pd objects, following the paradigm of the now discontinued
Pd-extended. PlugData ships with a smaller collection of externals, but it
adds the capability of using it as a plug-in inside other software (like Digital
Audio Workstations (DAWs)) or to compile your Pd programs as C/C++
code. PlugData also offers flexibility on the configuration of its GUI.

CHAPTER 1 INTRODUCTION TO PURE DATA

Throughout the entire book, we will be using Pd-vanilla. Even though
Pd-vanilla comes with the native Pd objects only, it is very easy to add
external objects, which we will see next. You can download it for free from
its website: https://puredata.info/. You will find two versions of Pd,
vanilla (Pure Data) and Purr Data. Navigate to the download page of Pure
Data and choose the version for your OS. At the time of writing, the latest
Pd version is 0-54.1.

By the end of this chapter, you'll be able to

e Understand how a Pd program works

o Create small and simple programs in Pd
e Find help in the Pd environment

o Create oscillators in Pd

e Make use of existing abstractions in Pd and create
your own

e Realize standard electronic music techniques in Pd

Before We Start

The first thing we need to do is launch Pd and test its audio output. When
launching Pd for the first time, it will ask whether you would like it to
create a folder called Pd inside your Documents folder. Click “OK” as this
is where we will be saving our patches throughout this book. Once this is
done, go to Media » Test Audio and MIDLI... and a window will open (in
Pd jargon, a program we write in Pd is called a patch, and this is what we
will refer to Pd programs from now on). On the left-hand side of this patch,
there is an area labeled “OUTPUT MONITOR” and a radio button with
three options: 80, 60, and off. 80 and 60 refer to decibels (dB), where 100 is
full amplitude. Click one of these two dB values to determine if Pd’s audio
output works properly. You should hear a sine wave at 440Hz.

https://puredata.info/

CHAPTER 1 INTRODUCTION TO PURE DATA

If no sound is coming out of your computer, go to Media » Audio
Settings.... Click the button in the Qutput Devices field, and check the
list of available output devices. Choose either your computer’s internal
speakers, or, if you are using an external audio interface and it shows up in
the list, choose that. Click the Apply and OK buttons and see if that works.
If you still don’t get any sound, make sure you do get sound from some
other software, and try different choices in the Qutput Devices list.

We also need to install two externals, one library (a set of external
objects) and a single external. When you launch Pd, all you will see is the
Pd console, shown in Figure 1-1. A window will also pop up, asking you if
you want Pd to create a folder called “Pd” inside your “Documents” folder
and inside there to create a folder called “externals” (from now on, a folder
will be referred to as a directory). Go ahead and click OK. The Pd console is
where certain information is printed while Pd runs, like error and warning
messages. To install the externals we want, we have to go to Help » Find
Externals, and the “deken” plug-in will open, shown in Figure 1-2.

In the top entry, type “zexy” and hit Return (the Enter key). In the
“Search Results” area, you should see an expandable entry. Click the little
arrow on the left of the library name (in our case, “zexy”) to expand its
contents, and choose the topmost item, which should be the most up-to-
date version of the library for your OS. Once you have done that, in the
search entry, at the top of this window, type “comport” Follow the same
procedure to install this one as well. The zexy library is, as itself states, the
Swiss army knife of Pd. We will be using a few objects from this library. The
comport object enables Pd to communicate with the serial ports of your
computer, thus enabling us to communicate with the Arduino.

CHAPTER 1 INTRODUCTION TO PURE DATA

Pd 0.54.1 X

File Edit Put Find Media Window Help

Audio off
- Log: 2 — . I DSP

Sl

Figure 1-1. The Pd console

CHAPTER 1 INTRODUCTION TO PURE DATA

deken - Find externals X

File Edit

Il I Show all ‘

Search for: " libraries © objects © both
Only install externals uploaded by people you trust.

Search Results] Log |

Enter an exact library or object name. =
e.g. 'freeverb~'
Use the '*' wildcard to match any number of characters.
e.g. '*-plugin' will match 'deken-plugin’ (and more).
You can restrict the search to only-libraries or only-objects.
To get a list of all available externals, try an empty search.

Right-clicking a search result will give you more options...

You can also search for libraries & objects via your web browser:
https://deken.puredata.info

Rl

Figure 1-2. The deken plug-in

There’s one last thing left to do before we start learning Pd. All external
objects are installed in the “externals” directory, when downloaded from
deken, but Pd doesn’t know it has to look for objects there. In addition to
that, zexy is a single-binary library, which means that all objects of this
library are compiled from one source code file into a single executable file
(called a binary file). Such cases of external libraries need to be treated
differently. Close the deken window, and in the Pd console, go to File >
Preferences, and a submenu will appear, in which you should select “Edit
Preferences.” The window shown in Figure 1-3 will open. Click the “Path”
tab, on the top of this window, and then click “New.” Another window will

6

CHAPTER 1 INTRODUCTION TO PURE DATA

open, where you should navigate to the “zexy” and “comport” directories,
one at a time. Go to the “zexy” directory, and once selected, click OK. A
new entry should appear in the main area of the Preferences window. Do
the same for comport. The directories that appear in this area are now
added to Pd’s search paths, which means that Pd will search there, in
addition to its standard paths, when you try to create an object.

Preferences x

Path | Startup | Audio | MIDI | misc |

~Pd search path for objects, help, audio, text and other files

New... Edit... ‘ Delete ‘

v Use standard paths

Pd Documents Directory

|/home/alex/Documents/Pd Browse

Reset ‘ Disable ‘

Externals Install Directory

|/home,lalex/Documents!Pd!extemaI 5 Browse

Reset ‘ Clear ‘

Cancel ‘ Apply ‘ OK ‘

Figure 1-3. Pd’s Preferences window

CHAPTER 1 INTRODUCTION TO PURE DATA

Zexy, being a single-binary library, needs to be added as a library when
Pd starts. In the Preferences window, click the “Startup” tab, click “New,”
and an editable entry will appear. In there, type “zexy” and hit Return. The
word “zexy” should appear in the main area of the window. For all these
settings to become effective, you will need to click the “Apply” button, at
the bottom of the deken window, and then “OK.” Now restart Pd to see if
your changes have been correctly applied. In Pd’s console, you should see a
multiline message about the zexy library, like the one shown in Listing 1-1.
This means that zexy has been correctly installed and imported. You are
now ready to start learning Pd!

Listing 1-1. Message on Pd’s Console When the zexy Library
Is Loaded

VAV,

the zexy external 2.4.2

(c) 1999-2023 IOhannes m zmdlnig
forum: : fiir: :umlaute
iem @ kug

compiled Dec 6 2023

send me a 'help' message

VAV,

Q
Q
Q
Q
Q
Q

Pd Basics: How It Works

Pd consists of several elements that work together to create programs. The
most basic elements are the object and the message. An object is a function
that receives input and gives output. Figure 1-4 shows the osc~ Pd object.

Figure 1-4. A Pd object

CHAPTER 1 INTRODUCTION TO PURE DATA

This specific object is a sine wave oscillator with a 440-hertz (Hz)
frequency. There is no need to understand what this object does; we will
go through that in a bit. There are a few things we need to note. First of

” u

all, there is specific text inside the object box, in this case “osc~ 440" “osc”
stands for oscillator, and the ~ (called the tilde) means that this object is
a signal object. In Pd, there are two types of objects: signal and control.
A signal object is a function that deals with signals (a digital form of an
electric signal). A signal object will run its function for as long as the audio
is on (the audio is also called the DSP, which stands for Digital Signal
Processing). A control object is independent of audio and runs its function
only when it is told to. We will get a better picture of the difference between
the two as we go. The last part of the text, “440,” is called an argument. This
is the data that a function receives, and we provide it as an argument when
we want to initialize an object with it. It is not necessary to provide an
argument; when there’s no argument in an object, the object is initialized
with the value(s) of zero (0).

The second main element in Pd is the message, which is shown in
Figure 1-5.

Figure 1-5. A Pd message

It is a little bit different from the object, because on its right side, it is
indented, and it looks a bit like a flag. The message delivers data. There’s
no function here, only the data we write in the message (sometimes
referred to as a message box). One thing the object and the message have
in common is the inlets and the outlets. These are the little rectangles on
the top and the bottom, respectively, of the object and the message. All
messages have the same form, no matter what we type in them. They all
have one inlet to receive data and one outlet to provide the data typed in
them. The objects differ, in the sense that each object has as many inlets as
it needs to receive data for its function and as many outlets as it needs to

CHAPTER 1 INTRODUCTION TO PURE DATA

give the output(s) of the function. With the osc~ object, we can see that it
has two inlets and one outlet. The left inlet and the outlet are different than
the right inlet, even though they look alike. The left inlet and the outlet are
signal inlets/outlets, and the right inlet is a control inlet. Their differences
are the same as the signal and control objects. Note that a signal object can
have control inlets/outlets, but a control object cannot have signal inlets/
outlets.

Objects and messages in Pd are connected with lines, which we also
simply call connections. A message connected to the osc~ object is shown

[a40(

0SC~

in Figure 1-6.

Figure 1-6. A message connected to an object

A connection comes out of the outlet of the message and goes to the
inlet of the object. This way, we connect parts of our programs in Pd.

Our First Patch

Now let’s try to make the little program. Launch Pd to see its console. It
is very important to always have this window open and visible, because
we get important information there, like various messages printed from
objects, error messages, and so forth.

Go to File » New to create a new window. You will get another window
that is totally empty (don’t make it full screen because you won’t be able
to see the Pd console anymore). Note that the mouse cursor is a little hand
instead of an arrow. This means that you are in Edit Mode, so you can edit
your patch. In this window, we will put our objects and messages. In this

10

