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Preface 

The work on CMSA started in 2015 during my years as an Ikerbasque Research 
Fellow at the University of the Basque Country in San Sebastian. It originated 
from the observation that large neighborhood search (LNS) algorithms based 
on the partial destruction of an incumbent solution at each iteration sometimes 
underperform in the context of optimization problems in which solutions contain 
rather few solution components. (As an example, think about a multi-dimensional 
knapsack problem instance with very tight resource constraints.) Our intention, in 
the context of the Ph.D. thesis of Pedro Pinacho Davidson, was then to develop 
an alternative hybrid algorithm that would work well in those cases in which LNS 
showed problems. In the meanwhile, two other Ph.D. students from my group at 
the IIIA-CSIC in Bellaterra (Barcelona), Mehmet Anıl Akbay and Jaume Reixach, 
have been working on different aspects of CMSA. Moreover, the initial paper on 
CMSA (published under the title “Construct, merge, solve & adapt: A new general 
algorithm for combinatorial optimization”, which was published in 2016 in the 
journal Computers and Operations Research, has received 106 citations (Google 
Scholar, February 2024). Moreover, to date, CMSA has been applied to 20 different 
combinatorial optimization problems. 

I am also happy to say that our work on CMSA has received two awards 
in recent years. The first one was the best paper award at the ECOM track of 
the GECCO 2016 conference for a paper on the application of CMSA to the 
multi-dimensional knapsack problem. The second award was the one for The Best 
Methodological Contribution in Operations Research jointly given by the Spanish 
Society of Statistics and Operations Research (SEIO) and the BBVA Foundation in 
2021. 

This book aims to give an account of the current state of the research efforts 
on CMSA. After shortly introducing the general line of research and the tools to 
be used in the book, the first chapter provides a didactical introduction to standard 
CMSA in the context of the minimum dominating set problem. In addition, the C++ 
program code used for part of the experiments presented in this chapter is offered 
in Appendix A. The following four chapters are dedicated to important CMSA 
variants (ADAPT_CMSA and LEARN_CMSA), respectively, to important topics for
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the practical application of CMSA: the use of set-covering-based ILP models for 
sub-instance solving, and the application of CMSA to optimization problems that 
are naturally modeled by non-binary ILPs. Finally, the last chapter outlines research 
lines that have not yet received much attention. Moreover, several avenues for 
current and future work are described. I believe that this book will be useful and 
inspiring for everyone who plans to apply CMSA to a specific optimization problem. 

I am very grateful to the following people. The main idea of LEARN_CMSA 

presented in Chap. 3 of this book was contributed by Pedro Pinacho Davidson, who 
was my Ph.D. student at the University of the Basque Country, and who is nowadays 
an associate professor at the Universidad de Concepción, Chile. Moreover, Pedro 
prepared the initial implementation of LEARN_CMSA for the FFMS problem. The 
idea of ADAPT_CMSA presented in Chap. 2 was developed together with Mehmet 
Anıl Akbay, who was my Ph.D. student at the time of preparing this book. The same 
holds for the use of set-covering-based ILP models for sub-instance solving in the 
context of the EVRP-TW-SPD problem in Chap. 4. Mehmet provided the CMSA 
implementation for the EVRP-TW-SPD problem. Moreover, some of the text in this 
chapter was written based on his original texts. I am also grateful to Camilo Chacón 
Sartori, one of my latest Ph.D. students, who implemented the web application 
STNWeb for the generation of the nice and informative STN graphics presented 
in this book. Last but not least, thanks to Guillem Rodríguez, Jaume Reixach, and 
Camilo Chacón for proofreading (parts of) the book. Many thanks to all of you! 

To end, promising research remains to be done in the context of the CMSA 
algorithm. Together with the optimization group at the IIIA-CSIC in Bellaterra 
(Barcelona), I will take on this endeavor during the coming years. We certainly 
hope that other research groups on metaheuristics and their hybrids will join this 
effort in the quest for increasingly efficient CMSA variants. 

Sant Esteve Sesrovires, Spain Christian Blum 
February 2024 
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Chapter 1 
Introduction to CMSA 

Abstract Construct, Merge, Solve & Adapt (CMSA) is an award-winning, hybrid 
algorithm for solving hard combinatorial optimization problems. The main idea 
consists in the iterated application of an exact approach—such as, for example, an 
integer linear programming (ILP) solver—to sub-instances of the original problem 
instances to be solved. These sub-instances are extended at each iteration by adding 
solution components from a set of valid solutions that are obtained either by 
probabilistic solution construction or by any other means. In this first chapter, we 
will give an introduction to CMSA including related work and the application of 
basic CMSA variants to a well-known combinatorial optimization problem known 
as the Minimum Dominating Set (MDS) problem in undirected graphs. In addition, 
we will describe all the tools that are used for the experimental evaluation of the 
algorithms presented in this book. This includes the parameter tuning software 
called irace, an R-based tool for the statistical comparison of multiple algorithms 
called scmamp, and a web-based tool for the graphical comparison of multiple 
algorithms called STNWeb. 

1.1 Introduction to Optimization 

Optimization refers to the process of finding a best solution or outcome from a 
set of possible choices, generally to maximize or minimize a particular objective 
or criterion. It is a fundamental concept in various fields, including mathematics, 
engineering, economics, computer science, and more. In fact, in our increasingly 
technological world, the need for solving hard optimization problems has been 
growing constantly over the last decades. Optimization problems are prevalent 
in numerous practical applications across different fields. Examples are to be 
found, among others, in the following major fields. For each one, we provide an 
exemplifying reference. 

1. Supply Chain Optimization [29]: Companies aim to optimize their supply 
chains by determining the most efficient way to source, produce, and deliver 
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goods while minimizing costs and maintaining inventory levels to meet cus-
tomer demand. 

2. Portfolio Optimization [53]: In the realm of finance, investors aim to optimize 
their investment portfolios by selecting the most suitable mix of assets to 
maximize returns while effectively mitigating risks. This entails the pursuit of 
an ideal asset allocation. 

3. Production Scheduling [84]: Manufacturers want to optimize production 
schedules to minimize production costs, reduce lead times, and meet customer 
demand reliably. This requires determining the optimal allocation of resources 
and scheduling production runs. 

4. Transportation Routing [101]: In logistics and transportation, companies aim 
to derive optimal routes and delivery schedules for delivery vehicles, ships, 
or airplanes to minimize fuel costs, reduce travel times, and increase delivery 
efficiency. Increasingly complex optimization problems must be solved in so-
called electric vehicle routing problems. 

5. Project Management [61]: Project managers seek to optimize project sched-
ules and resource allocation to complete projects on time and within budget. 
Critical path analysis and resource leveling are techniques used, for example, 
for the optimization of project schedules. 

6. Network Design [82]: Companies and service providers need to optimize the 
design and layout of their networks—such as, for example, telecommunica-
tions networks, computer networks, or transportation networks—to maximize 
efficiency and minimize costs. 

7. Inventory Management [96]: Retailers and manufacturers optimize inventory 
levels to balance the costs of holding excess inventory against potentially 
lost sales due to the lack of stock. This is often achieved through so-called 
Economic Order Quantity (EOQ) and Just-In-Time (JIT) inventory systems. 

8. Energy Management [75]: Organizations and companies aim to optimize 
energy consumption in buildings and manufacturing processes to reduce energy 
costs and minimize environmental impact. This involves scheduling equipment 
and systems to operate at their most energy-efficient levels. 

9. Agricultural Planning [24]: Farmers and agricultural organizations optimize 
crop planting, irrigation, and harvesting schedules to maximize yield, minimize 
resource usage, and adapt to changing weather conditions. 

10. Sensor Placement [65]: In environmental monitoring, for example, optimizing 
the placement of sensors or surveillance cameras to maximize coverage and 
minimize costs is crucial. 

11. Drug Design [58]: In the field of drug development, several optimization 
problems arise, often with the goal of identifying and developing effective and 
safe pharmaceutical compounds. Some of these optimization problems concern 
(1) compound screening, (2) optimizing the molecular structure of a compound 
to improve its potency, selectivity, and safety, and (3) clinical trial design. 

12. Staff Rostering and Resource Allocation [42]: The optimal assignment of 
personnel to shifts and the need for an allocation of resources arises in a wide 
range of organizations and industries. Hospitals and healthcare facilities, for
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example, must optimize staff scheduling, operating room allocation, and patient 
appointment scheduling to improve patient care and reduce costs. 

13. Traffic Management [10]: Cities use optimization to manage traffic flow, 
for example, through optimizing traffic signal timings, leading to reduced 
congestion and improved traffic efficiency. 

Obviously, these are just examples, and optimization is used in many more fields and 
scenarios to improve decision-making, resource allocation, and overall efficiency. 
Moreover, optimization is an essential factor in many fields of research. In fact, 
without efficient optimization techniques, many fields of research would not be able 
to advance at the same speed as they are doing today. 

Modelling an Optimization Problem 

In order to solve an optimization problem, it must first be modeled in a mathemat-
ical, respectively technical, way. Key elements of an optimization problem model 
include the following ones. 

1. Objective Function: A model consists of at least one objective function that 
quantifies the goal or criterion to be optimized. Such a function may represent 
a quantity to be maximized (e.g., profit, efficiency, performance) or minimized 
(e.g., cost, error, time). In the presence of exactly one objective function, we 
talk about single-objective optimization, while several—usually conflicting— 
objective functions characterize a multi-objective problem. 

2. Decision Variables: Optimization problems involve decision variables together 
with their domains. Each candidate solution to a problem is characterized by a 
different setting (value assignment) of the decision variables. 

3. Constraints: They define which candidate solutions (value-assignments of the 
decision variables) correspond to feasible solutions, in contrast to infeasible 
solutions. Constraints can be equality constraints (e.g., fixed budget) or inequality 
constraints (e.g., resource availability). 

4. Optimization Objective: As already mentioned in the context of describing 
the concept of an objective function (see above), objective functions might be 
maximized or minimized. This is called the optimization objective. 

Often the goal of optimization is to find an optimal solution, which is a feasible 
solution with an objective function value better or equal to the objective function 
value of all other feasible solutions. Instead, the goal of optimization might simply 
be to find a good enough solution in a reasonable computation time. 

Optimization problems come in various forms and can be categorized into 
different types based on their characteristics, constraints, and objectives. In general, 
we distinguish between continuous (or numerical) optimization problems [77] 
and discrete (or combinatorial) optimization problems [80]. Hereby, continuous 
optimization problems refer to models in which decision variables have continuous
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(real-valued) domains that may be bounded or unbounded. In discrete, respec-
tively combinatorial, optimization problems, the decision variables are restricted 
to domains of discrete values. In the following, we provide two examples for each 
of these problem categories. 

1.1.1 Examples of Continuous Optimization Problems 

Examples of continuous (or numerical) optimization problems are analytical prob-
lems such as the minimization of the Rastrigin function which is plotted in Fig. 1.1 
in two dimensions. The formula of this function (in two dimensions) is as follows: 

.f (x1, x2) = 20 +
2∑

i=1

(x2
i − 10 · cos(2 · π · xi)) , (1.1) 

with .x1, x2 ∈ [−5.12, 5.12]. A more practical example of a continuous optimization 
problem with real-world relevance is the parameter estimation in nonlinear 
models problem. This problem frequently arises in various fields, including science, 
engineering, economics, and biology, where researchers or analysts need to estimate 
the parameters of a complex—generally nonlinear—model to fit observed data. 
Figure 1.2 shows a graphical illustration. 

Given the observed data, a model must be chosen. Subsequently, the optimization 
problem consists of determining the optimal values of the model’s parameters in 
order to best fit the data. The objective is to minimize the difference between 
the model’s predictions and the observed data, typically expressed as the sum of 
squared residuals (least squares). The decision variables correspond to the model’s 
parameters that need to be estimated. Constraints are based on parameter value 
restrictions (e.g., bounds or relationships between parameters). 

Fig. 1.1 Rastrigin function 
in two dimensions
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Fig. 1.2 Example of 
parameter estimation in 
nonlinear models 

Fig. 1.3 Example of a TSP 
problem instance with five 
cities 

1.1.2 Examples of Combinatorial Optimization Problems 

One of the most emblematic combinatorial optimization problems is the so-called 
traveling salesman problem (TSP). This problem owes its name to the objective 
of the problem. A traveling salesman must pass through a number of cities exactly 
once, before returning to the city in which the journey started. The optimization 
objective is to minimize the traveled distance. This can be modeled by means of 
a completely connected graph in which the nodes represent the cities that must be 
visited, and weights on the edges correspond to the distances between the cities. 
Each feasible solution corresponds to a Hamiltonian cycle of this graph. Hereby, 
a Hamiltonian cycle is a cyclic route that contains each vertex exactly once. A 
graphical illustration is given in Fig. 1.3. 

Another well-known combinatorial optimization problem is the so-called knap-
sack problem (KP). Given is a set of items, whereby each item has a profit and, for 
example, a weight. Given is also a knapsack with an upper limit for the total weight 
of the objects it can carry. The objective of the problem is to select a set of items 
such that they fit into the knapsack—that is, their weights may sum to at most the
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Fig. 1.4 Example of a small 
knapsack problem instance 
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weight limit of the knapsack—and the sum of the profits of the selected items is 
maximized. A graphical illustration is provided in Fig. 1.4. 

1.1.3 Modelling an Optimization Problem 

As mentioned before, to solve an optimization problem employing an optimization 
technique—that is, an algorithm—it must first be modeled in a way depending on 
its characteristics; see [33, 55, 81]. The two continuous optimization examples from 
Sect. 1.1.1 are modeled as global optimization problems with non-linear objective 
functions. In the case of a linear objective function, linear constraints, and a 
convex search space, a continuous optimization problem can be modeled as a linear 
programming (LP) problem and then be solved by LP techniques from Operations 
Research (OR). In contrast, the two combinatorial optimization problems outlined in 
Sect. 1.1.2 can be modeled as integer linear programming (ILP) problems, that is, in 
terms of models that are characterized by linear objective functions and constraints, 
and decision variables with discrete domains. Note that most optimization problems 
treated in this book are of this type. However, the general idea of CMSA is also 
applicable to solving optimization problems modeled in other ways. 

For demonstration purposes, we provide two different ILP models of the TSP. 
Given is a set N of n cities, that is, .N = {1, . . . , n}. Moreover, let . A = {(i, j) |
i, j ∈ N, i /= j} be the complete set of arcs connecting any ordered pair of cities. 
Finally, let .cij > 0 be the distance for traveling from city i to city j . For modeling 
this problem, first, the following set of binary decision variables is introduced: . {xij ∈
{0, 1} | i, j ∈ N, i /= j}, that is, for each arc .(i, j) we introduce a binary decision 
variable . xij . Hereby, in case . xij = 1, arc .(i, j) forms part of the solution.


