
Computational Intelligence Methods and Applications

Christian Blum

Construct,
Merge, Solve
& Adapt
A Hybrid Metaheuristic
for Combinatorial Optimization

Computational Intelligence Methods
and Applications
Founding Editors
Sanghamitra Bandyopadhyay
Ujjwal Maulik
Patrick Siarry

Series Editor

Patrick Siarry, LiSSi, E.A. 3956, Université Paris-Est Créteil, Vitry-sur-Seine,
France

The monographs and textbooks in this series explain methods developed in compu-
tational intelligence (including evolutionary computing, neural networks, and fuzzy
systems), soft computing, statistics, and artificial intelligence, and their applications
in domains such as heuristics and optimization; bioinformatics, computational
biology, and biomedical engineering; image and signal processing, VLSI, and
embedded system design; network design; process engineering; social networking;
and data mining.

Christian Blum

Construct, Merge, Solve
& Adapt
A Hybrid Metaheuristic for Combinatorial
Optimization

Christian Blum
IIIA-CSIC
Bellaterra, Spain

ISSN 2510-1765 ISSN 2510-1773 (electronic)
Computational Intelligence Methods and Applications
ISBN 978-3-031-60102-6 ISBN 978-3-031-60103-3 (eBook)
https://doi.org/10.1007/978-3-031-60103-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3

This book is lovingly dedicated to my mother,
Maria Blum (1949–2020), whose unwavering
emotional support and belief in me have
empowered me to confront life’s challenges
with optimism and resilience.

Preface

The work on CMSA started in 2015 during my years as an Ikerbasque Research
Fellow at the University of the Basque Country in San Sebastian. It originated
from the observation that large neighborhood search (LNS) algorithms based
on the partial destruction of an incumbent solution at each iteration sometimes
underperform in the context of optimization problems in which solutions contain
rather few solution components. (As an example, think about a multi-dimensional
knapsack problem instance with very tight resource constraints.) Our intention, in
the context of the Ph.D. thesis of Pedro Pinacho Davidson, was then to develop
an alternative hybrid algorithm that would work well in those cases in which LNS
showed problems. In the meanwhile, two other Ph.D. students from my group at
the IIIA-CSIC in Bellaterra (Barcelona), Mehmet Anıl Akbay and Jaume Reixach,
have been working on different aspects of CMSA. Moreover, the initial paper on
CMSA (published under the title “Construct, merge, solve & adapt: A new general
algorithm for combinatorial optimization”, which was published in 2016 in the
journal Computers and Operations Research, has received 106 citations (Google
Scholar, February 2024). Moreover, to date, CMSA has been applied to 20 different
combinatorial optimization problems.

I am also happy to say that our work on CMSA has received two awards
in recent years. The first one was the best paper award at the ECOM track of
the GECCO 2016 conference for a paper on the application of CMSA to the
multi-dimensional knapsack problem. The second award was the one for The Best
Methodological Contribution in Operations Research jointly given by the Spanish
Society of Statistics and Operations Research (SEIO) and the BBVA Foundation in
2021.

This book aims to give an account of the current state of the research efforts
on CMSA. After shortly introducing the general line of research and the tools to
be used in the book, the first chapter provides a didactical introduction to standard
CMSA in the context of the minimum dominating set problem. In addition, the C++
program code used for part of the experiments presented in this chapter is offered
in Appendix A. The following four chapters are dedicated to important CMSA
variants (ADAPT_CMSA and LEARN_CMSA), respectively, to important topics for

vii

viii Preface

the practical application of CMSA: the use of set-covering-based ILP models for
sub-instance solving, and the application of CMSA to optimization problems that
are naturally modeled by non-binary ILPs. Finally, the last chapter outlines research
lines that have not yet received much attention. Moreover, several avenues for
current and future work are described. I believe that this book will be useful and
inspiring for everyone who plans to apply CMSA to a specific optimization problem.

I am very grateful to the following people. The main idea of LEARN_CMSA

presented in Chap. 3 of this book was contributed by Pedro Pinacho Davidson, who
was my Ph.D. student at the University of the Basque Country, and who is nowadays
an associate professor at the Universidad de Concepción, Chile. Moreover, Pedro
prepared the initial implementation of LEARN_CMSA for the FFMS problem. The
idea of ADAPT_CMSA presented in Chap. 2 was developed together with Mehmet
Anıl Akbay, who was my Ph.D. student at the time of preparing this book. The same
holds for the use of set-covering-based ILP models for sub-instance solving in the
context of the EVRP-TW-SPD problem in Chap. 4. Mehmet provided the CMSA
implementation for the EVRP-TW-SPD problem. Moreover, some of the text in this
chapter was written based on his original texts. I am also grateful to Camilo Chacón
Sartori, one of my latest Ph.D. students, who implemented the web application
STNWeb for the generation of the nice and informative STN graphics presented
in this book. Last but not least, thanks to Guillem Rodríguez, Jaume Reixach, and
Camilo Chacón for proofreading (parts of) the book. Many thanks to all of you!

To end, promising research remains to be done in the context of the CMSA
algorithm. Together with the optimization group at the IIIA-CSIC in Bellaterra
(Barcelona), I will take on this endeavor during the coming years. We certainly
hope that other research groups on metaheuristics and their hybrids will join this
effort in the quest for increasingly efficient CMSA variants.

Sant Esteve Sesrovires, Spain Christian Blum
February 2024

Acknowledgments

During the time of writing this book, the author was supported as principal investi-
gator of the following three grants funded by MCIN/AEI/10.13039/501100011033:
PID2019-104156GB-I00, PID2022-136787NB-I00, and TED2021-129319B-I00.
Moreover, the author would like to acknowledge the support of the Spanish National
Research Council (CSIC) of which the author is a Senior Research Scientist.

ix

Contents

1 Introduction to CMSA . 1
1.1 Introduction to Optimization . 1

1.1.1 Examples of Continuous Optimization Problems 4
1.1.2 Examples of Combinatorial Optimization Problems 5
1.1.3 Modelling an Optimization Problem. 6
1.1.4 Basic Optimization Techniques . 8
1.1.5 Hybrid Optimization Techniques . 10

1.2 Tools Used in This Book . 11
1.2.1 irace: A Tool for Parameter Tuning . 12
1.2.2 STNWeb: A Tool for the Graphical Comparison of

Algorithms . 13
1.2.3 scmamp: A Tool for the Statistical Comparison

of Algorithms . 16
1.3 CMSA: Construct, Merge, Solve & Adapt. 17

1.3.1 Standard CMSA . 18
1.4 Application to Minimum Dominating Set . 20

1.4.1 An Intuitive Way of Defining the Solution Components. 21
1.4.2 A Generic Way of Defining the Solution Components 24
1.4.3 Experimental Evaluation . 25

1.5 Algorithmic Proposals Related to CMSA. 34
References . 36

2 Self-adaptive CMSA . 41
2.1 Introduction . 41
2.2 Self-adaptive CMSA: General Description . 43
2.3 Application to the MPIDS Problem . 44

2.3.1 Generic Definition of the Solution Components 45
2.3.2 Constructing Solutions to the MPIDS Problem 46
2.3.3 Sub-instance Solving . 48
2.3.4 Experimental Evaluation . 48

xi

xii Contents

2.4 Application to the FFMS Problem . 59
2.4.1 Augmented Objective Function . 61
2.4.2 Intuitive Definition of the Solution Components 62
2.4.3 Constructing Solutions to the FFMS Problem. 62
2.4.4 Sub-instance Solving . 63
2.4.5 Experimental Evaluation . 64

2.5 Conclusions . 67
References . 69

3 Adding Learning to CMSA . 71
3.1 Introduction . 71
3.2 The Bacterial Algorithm . 72
3.3 The LEARN_CMSA Algorithm: A General Description. 75
3.4 Application to the MDS Problem . 76

3.4.1 Generating the Initial Population . 77
3.4.2 Implementation of Conjugation . 77
3.4.3 Implementation of Regeneration . 78
3.4.4 Experimental Evaluation . 79

3.5 Application to the FFMS Problem . 86
3.5.1 Generating the Initial Population . 86
3.5.2 Implementation of Conjugation . 87
3.5.3 Implementation of Regeneration . 87
3.5.4 Experimental Evaluation . 87

3.6 Conclusions and Possible Research Directions . 93
References . 93

4 Replacing Hard Mathematical Models with Set Covering
Formulations . 95
4.1 Introduction . 95
4.2 Application to Variable-Sized Bin Packing . 96

4.2.1 Short Literature Review Concerning the VSBP Problem 97
4.2.2 Set-Covering Based ILP Model of the VSBP Problem 98
4.2.3 Application of Standard CMSA to the VBSP Problem 98
4.2.4 Application of Set-Covering Based CMSA to the

VSBP Problem . 101
4.2.5 Experimental Evaluation . 102

4.3 Application to an Electric Vehicle Routing Problem 115
4.3.1 Short Literature Review Concerning the EVRP-TW-SPD. . . . 119
4.3.2 Set-Covering Based ILP Model of the EVRP-TW-SPD 119
4.3.3 Application of ADAPT_CMSA to the EVRP-TW-SPD. 120
4.3.4 The ADAPT_CMSA Algorithm . 120
4.3.5 The ADAPT_CMSA_SETCOV Algorithm . 126
4.3.6 Experimental Evaluation . 126

4.4 Conclusions and Future Research Directions . 138
References . 139

Contents xiii

5 Application of CMSA in the Presence of Non-binary Variables 141
5.1 Introduction . 141
5.2 The Bounded Knapsack Problem with Conflicts . 142

5.2.1 Converting the BKPWC ILP to a Binary Program 143
5.3 Application of CMSA to the BKPWC . 145

5.3.1 Probabilistic Solution Construction . 145
5.3.2 Sub-instance Solving . 146

5.4 Experimental Evaluation. 147
5.4.1 Problem Instances . 147
5.4.2 Parameter Tuning . 148
5.4.3 Results . 149

5.5 Conclusions and Further Research Directions . 154
References . 155

6 Additional Research Lines Concerning CMSA . 157
6.1 A Problem-Agnostic CMSA for Binary Problems . 157

6.1.1 Application of CMSA_GEN . 158
6.1.2 Experimental Evaluation . 160
6.1.3 Discussion . 163

6.2 Applying a Metaheuristic in the CMSA Framework 163
6.2.1 The Weighted Independent Domination (WID) Problem 164
6.2.2 A Greedy Heuristic for the WID Problem . 166
6.2.3 A PBIG Metaheuristic for the WID Problem. 167
6.2.4 Using PBIG for Solving Sub-instances in CMSA 169
6.2.5 Experimental Evaluation . 169
6.2.6 Discussion . 173

6.3 Relation Between CMSA and LNS . 173
6.3.1 Destruction-Based LNS . 173
6.3.2 Empirical Comparative Study . 174

6.4 Future Work on CMSA . 177
References . 178

A C++ Program Code: CMSA Applied to the MDS Problem 181

Index . 191

Acronyms

ACO Ant Colony Optimization
AI Artificial Intelligence
BA Bacterial Algorithm
BIP Binary Integer Programming
BKPWC Bounded Knapsack Problem With Conflicts
CD Critical Difference
CMSA Construct, Merge, Solve & Adapt
CP Constraint Programming
DNA Deoxyribonucleic Acid
EA Evolutionary Algorithm
EV Electric Vehicle
EVRP Electric Vehicle Routing
EVRP-TW-SPD Electric Vehicle Routing Problem with Time Windows and

Simultaneous Pickups and Deliveries
FFMS Far From Most String
IG Iterated Greedy
ILP Integer Linear Programming
KP Knapsack Problem
LNS Large Neighborhood Search
LP Linear Programming
MaxSAT Maximum Satisfiability Problem
ML Machine Learning
MCSP Minimum Common String Partition
MDKP Multi-Dimensional Knapsack Problem
MDS Minimum Dominating Set
MPIDS Minimum Positive Influence Dominating Set
OR Operations Research
PBIG Population-Based Iterated Greedy
PSO Particle Swarm Optimization
RFLCS Repetition-Free Longest Common Subsequence
SA Simulated Annealing

xv

xvi Acronyms

SPD Simultaneous Pickup and Delivery
STN Search Trajectory Network
TS Tabu Search
TSP Travelling Salesman Problem
TW Time Window
VNS Variable Neighborhood Search
VSBP Variable-Sized Bin Packing
WID Weighted Independent Domination

Chapter 1
Introduction to CMSA

Abstract Construct, Merge, Solve & Adapt (CMSA) is an award-winning, hybrid
algorithm for solving hard combinatorial optimization problems. The main idea
consists in the iterated application of an exact approach—such as, for example, an
integer linear programming (ILP) solver—to sub-instances of the original problem
instances to be solved. These sub-instances are extended at each iteration by adding
solution components from a set of valid solutions that are obtained either by
probabilistic solution construction or by any other means. In this first chapter, we
will give an introduction to CMSA including related work and the application of
basic CMSA variants to a well-known combinatorial optimization problem known
as the Minimum Dominating Set (MDS) problem in undirected graphs. In addition,
we will describe all the tools that are used for the experimental evaluation of the
algorithms presented in this book. This includes the parameter tuning software
called irace, an R-based tool for the statistical comparison of multiple algorithms
called scmamp, and a web-based tool for the graphical comparison of multiple
algorithms called STNWeb.

1.1 Introduction to Optimization

Optimization refers to the process of finding a best solution or outcome from a
set of possible choices, generally to maximize or minimize a particular objective
or criterion. It is a fundamental concept in various fields, including mathematics,
engineering, economics, computer science, and more. In fact, in our increasingly
technological world, the need for solving hard optimization problems has been
growing constantly over the last decades. Optimization problems are prevalent
in numerous practical applications across different fields. Examples are to be
found, among others, in the following major fields. For each one, we provide an
exemplifying reference.

1. Supply Chain Optimization [29]: Companies aim to optimize their supply
chains by determining the most efficient way to source, produce, and deliver

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1

2 1 Introduction to CMSA

goods while minimizing costs and maintaining inventory levels to meet cus-
tomer demand.

2. Portfolio Optimization [53]: In the realm of finance, investors aim to optimize
their investment portfolios by selecting the most suitable mix of assets to
maximize returns while effectively mitigating risks. This entails the pursuit of
an ideal asset allocation.

3. Production Scheduling [84]: Manufacturers want to optimize production
schedules to minimize production costs, reduce lead times, and meet customer
demand reliably. This requires determining the optimal allocation of resources
and scheduling production runs.

4. Transportation Routing [101]: In logistics and transportation, companies aim
to derive optimal routes and delivery schedules for delivery vehicles, ships,
or airplanes to minimize fuel costs, reduce travel times, and increase delivery
efficiency. Increasingly complex optimization problems must be solved in so-
called electric vehicle routing problems.

5. Project Management [61]: Project managers seek to optimize project sched-
ules and resource allocation to complete projects on time and within budget.
Critical path analysis and resource leveling are techniques used, for example,
for the optimization of project schedules.

6. Network Design [82]: Companies and service providers need to optimize the
design and layout of their networks—such as, for example, telecommunica-
tions networks, computer networks, or transportation networks—to maximize
efficiency and minimize costs.

7. Inventory Management [96]: Retailers and manufacturers optimize inventory
levels to balance the costs of holding excess inventory against potentially
lost sales due to the lack of stock. This is often achieved through so-called
Economic Order Quantity (EOQ) and Just-In-Time (JIT) inventory systems.

8. Energy Management [75]: Organizations and companies aim to optimize
energy consumption in buildings and manufacturing processes to reduce energy
costs and minimize environmental impact. This involves scheduling equipment
and systems to operate at their most energy-efficient levels.

9. Agricultural Planning [24]: Farmers and agricultural organizations optimize
crop planting, irrigation, and harvesting schedules to maximize yield, minimize
resource usage, and adapt to changing weather conditions.

10. Sensor Placement [65]: In environmental monitoring, for example, optimizing
the placement of sensors or surveillance cameras to maximize coverage and
minimize costs is crucial.

11. Drug Design [58]: In the field of drug development, several optimization
problems arise, often with the goal of identifying and developing effective and
safe pharmaceutical compounds. Some of these optimization problems concern
(1) compound screening, (2) optimizing the molecular structure of a compound
to improve its potency, selectivity, and safety, and (3) clinical trial design.

12. Staff Rostering and Resource Allocation [42]: The optimal assignment of
personnel to shifts and the need for an allocation of resources arises in a wide
range of organizations and industries. Hospitals and healthcare facilities, for

1.1 Introduction to Optimization 3

example, must optimize staff scheduling, operating room allocation, and patient
appointment scheduling to improve patient care and reduce costs.

13. Traffic Management [10]: Cities use optimization to manage traffic flow,
for example, through optimizing traffic signal timings, leading to reduced
congestion and improved traffic efficiency.

Obviously, these are just examples, and optimization is used in many more fields and
scenarios to improve decision-making, resource allocation, and overall efficiency.
Moreover, optimization is an essential factor in many fields of research. In fact,
without efficient optimization techniques, many fields of research would not be able
to advance at the same speed as they are doing today.

Modelling an Optimization Problem

In order to solve an optimization problem, it must first be modeled in a mathemat-
ical, respectively technical, way. Key elements of an optimization problem model
include the following ones.

1. Objective Function: A model consists of at least one objective function that
quantifies the goal or criterion to be optimized. Such a function may represent
a quantity to be maximized (e.g., profit, efficiency, performance) or minimized
(e.g., cost, error, time). In the presence of exactly one objective function, we
talk about single-objective optimization, while several—usually conflicting—
objective functions characterize a multi-objective problem.

2. Decision Variables: Optimization problems involve decision variables together
with their domains. Each candidate solution to a problem is characterized by a
different setting (value assignment) of the decision variables.

3. Constraints: They define which candidate solutions (value-assignments of the
decision variables) correspond to feasible solutions, in contrast to infeasible
solutions. Constraints can be equality constraints (e.g., fixed budget) or inequality
constraints (e.g., resource availability).

4. Optimization Objective: As already mentioned in the context of describing
the concept of an objective function (see above), objective functions might be
maximized or minimized. This is called the optimization objective.

Often the goal of optimization is to find an optimal solution, which is a feasible
solution with an objective function value better or equal to the objective function
value of all other feasible solutions. Instead, the goal of optimization might simply
be to find a good enough solution in a reasonable computation time.

Optimization problems come in various forms and can be categorized into
different types based on their characteristics, constraints, and objectives. In general,
we distinguish between continuous (or numerical) optimization problems [77]
and discrete (or combinatorial) optimization problems [80]. Hereby, continuous
optimization problems refer to models in which decision variables have continuous

4 1 Introduction to CMSA

(real-valued) domains that may be bounded or unbounded. In discrete, respec-
tively combinatorial, optimization problems, the decision variables are restricted
to domains of discrete values. In the following, we provide two examples for each
of these problem categories.

1.1.1 Examples of Continuous Optimization Problems

Examples of continuous (or numerical) optimization problems are analytical prob-
lems such as the minimization of the Rastrigin function which is plotted in Fig. 1.1
in two dimensions. The formula of this function (in two dimensions) is as follows:

.f (x1, x2) = 20 +
2∑

i=1

(x2
i − 10 · cos(2 · π · xi)) , (1.1)

with .x1, x2 ∈ [−5.12, 5.12]. A more practical example of a continuous optimization
problem with real-world relevance is the parameter estimation in nonlinear
models problem. This problem frequently arises in various fields, including science,
engineering, economics, and biology, where researchers or analysts need to estimate
the parameters of a complex—generally nonlinear—model to fit observed data.
Figure 1.2 shows a graphical illustration.

Given the observed data, a model must be chosen. Subsequently, the optimization
problem consists of determining the optimal values of the model’s parameters in
order to best fit the data. The objective is to minimize the difference between
the model’s predictions and the observed data, typically expressed as the sum of
squared residuals (least squares). The decision variables correspond to the model’s
parameters that need to be estimated. Constraints are based on parameter value
restrictions (e.g., bounds or relationships between parameters).

Fig. 1.1 Rastrigin function
in two dimensions

1.1 Introduction to Optimization 5

Fig. 1.2 Example of
parameter estimation in
nonlinear models

Fig. 1.3 Example of a TSP
problem instance with five
cities

1.1.2 Examples of Combinatorial Optimization Problems

One of the most emblematic combinatorial optimization problems is the so-called
traveling salesman problem (TSP). This problem owes its name to the objective
of the problem. A traveling salesman must pass through a number of cities exactly
once, before returning to the city in which the journey started. The optimization
objective is to minimize the traveled distance. This can be modeled by means of
a completely connected graph in which the nodes represent the cities that must be
visited, and weights on the edges correspond to the distances between the cities.
Each feasible solution corresponds to a Hamiltonian cycle of this graph. Hereby,
a Hamiltonian cycle is a cyclic route that contains each vertex exactly once. A
graphical illustration is given in Fig. 1.3.

Another well-known combinatorial optimization problem is the so-called knap-
sack problem (KP). Given is a set of items, whereby each item has a profit and, for
example, a weight. Given is also a knapsack with an upper limit for the total weight
of the objects it can carry. The objective of the problem is to select a set of items
such that they fit into the knapsack—that is, their weights may sum to at most the

6 1 Introduction to CMSA

Fig. 1.4 Example of a small
knapsack problem instance

15kg

2€

4€

2€

1€

10€ 4kg

1kg

1kg

12k
g

2kg

weight limit of the knapsack—and the sum of the profits of the selected items is
maximized. A graphical illustration is provided in Fig. 1.4.

1.1.3 Modelling an Optimization Problem

As mentioned before, to solve an optimization problem employing an optimization
technique—that is, an algorithm—it must first be modeled in a way depending on
its characteristics; see [33, 55, 81]. The two continuous optimization examples from
Sect. 1.1.1 are modeled as global optimization problems with non-linear objective
functions. In the case of a linear objective function, linear constraints, and a
convex search space, a continuous optimization problem can be modeled as a linear
programming (LP) problem and then be solved by LP techniques from Operations
Research (OR). In contrast, the two combinatorial optimization problems outlined in
Sect. 1.1.2 can be modeled as integer linear programming (ILP) problems, that is, in
terms of models that are characterized by linear objective functions and constraints,
and decision variables with discrete domains. Note that most optimization problems
treated in this book are of this type. However, the general idea of CMSA is also
applicable to solving optimization problems modeled in other ways.

For demonstration purposes, we provide two different ILP models of the TSP.
Given is a set N of n cities, that is, .N = {1, . . . , n}. Moreover, let . A = {(i, j) |
i, j ∈ N, i /= j} be the complete set of arcs connecting any ordered pair of cities.
Finally, let .cij > 0 be the distance for traveling from city i to city j . For modeling
this problem, first, the following set of binary decision variables is introduced: . {xij ∈
{0, 1} | i, j ∈ N, i /= j}, that is, for each arc .(i, j) we introduce a binary decision
variable . xij . Hereby, in case . xij = 1, arc .(i, j) forms part of the solution.

