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Preface 

Starch nanomaterials are a promising alternative for obtaining advanced structures 
with improved physicochemical properties. These nanomaterials can be used to 
stabilize hydrophilic and hydrophobic biomolecules, and to modify food texture 
and the physicochemical properties of packaging materials. Starch nanomaterials 
can be obtained by “top-down” and “bottom-up” approaches and are classified as 
starch nanocrystals, nanoparticles, nanofibers, nanomicelles, and nanovesicles. This 
book reviews concepts related to starch nanomaterials and their food and packaging 
applications. Thus, Chap. 1 introduces and classifies different starch 
nanoarchitectures. The methods used to produce starch nanocrystals, nanoparticles, 
nanofibers, nanomicelles, and nanovesicles have been reviewed in Chaps. 2, 3, 4, 
and 5. The potential applications of starch nanomaterials as adsorptive and encap-
sulating materials are reviewed in Chap. 6. Chapters 7, 8, and 9 analyze the use of 
starch nanomaterials as food emulsifiers and ingredients for the manufacture of 
functional foods and packaging, respectively. The digestibility of starch 
nanomaterials has been revised in Chap. 10. Finally, Chap. 11 reviews the degrada-
tion and environmental impacts of starch nanomaterials. 

I would like to sincerely thank the contributors for their insights into Starch 
Nanomaterials and Food Applications. 

Florianópolis, SC, Brazil Germán Ayala Valencia
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Chapter 1 
A Brief Introduction to Starch-Based 
Nanomaterials 

Wilson Daniel Caicedo Chaco Raul Remor Dalsasso, Vania Zanella Pinto, 
and Germán Ayala Valencia 

1.1 Introduction 

Starch is a natural semicrystalline polymer composed of amylose, a linear biopoly-
mer of α-D-glucose units linked by α-1,4-glycosidic bonds, and amylopectin, a 
highly branched biopolymer in which the α-D-glucose units are linked via α-1,4-
and α-1,6-glycosidic bonds [1]. Starch is considered the second most common 
biomass on earth. This macromolecule is produced by green plants as an energy 
reserve and stored in tubers/roots, fruits, and grains/seeds in the form of granules 
with different shapes and particle sizes varying between 2 and 100 μm [2, 3]. 

Starch is used as a thickener, binding agent, emulsifier, clouding agent, or gelling 
agent in the food sector. However, this macromolecule has many disadvantages 
associated with poor water solubility and shear and thermal stability, resulting in 
insufficient physical and functional properties [4, 5]. Physical and chemical treat-
ments have been used to improve the physicochemical properties of starch [6]. 

Modifying the starch architecture from the micro to the nanoscale is a recent 
alternative to alter the physicochemical properties of the resulting starch 
nanomaterials. Furthermore, these starch nanoarchitectures can be functionalized 
with bioactive compounds to acquire antimicrobial and antioxidant properties 
[2]. Starch nanostructures are defined as materials having at least one dimension
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between 1 and 500 nm [7]. Dimensions lower than 1000 nm have also been used to 
classify this type of nanomaterial [2]. Several starch architectures can be produced at 
the nanoscale, and the most common starch nanomaterials (SNMts) are nanocrystals 
(SNCs), nanoparticles (SNPs), nanofibers (SNFs), nanomicelles (SNMs), and 
nanovesicles (SNVs) [2, 3, 8].

2 W. D. C. Chacon et al.

SNMts can be obtained using “top-down” approaches such as acid and enzymatic 
hydrolysis (EH), anti-solvent precipitation (ASP), high-pressure homogenization 
(HPH), and ultrasonication, as well as by means of “bottom-up” approaches using 
electrospinning and electrospraying, self-assembly, and emulsification [2, 3, 8, 9]. 

The present chapter aims to define and classify the different starch 
nanoarchitectures, as well as to discuss briefly the methodologies used to produce 
these nanomaterials. More information about the production of SNMts is discussed 
in Chaps. 2, 3, 4 and 5. 

1.2 Preparation of Starch Nanomaterials 

The building of nanostructures is based on the “top-down” and “bottom-up” 
approaches (Fig. 1.1). The “bottom-up” approach is based on building nanoparticles 
from smaller units or precursor molecules, whereas the “top-down” method involves 
reducing larger materials, such as starch blocks, to the nanoscale through decompo-
sition or milling processes, resembling acidic, alkaline, and enzymatic 
hydrolysis [10]. 

Acid and enzymatic hydrolysis, ball milling, anti-solvent precipitation, high-
pressure homogenization, microfluidization, sonication, electrospun fibers or 
electrospray, self-assembly, and emulsification can result in SNMts. Starch granule 
fragmentation can result in SNCs or SNPs, described as top-down processing, 
whereas starch solutions electrospun or precipitation or emulsification, described 
as bottom-up processing can result in SNFs, SNPs, SNMs, or SNVs. 

The fragmentation of starch granules into a nano-sized structure is the main 
challenge for “top-down” materials building up. There are a few strategies that result 
in the formation of starch nanocrystals [11, 12]. However, most starch processing 
results in nanoparticles from starch granules. This is due to the structure crystallinity 
lost during the nanosizing. 

The starch granules are insoluble in water and some other solvents at room 
temperature. To allow their use to build up SNPs or SNFs, the starch granules 
must be gelatinized by heating or chemically [13–15]. In addition, to obtain 
nanomicelles and nanovesicles, the starch granules must be in solution or 
gelatinized [16].
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Fig. 1.1 Schematic 
representation of the 
top-down and bottom-up 
building up of 
nanostructures 

1.3 Classification of Starch Nanomaterials 

It is essential to specify the types of SNMts (Fig. 1.2) because this significantly 
influences the stabilization capacity of the compounds and/or their use as a 
reinforcing material. In general, SNMts can be classified as nanocrystals (SNCs), 
nanoparticles (SNPs), nanofibers (SNFs), nanomicelles (SNMs), and nanovesicles 
(SNVs). 

1.3.1 Starch Nanocrystals 

Starch granules have a highly organized structure, with amorphous and crystalline 
regions. The amorphous regions are the most susceptible to acid or enzymatic 
hydrolysis, as the crystallinity of starch is preserved under conditions below the



gelatinization temperature [17, 18]. Therefore, by removing all or part of this 
amorphous region from the granule, platelets with high crystallinity are released, 
which occur between 30 and 80 nm, and are known as nanocrystals (SNCs) [8, 19– 
21]. Acid hydrolysis processes can also result in fragment starch [22], or even other 
crystalline structures [23], or amorphous starch nanoparticles (SNPs) [24]. This 
hydrolysis is a top-down approach using concentrated acids to isolate the SNC. 

4 W. D. C. Chacon et al.

Fig. 1.2 Nanostructures derived from starch 

SNCs have often been prepared using waxy starch via sulfuric acid hydrolysis 
[25]. However, some other starches and hydrolysis processes have also been studied 
to produce SNCs. Corn or maize starch is the main source used to produce SNCs, 
with several reports about rice, potato, wheat, and bean starches, as well as cassava, 
quinoa, amaranth, and some fewer common sources such as starchy seeds from fruits 
and pines [2, 8, 11, 12, 26, 27]. Enzymatic hydrolysis, mixed acids, ball milling, and 
sonication-assisted isolation are also efficient for producing this crystalline nano-
scale material [28–31]. 

The low SNCs yield after the acid hydrolysis isolation encouraged the alternative 
development to improve it. Therefore, starch pretreatments, such as physical, chem-
ical, or enzymatic modifications, can affect not only the recovery yield of SNCs, but 
also their properties. Therefore, the new challenge is to understand how different 
starch sources and pretreatments, and the isolation processing reflect in the proper-
ties and applications of SNCs.
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1.3.2 Starch Nanoparticles 

SNPs are produced through controlled fragmentation of starch using the “top-down” 
and “bottom-up” techniques [10, 32–35]. The antisolvent or nanoprecipitation 
method is frequently used to produce SNPs [32]. This process involves dissolving 
starch in a miscible solvent such as water, typically hot water, and then adding it to 
another non-miscible solvent or antisolvent in water, such as ethanol (Fig. 1.3). The 
insolubility in the solvent triggers the precipitation of starch into nanoparticles. 
Solvents such as ethanol act as precipitation agents and help control the size and 
morphology of SNPs. This method is widely employed in starch nanotechnology 
because of its versatility and capability to generate nanoscale particles. 

The synthesis of SNPs represents a significant advancement with substantial 
improvements in conventional starch properties. These SNMts, when reduced to 
the nanoscale, undergo a significant increase in their specific surface area. This not 
only enhances their capacity for compound absorption and release, as documented in 
previous studies [36–38], but also provides a versatile platform for multiple inno-
vative applications. In addition to their impact on compound absorption and release, 
the synthesis of SNPs has proven particularly valuable in emulsion stabilization 
within the food industry [39]. These nanoparticles have also excelled in increasing 
the water adsorption capacity [40]. Furthermore, their versatility is evident in their 
ability to function as cross-linking agents and fillers with thermo-sensitive properties

Fig. 1.3 General process for the production of starch nanoparticles by nanoprecipitation or 
antisolvent precipitation



[41]. However, their versatility is not limited solely to these applications. SNPs have 
served as precursors for the synthesis of carbon nanodots, expanding their utility in 
fields such as nanotechnology and electronics [42]. Beyond their physical properties 
and practical applications, it is essential to highlight that these SNPs can be 
functionalized with bioactive compounds, as documented in previous research 
[43–45]. This functionalization allows SNPs to acquire antimicrobial and antioxi-
dant properties, further enhancing their utility in sectors that require food preserva-
tion and the improvement of pharmaceutical and cosmetic products. Collectively, 
these advancements illustrate the potential and versatility of SNPs in enhancing 
various areas of science and industry [46-48].

6 W. D. C. Chacon et al.

1.3.3 Starch Nanofibers 

SNFs formation is based on a bottom-up approach by electrospinning. It involves an 
electrodynamic process that was first patented in 1934 by the invention “method and 
apparatus for preparing artificial threads”, describing the production system of 
polymer-based fibers using high-voltage static electricity [49]. Electrospun fibers 
are synthesized by applying a high-voltage electric field on the surface of polymer 
solution droplets, causing a liquid jet to be ejected through a spinneret [50]. By 
controlling the polymer concentration, molecular weight and viscosity, appropriate 
solvent, low surface tension, the solution electrical conductivity and feeding rate, 
and applied voltage, it is possible to produce fibers with different sizes and mor-
phologies [51, 52]. Starch granules are not easy solubilized to produce an appropri-
ate electrospun solution. Therefore, recently electrospinning setups and different 
solvents were investigated to produce this type of fibers from the starch polymers 
[13, 14, 53–55]. 

The two main approaches are using an electro-wet-spinning setup, which 
involves the formation of the fibers on a grounded metal mesh immersed in a pure 
ethanol bath [14, 55]. The starch granules were dissolved in an aqueous dimethyl 
sulfoxide solution of 95% (v/v). The other approach uses a traditional 
electrospinning setup and a starch dispersion in aqueous formic acid of 90% (v/v) 
[56]. Starch undergoes rapid esterification, generating esters in the starch glucose 
units. This process is also known as chemical gelatinization at room temperature 
[13]. In addition, starch modification and/or blending with other polymers were used 
to produce an appropriate dispersion for spin [57]. Each fiber processing is driven 
under particular conditions and reflects various properties, sizes, and morphologies 
[14, 55, 56].
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1.3.4 Starch Nanomicelles 

SNMs can be used to increase the solubility of compounds lower polarity com-
pounds and have been studied as delivery systems for medical [58–60] and food 
applications, such as the delivery of curcumin [16, 61, 62] and β-carotene [63]. They 
are conventionally obtained using a down-top approach, as modified amphiphilic 
starch molecules emulsify an active hydrophobic compound. Starch is modified by 
hydrolysis esterification to form smaller chains with a hydrophilic and hydrophobic 
regions [60–62]. In this form, starch-based micelles act as the emulsifiers of hydro-
phobic compounds or solutions. 

Therefore, the methods to form nanomicelles are based on using amphiphilic 
modified starch as the emulsifier of a hydrophobic phase, which is located in the core 
of the micelles. Usually, pre-emulsions are formed by self-assembly by mixing the 
hydrophobic solution, the amphiphilic starch, in an aqueous phase under high-shear 
homogenization [63]. If better homogenization or droplet size reduction is required, 
a high-energy nanoemulsification method can be further used on the pre-emulsion, 
such as ultrasonic treatment [16, 58–60]. Other methods, such as microfluidization, 
high pressure, and membrane homogenization, could also be effective for this 
purpose, but no studies using these techniques for obtaining starch nanomicelles 
have been informed. A solid-separation step such as filtration or centrifugation can 
be performed to use undissolved particles [59, 62]. 

Some specific procedures to obtain SNMs systems use organic solvents such as 
ethanol [64], chloroform [61], and acetone [58] to compose the hydrophobic solu-
tion. However, organic solvents are frequently dangerous and environmentally 
harmful; therefore, it is interesting to avoid their use when possible. If necessary, 
the use of solvents generally recognized as safe or with GRAS status, such as 
ethanol, should be preferable, especially for food and health applications. 

Focusing on food applications of SNMs and micelles, it is noticeable that starch is 
a versatile, accessible, and environmentally friendly raw material for the formation 
of nanostructured systems aimed at the protection and delivery of bioactive com-
pounds. The consequent protection and prolongation of the activity of sensible 
natural active compounds make the substitution of synthetic and unsustainable 
food additives more feasible in the future. This exchange can fulfill the expectations 
of health-worried consumers. It also contributes to the establishment of a greener 
chemistry and industry. However, there is a broad field to be explored, which 
includes the development systems for different encapsulated bioactive compounds, 
such as other vegetal and animal-derived extracts, such as essential oils and propolis, 
respectively. Studying how the nanostructures interact with different types of food 
media, such as muscle-based foods, water-based juices, milk-fat-based foods, veg-
etable cells, and bakery products, is also highly relevant.
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1.3.5 Starch Nanovesicles 

SNVs are nano-dimensioned structures that encapsulate hydrophobic materials. 
Nanovesicles do not have a specified structure; however, they are usually charged 
with lipophilic bioactive substances aimed at their protection, controlled release, and 
increased stability in aqueous media [43, 65, 66]. Starches have gained attention for 
their applications because they are highly available, non-toxic, safe, biocompatible, 
and biodegradable, and their properties can be easily changed by chain modification 
and hydrolysis [65, 67, 68]. This characteristic is interesting for tailoring nanopar-
ticle properties, such as size, active release rate, etc. The most studied applications of 
SNVs are in the medical field, for the delivery of drugs in medical applications 
[65, 66]. However, agriculture can also benefit from nanocarriers of pesticides 
[68, 69], nutrients, and biocontrol agents [70]. Food products have great potential 
to be improved as well, with the development of nanocarriers of natural compounds, 
including preservers and bioactives that benefit the consumer’s health, such as 
curcumin [43], but, this is a field of application that is yet to be explored. 

The conventional way to obtain nanovesicles is by the dilution of an oil-in-water 
nanoemulsion of the desired hydrophobic molecule into a gelatinized starch solution, 
followed by its drying, forming oil-charged microcapsules [43, 65]. The conven-
tional emulsification method uses high-shear mixing, but alternative methods can be 
used. An alternative method was reported by Li et al. [68], the premix glass 
membrane emulsification method. For this, an oil-in-water or water-oil-water 
pre-emulsion was obtained by mechanical stirring or sonication (top-down 
approach), followed by a membrane homogenization stage to reduce the particle’s 
sizes by shear forces. This method has the advantage of easily controlling the 
particles size, being reproducible, and having a high production rate. To obtain 
nanovesicles, some systems may require organic solvents such as ethanol. When this 
is the case, the nanoemulsion loading stage must enable sufficient time and temper-
ature to allow the evaporation of the organic solvent [43]. 

Native starches are sensitive to enzymatic degradation and water and tend to 
release the encapsulated material quickly because of the reduction of intermolecular 
forces and swelling when applied in water-based systems [71]. Like other poly-
saccharides, starch is hydrophilic and relatively chemically stable, and its easy 
modification or functionalization can be applied to solve these issues [72]. Several 
studies have applied modified starches with amphiphilic properties to form 
nanomicelles, which are starch-based polymers modified to have hydrophobic and 
hydrophilic regions [60–62]. SNVs have shown great stability and controlled release 
of active compounds, besides the advantages of using starch, such as non-toxicity, 
safety, biocompatibility, and biodegradability [62, 73].



Conflicts of Interest The authors declare no conflicts of interest.

1 A Brief Introduction to Starch-Based Nanomaterials 9

1.4 Conclusions 

Research on the production of starch nanomaterials (SNMts) is recent and could 
have promissing applications. In general, starch nanocrystals (SNCs), nanofibers 
(SNFs), nanoparticles (SNPs), nanomicelles (SNMs), and nanovesicles (SNVs) can 
be obtained by using starch chains and the “top-down” and “bottom-up” approaches 
such as acid/enzymatic hydrolysis, antisolvent precipitation, electrospinning, self-
assembly, among others. Particularly, SNCs and SNFs have been used as fillers in 
packaging materials, whereas, SNPs have been used to stabilize bioactive com-
pounds to develop antioxidant and antimicrobial nanomaterials. SNMs and SNVs 
have been explored in medical applications to encapsulate hydrophobic materials 
and increase the solubility of compounds lower-polarity compounds. Further studies 
are required to optimize the production of SNMts and standardize their particle size 
and shape, and to explore food and food packaging applications. 
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