
Internet of Things

Michele Ianni · Antonella Guzzo · 
Raffaele Gravina · 
Hassan Ghasemzadeh · 
Zhelong Wang   Editors

Activity 
Recognition 
and Prediction 
for Smart IoT 
Environments



Internet of Things 

Technology, Communications and Computing 

Series Editors 

Giancarlo Fortino, Rende (CS), Italy 

Antonio Liotta, School of Computing, Edinburgh Napier University, Edinburgh, UK



The series Internet of Things - Technologies, Communications and Computing 
publishes new developments and advances in the various areas of the different facets 
of the Internet of Things. The intent is to cover technology (smart devices, wireless 
sensors, systems), communications (networks and protocols) and computing (the-
ory, middleware and applications) of the Internet of Things, as embedded in the 
fields of engineering, computer science, life sciences, as well as the methodologies 
behind them. The series contains monographs, lecture notes and edited volumes 
in the Internet of Things research and development area, spanning the areas of 
wireless sensor networks, autonomic networking, network protocol, agent-based 
computing, artificial intelligence, self organizing systems, multi-sensor data fusion, 
smart objects, and hybrid intelligent systems. 

Indexing: Internet of Things is covered by Scopus and Ei-Compendex **



Michele Ianni • Antonella Guzzo • 
Raffaele Gravina • Hassan Ghasemzadeh • 
Zhelong Wang 
Editors 

Activity Recognition and 
Prediction for Smart IoT 
Environments



Editors 
Michele Ianni 
University of Calabria 
Rende, Italy 

Raffaele Gravina 
University of Calabria 
Rende, Italy 

Zhelong Wang 
Dalian University of Technology 
Dalian, Liaoning, China 

Antonella Guzzo 
University of Calabria 
Rende, Italy 

Hassan Ghasemzadeh 
Arizona State University 
Phoenix, AZ, USA 

ISSN 2199-1073 ISSN 2199-1081 (electronic) 
Internet of Things 
ISBN 978-3-031-60026-5 ISBN 978-3-031-60027-2 (eBook) 
https://doi.org/10.1007/978-3-031-60027-2 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0003-0562-7462
https://orcid.org/0000-0002-1844-1416
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2
https://doi.org/10.1007/978-3-031-60027-2


Preface 

In recent years, the rapid evolution of technologies such as the Internet of Things 
(IoT), artificial intelligence (AI), and machine learning has significantly transformed 
various aspects of daily life, from healthcare and industrial processes to home 
automation and personal wellness. The convergence of these technologies has 
given rise to innovative solutions for activity recognition and prediction, which 
are pivotal in creating smarter, more responsive environments. This book, “Activity 
Recognition and Prediction for Smart IoT Environments,” provides a comprehensive 
exploration of the latest advancements in this dynamic field. 

Chapter 1 introduces the concept of pervasive computing and its application in 
smart spaces, specifically smart homes and offices. It details a methodology that 
leverages process mining techniques to automatically segment and model human 
habits based on sensor data, offering insights into how these models can be used to 
anticipate and enhance user actions in smart environments. 

Chapter 2 focuses on the role of wearable sensors in human activity recognition. 
It examines how these sensors, due to their compact size and computational power, 
have become essential tools for real-time activity and emotion detection. The 
chapter reviews various methods and applications of wearable sensors in domains 
such as healthcare and sports performance analysis. 

Chapter 3 addresses the challenges faced by wheelchair users due to a sedentary 
lifestyle. It presents a postural monitoring system designed to recognize and analyze 
various postures to prevent health complications. This chapter emphasizes the 
importance of selecting appropriate sensors and machine learning techniques to 
optimize postural recognition. 

Chapter 4 compares video-based and sensor-based Human Activity Recognition 
(HAR) systems. It highlights the advantages of sensor-based methods in terms of 
privacy and cost, and discusses the impact of deep learning on feature representa-
tion, balancing the benefits with computational overhead. 

Chapter 5 explores the recognition of multi-user activities using wireless signals. 
It introduces a novel two-level data fusion method applied to Wi-Fi Channel State 
Information (CSI) signals for identifying individual and group actions. This chapter

v
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also addresses the security implications of collecting and processing sensitive user 
data. 

Chapter 6 presents a probabilistic cascading binary classifier designed for 
resource-efficient activity classification in wearable devices. It discusses how this 
approach manages sensor sampling frequency and feature extraction to balance 
energy consumption with classification accuracy. 

Chapter 7 delves into the application of machine learning in Industry 4.0, 
focusing on Human Activity Recognition (HAR) within smart factories. The chapter 
reviews the use of advanced AI and machine learning methodologies to enhance 
automation and efficiency in industrial settings, providing insights for practitioners 
and researchers alike. 

Chapter 8 examines the challenges and advancements in real-time HAR using 
smart devices for elder care and medical rehabilitation. It highlights the complexities 
of dealing with heterogeneous data sources and sensor limitations, and discusses the 
growing prominence of deep learning in overcoming these challenges. 

This book is intended for researchers, academics, professionals, and students 
who are interested in the intersection of activity recognition, prediction, and IoT 
technologies. It brings together a diverse range of topics and methodologies, 
offering a valuable resource for understanding and advancing the state of the art 
in smart environments. 

We hope that the insights and innovations presented in this volume will inspire 
further research and contribute to the development of smarter, more intuitive 
systems that enhance our interactions with technology and improve our quality of 
life. 

Rende, Italy Michele Ianni 
Rende, Italy Antonella Guzzo 
Rende, Italy Raffaele Gravina 
Phoenix, AZ, USA Hassan Ghasemzadeh 
Dalian, Liaoning, China Zhelong Wang
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Discovering Human Habits Through 
Process Mining: State of the Art and 
Research Challenges 

Francesco Leotta, Massimo Mecella, and Silvestro Veneruso 

1 Introduction 

Recent years have shown a growing interest in the market for embedding sensors and 
actuators in physical environments to facilitate the execution of numerous tasks. The 
idea is to use sensors to collect real-time information about the environment and to 
use it to trigger actions through actuators in order to automate physical tasks, aiding 
humans in their daily lives. The term pervasive (or ubiquitous) computing is usually 
employed to indicate the set of techniques apt to this aim [27]. 

Smart spaces represent, in particular, an emerging class among pervasive com-
puting application areas. Smart homes and offices are, in particular, representative 
examples where pervasive computing could take advantage of Ambient Intelligence 
(AmI) [24]. AmI lies at the crossroad between many different areas, including 
Artificial Intelligence (AI) and Human–Computer Interaction (HCI). 

AmI techniques are based on models specifically trained for a specific home 
and/or inhabitant. In particular, models represent [21]: 

• Actions, i.e., atomic interactions with the environment (e.g., using a household) 
• Preferences, i.e., a set of rules explicitly representing decisions to make in 

specific contextual conditions 
• Activities, i.e., groups of actions (one in the extreme case) or sensor mea-

surements/events with a final goal (e.g., cleaning the house). Activities can be 
collaborative, including actions by multiple users, and can interleave with each 
other. 

F. Leotta (✉) · M. Mecella · S. Veneruso 
Dipartimento di Ingegneria Informatica Automatica e Gestionale “A. Ruberti”, Sapienza 
Università di Roma, Rome, Italy 
e-mail: Leotta@diag.uniroma1.it; Mecella@diag.uniroma1.it; mecella@dis.uniroma1.it; 
Veneruso@diag.uniroma1.it 
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• Habits, i.e., groups of activities that happen in specific contextual conditions. 
Habits represent human routines (e.g., what the user does every morning between 
08:00 and 10:00). 

It has been argued that business process formalisms can be used as models for 
activities and habits [19]. A business process is a set of interrelated tasks performed 
in a company in order to conduct specific functions (e.g., ordering goods). In order 
to acquire such models, process mining (PM) techniques can be employed. PM [25] 
is a fairly recent research discipline that combines Data Mining techniques with 
techniques used in Business Process Management (BPM) [7]. Its main objective is 
to extract meaningful information from event logs. When PM techniques such as 
process discovery are applied to data gathered from smart spaces, it is possible to 
model and visualize human activities and habits as business processes. 

In this chapter, we first introduce a state-of-the-art methodology [8] allowing, 
given a sensor log, to automatically segment human habits by applying process 
mining techniques. Such methodology relies on a bottom-up discretization strategy 
for the timestamp attribute. Such discretization algorithms find the best division 
of a continuous attribute by iteratively merging contiguous subranges (also called 
“bins”) following a quality evaluation heuristic. In this case, the heuristic is 
based on quality measures computed on the process models automatically mined, 
through process discovery, from the intermediate bins. In particular, we drive the 
discretization targeting process models with high simplicity and low structuredness. 
Each obtained bin then represents a time range in which the human is supposed to 
perform activities following a clearly identifiable human process. 

Habits mined via this approach are then further analyzed with several process 
discovery algorithms to obtain related process models. Such models of habits can 
be used, in conjunction with condition mining techniques, to anticipate user actions 
and enact them whenever possible. 

2 Background and Related Works 

2.1 Sensor Data in Smart Spaces 

Sensors available in a smart space produce a sensor log. 

Definition 1 (Sensor Log) Given a set .S = {s1, . . . , sn} of available sensors, a 
sensor log is an ordered sequence of measurements coming from S, each represented 
by a tuple .〈ts, s, v〉, where .s ∈ S identifies the source sensor producing a measured 
value v at the timestamp ts. The measured value v can be either categorical or 
numeric. 

Measurements can be produced by a sensor on a periodic basis (e.g., temperature 
measurements in a room) or whenever a particular event happens (e.g., door
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openings). As many of the algorithms proposed in the literature borrow the 
terminology of data mining, the sensor log could be translated as a sequence of 
events instead of a sequence of raw measurements. For instance, the set of raw 
sensor measurements representing the activation of motion sensors upon entering 
the bathroom could be translated as “the inhabitant entered the bathroom.” 

Definition 2 (Event Log) Given a set .E = {e1, ..., en} of event types, an event log 
is a sequence of pairs .〈e, t〉, where .e ∈ E and t is a timestamp. 

Translating a sensor log into an event log is not a trivial task, and it could cause 
a loss of information, especially if a discretization of periodic sensor measurements 
is required [19]. 

An example of such translations is provided in [20]. The approach is applicable 
to logs only consisting of Presence InfraRed (PIR) sensors, i.e., motion sensors trig-
gering whenever a human intercepts their detection zone. The triggering sequence 
of PIR sensors describes the movements of a human in the environment. Such 
movements are extracted in [20] by applying the seminal trajectory clustering 
algorithm called TRACLUS [18]. TRACLUS consists of two phases: a trajectory 
partitioning technique based on the minimum description length (MDL) principle, 
followed by a density-based line segment clustering algorithm. The authors in [20] 
exploit the partitions found by TRACLUS to segment the log into subtrajectories 
with a homogeneous velocity. Each of these trajectories is then classified into one 
of these three categories with labels MOVEMENT, AREA, and STAY by considering 
information features such as duration, velocity, and heterogeneity. 

The classification allows to replace sequences of raw sensor measurements 
with human actions consisting of a category and a location, the latter inferred by 
the position of the corresponding sensors in the house. For example, the <AREA 
Bathroom> action indicates that the human inhabitant was wandering around the 
bathroom, whereas <STAY Kitchen_table> represents the fact that the inhabitant 
remained for a while sitting at the kitchen table. At this point, the sensor log has 
been converted into an event log or, more specifically, an action log. 

The authors in [14] propose a different clustering technique in order to turn 
sensor measurements into actions. 

2.2 Process Mining 

Process mining [25] is a fairly recent research discipline that combines Data Mining 
techniques with methodologies used in BPM [7], such as process modeling and 
process analysis. Its main objective is to extract meaningful information from event 
logs. Three types of process mining techniques are usually identified: 

1. Process discovery, i.e., a technique for discovering the process model describing 
the behavior shown in the event log. Thus, it takes as input an event log and 
automatically generates the correspondent process model.
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2. Conformance checking, i.e., a technique for comparing an existing process model 
with an event log of the same process. It can be used to check if reality, as 
recorded in the log, conforms to the model and vice versa. 

3. Enhancement, i.e., a technique used to extend or improve an existing process 
model using information about the actual process recorded in some event log 

In Sect. 3, we show an approach that employs process discovery, which produces 
as output a process model represented using the Petri net formalism, i.e., a directed 
graph composed of nodes and arcs (respectively, called places and transitions). Such 
models find the right balance between the following properties: 

• Soundness, i.e., the fact that the resulting Petri net will always terminate and does 
not contain deadlocks 

• Fitness, i.e., how much the input log can be replayed on the resulting Petri net. 
• Precision, i.e., the resulting Petri net should not allow for a behavior that is not 

related to the one in the event log. 
• Rediscoverability, i.e., the algorithm discovers a model language-equivalent to 

the system shown in the event log. 

The structural behavior of a Petri net mined through process discovery can be 
analyzed using several different quality measures. In the approach shown in Sect. 3, 
the authors are mainly interested in structuredness and simplicity metrics since they 
want to find human process models that are easy to read and understand. 

Structuredness [16] is a measure obtained by disassembling the observed model 
into small submodels, assigning a score to each of them, and combining these 
scores. In particular, the score will be lower for patterns perceived as simple (e.g., 
sequences, while, and choice patterns) and higher for the complex ones. 

Simplicity is a metric depending only on the size and structure of the model 
without considering its behavior. Given a Petri net, we can define as . |F | the number 
of arcs, . |P | the number of places, and . |T | the number of transitions inside the model. 
Therefore, we can define this property as .

|P |+|T |
|F | . 

A higher value of simplicity means that the Petri net is simpler to understand. 
Conversely, if the equation returns a low value, we expect that the Petri net has a 
complex structure. Lower values of simplicity may happen instead when the number 
of arcs is much bigger than the number of nodes in the net, so, in general, this leads 
to Petri nets that are not easy to read. 

2.3 Unsupervised Approaches to Ambient Intelligence 

The vast majority of approaches in ambient intelligence are inherently manual, 
thus requiring a segmented and labeled dataset at least at training time, whereas 
windowing techniques can be used to roughly segment the sensor stream at run-
time [15]. Anyway, few works exist that can be defined as fully automatic.
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The authors in [1] propose the APUBS algorithm to automatically extract Event– 
Condition–Action (ECA) rules by considering the typology of the sensors involved 
in the measurements and the time relations between their activations. An ECA 
rule has the form “ON event IF condition THEN action,” thus automating the 
execution of an action as soon as a specific event is detected and if certain contextual 
conditions are met. APUBS is based on a clear distinction between (i) type O sensors 
installed in objects, thus providing direct information about the actions of the users 
(e.g., a sensor capturing the opening of the fridge door), (ii) type C sensors providing 
information about the environment, and (iii) type M sensors providing information 
about the position of the user inside the house. 

Events in the event part of the ECA rule always come from type O and type M 
sensors. Conditions are usually expressed in terms of the values provided by type C 
sensors. Finally, the action part contains only type O sensors, which can also serve 
as actuators. The set of Type O sensors is called mainSeT. As a first step, the APUBS 
method discovers, for each sensor in the mainSeT, the  set  associatedSeT of type O 
and type M sensors that can be potentially related to it as triggering events, by using 
the seminal APriori method. As a second step, the technique discovers the temporal 
relationships between the events in associatedSeT and those in mainSeT. During  
this step, nonsignificant relationships are pruned. As a final step, the conditions for 
the ECA rules are mined with a JRip classifier. The authors in [5] instead extract 
ECA rules by using a variation of the seminal APriori algorithm. 

The approach described in Sect. 3 differs from ECA rule extraction as it does not 
directly discover enactment rules. Instead, it discovers the process models behind 
each human habit. This process can then be employed to extract enactment rules, 
which are strongly related to the choice made by the human inhabitant, while he/she 
is following his/her habit. 

The authors in [3] proposed instead an approach based on the minimum descrip-
tion length (MDL) principle to automatically extract activity patterns. The algorithm 
takes as input a dataset consisting of a sequence of sensor events witnessing human 
interactions with the environment. At each step, the algorithm looks for the patterns 
that best compress the dataset. A pattern consists of a sequence of sensor events and 
their occurrences in the dataset. Starting from a single pattern for each different 
sensor event, the algorithm at each step tries to extend patterns, aiming for the 
best possible compression. In particular, every instance of the pattern is replaced 
by a symbol associated with the pattern. The compression of a dataset D given a 
pattern P is given by the formula . DL(D)

DL(D|P)+DL(P )
, where .DL(D) represents the 

description length of the dataset with the current patterns (measured, e.g., in bits), 
.DL(D|P) represents the description length of D if all of the occurrences of P 
are replaced with a symbol, and .DL(P ) represents the description length of the 
pattern, which must be considered in order to take into account the pattern length in 
compression evaluation. The algorithm stops as soon as no further compression is 
possible, returning all the patterns found. In the original algorithm, a clustering step 
is applied in order to recognize variants of human routines. 

The extraction of meaningful information from activities presents a daunting 
task that has been addressed through various methodologies and within different
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application contexts, encompassing daily living [11, 12], as well as security-related 
domains [9, 10, 13], to name just a few examples. 

Differently from these last approaches, in Sect. 3, we focus on habits instead of 
activities. Additionally, in [3] patterns are extracted with the sole goal of recognizing 
them at run-time without providing a structured description of human routines. 

3 Unsupervised Human Habit Discovery 

The main idea behind the application of PM in smart spaces is to use data mining 
techniques that target classical business processes, also defined as cyber-physical 
processes [17]. Applying PM to this scenario introduces several challenges [2]: 

• Smart spaces typically produce sensor logs, while process mining techniques 
require event logs. Events in event logs are executions of tasks, while sensor logs 
contain fine-grained sensor measurements. 

• Process mining requires the log to be segmented into traces, where each trace 
represents an “execution” of a specific process (an activity or a habit). 

• The choice of the right modeling formalism to employ is not trivial [6]. 

The goal of this section is to show how process mining, and in particular 
process discovery, can be applied to smart homes for log segmentation purposes. 
In the literature, a large body of research can be found on log segmentation. Such 
methodologies can be grouped into two families: manual and automatic. Manual 
techniques often require manual labeling of training instances, usually involving 
final users in annoying and imprecise training sessions. Furthermore, they require 
a segmented and labeled dataset at least at training time, whereas windowing 
techniques can be used to roughly segment the sensor stream at run-time [15]. On the 
other hand, automatic methods that aim at partially or completely eliminating human 
effort in labeling show limitations related to the absence of domain knowledge. 

As pointed out above, a major requirement for applying process mining to smart 
spaces is to convert the sensor log into an event log. To achieve this aim, we can 
employ the technique proposed in [20] and already described in Sect. 2.1. 

The obtained event log . A is a timestamped sequence of tuples .〈d, s, e, a〉, 
where 

• d is the day in the log. 
• s and e are, respectively, the timestamps at which the action starts and ends. 

Tuples follow a chronological order according to s. 
• a is the result of the sensor aggregation. It is labeled as STOP, AREA, or  MOVEMENT, 

and it is followed by the identifier of the position. 

The event log is further preprocessed: Consecutive repetitions of the very same 
action are merged together. In particular, given two consecutive tuples (i.e., consec-
utive events in the log) .A = 〈d_A, s_A, e_A, aA〉 and .B = 〈d_B, s_B, e_B, a_B〉,
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if .d_A = d_B, .a_A = a_B, and .e_A = s_B, then A and B are merged into a single 
event defined as .〈d_A, s_A, e_B, aA〉. This operation can be applied iteratively to 
a chain of multiple subsequent tuples, as shown in Table 1. 

Once this preprocessing of the event log is completed, we can then proceed to the 
segmentation phase. For this purpose, we apply a classical bottom-up discretization 
technique based on the attribute referring to the time of day. Just to capture the 
underlying principle behind our approach, we can refer to the well-known Chi-
merge [23] strategy: This algorithm starts by dividing the entire range of an attribute 
at the finest level of granularity possible. Then, adjacent bins/intervals that met a 
condition based on . χ2 (i.e., the statistical measure Chi) are iteratively merged. If this 
condition is not met, the algorithm stops, and those bins/intervals remain separated. 

We start our segmentation by dividing the entire range of the time-of-the-day 
attribute (i.e., 00:00–24:00) into bins of constant width. For instance, if 15 minutes 
is chosen as the minimum bin width, the time-of-the-day attribute will be divided 
into .24 ∗ (60/15) = 96 bins. Each bin is associated with a correspondent sublog (of 
the unsegmented event log) where we have a case for each day in the dataset only 
containing actions with start_timestamp included in the bin (e.g., all the actions in a 
specific day happening since 00:00–00:15). 

Definition 3 Given an action log . A, we define .eventLog(A, [a, b]) as the event 
log having the day as a case identifier and containing, for each case, the actions 
performed between time a and b during the day associated with the case. 

Once this initial segmentation of the log is provided, Algorithm 1 is executed. 
The algorithm takes as input (i) a finite set intervals of chronologically ordered 
intervals/bins (96 in the previous example), (ii) a parameter minN denoting the 
minimum number of intervals to be returned by the algorithm, and (iii) a parameter 
minScore representing the stop criterion. 

The algorithm finds the best possible segmentation of the event log in habits, 
producing no less than minN intervals/bins (see row 1). At each iteration (see rows 
2–16), the algorithm iterates on all the intervals/bins, and for each pair of adjacent 
intervals/bins (see row 5), it applies the inductive miner (see row 6) to the event log 
obtained by merging those intervals/bins. In order to also consider possible habit 
intervals that cover two consecutive days (e.g., a time interval that lasts from 23:00 
to 01:00 of the following day), the merging of two adjacent intervals/bins is circular, 
so that the last interval/bin in the array is merged with the first. 

For each couple of adjacent intervals/bins, the inductive miner produces a Petri 
net pn. For each of these Petri nets, we compute a score obtained starting from the 
simplicity and structuredness measures introduced in Sect. 2. This equation allows 
us to find the pair of adjacent intervals/bins whose correspondent Petri net is the 
most readable one. In fact, in general, the Petri nets that are more simple and easy 
to understand have a high value for simplicity and a low value for structuredness. 
Thus, in each iteration, the couple of adjacent intervals/bins that may actually be 
merged are the ones that maximize the value obtained from this equation. Simplicity 
in particular is multiplied by a factor of 100, which has been empirically chosen in
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Data: A, intervals, minN, minScore 
1 while  len(intervals) > minN do 
2 max = 0; 
3 index = null; 
4 for  i in [0, len(intervals) - 2] do 
5 pair = concat(intervals[i], intervals[i+1]); 
6 pn = inductiveMiner(eventLog(A, pair)); 
7 score = 100 × pn.simplicity - pn.struct; 
8 if  score > maxScore then 
9 max = score; 

10 index = i; 
11 end 
12 end 
13 if maxScore < minScore then 
14 return intervals; 
15 end 
16 intervals = merge(intervals, index, index+1); 
17 end 
18 return intervals; 

Algorithm 1: The segmentation algorithm 

order to uniformize the two quality measures since simplicity values are always less 
than 1. We keep track of the maximum score computed and of the corresponding 
couple of adjacent bins (see rows 8–11). 

Once all adjacent bins have been considered, if the maximum score computed 
is above the minScore threshold, the intervals array is updated by merging the 
adjacent bins corresponding to the maximum score. Otherwise, the algorithm ends, 
as any additional merging would not be convenient. 

Noticeably, the algorithm always terminates. The merging phase stops either if it 
is not convenient to keep merging bins or if a minimum number of bins are reached 
(note that iteration by iteration the number of bins is always decreased by one). After 
the algorithm terminates, the intervals variable contains a set of intervals/bins 
each corresponding to a habit. Here the rationale is that bins will be merged only 
if the resulting Petri net results are simpler and less structured, meaning that the 
process model of the underlying habit is easy to read. 

4 Experiments 

The approach described in Sect. 3 is validated against the aruba dataset from the 
CASAS project (http://casas.wsu.edu/datasets/). The reason for this choice relies 
on the major impact this project has had on the community and the availability as 
source code of algorithms that are often used as benchmarks [4, 14, 19, 22, 26]. 

The aruba dataset is a partially labeled sensor log that contains data collected 
in a real-life scenario for 220 days. It contains 6477 labeled activities, with the 

http://casas.wsu.edu/datasets/
http://casas.wsu.edu/datasets/
http://casas.wsu.edu/datasets/
http://casas.wsu.edu/datasets/
http://casas.wsu.edu/datasets/
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Table 2 Most frequent temporal intervals for each activity 

Activity Most frequent intervals 

Bed to toilet 00:30–00:45 03:30–06:15 

Eating 08:00–08:15 09:15–10:45 12:00–12:15 13:45–14:15 18:00–19:00 
19:15–19:45 

Enter home 11:15–11:30 13:15–14:15 14:30–15:15 15:45–16:00 

Housekeeping 10:30–11:45 14:30–15:15 

Leave home 11:30–11:45 14:45–15:00 

Meal preparation 06:00–06:30 06:45–10:45 12:00–12:30 13:15–14:45 15:15–20:15 

Relax 08:45–09:30 13:30–00:00 

Sleeping 23:30–07:30 

Wash dishes 09:45–10:30 11:00–11:15 17:45–18:00 19:30–20:00 20:45–21:00 

Work 12:00–12:30 14:15–14:30 15:45–16:45 

start and end markers of activities performed by the resident, meaning that for a 
subset of measurements, we know the activity correspondent to those activations of 
sensors. The activities available in the dataset, with the correspondent number of 
their occurrences, are the following ones: meal preparation (1606), relax (2910), 
eating (257), work (171), sleeping (401), wash dishes (65), bed to toilet (157), enter 
home (431), leave home (431), housekeeping (33), and resperate (6). The inhabitant 
interacts, among others, with 31 Presence InfraRed (PIR) sensors that trigger as 
soon as a person enters their detection area, producing discrete measures that can be 
easily associated with actions. 

Once obtained the action log . A from the raw log, Algorithm 1 is executed, 
passing as arguments (i) the preprocessed action log, (ii) an array of 96 initial 
bins obtained by segmenting the time-of-the-day attribute in equal-width bins of 
15 minutes, (iii) a minimum number of bins equal to 2, and (iv) a minimum score 
chosen empirically. 

The six best intervals from our discretization algorithm are the following ones: 
05:15–07:00, 07:00–13:45, 13:45–18:15, 18:15–21:45, 21:45–23:00, and 23:00– 
05:15. Each of these temporal intervals is considered a human habit. 

In order to evaluate the quality of the result obtained, a simple statistical analysis 
of the dataset has been performed. In particular, each habit was mapped to a set 
of activities to show its plausibility. As already stated, these activities have been 
manually labeled in the original sensor log . S. According to the activity label 
available in the raw log, we computed the temporal intervals in which each activity 
occurs more frequently (see Table 2). 

Table 3 introduces another kind of association obtained by comparing the 
most frequent intervals for each activity with respect to the habits found by our 
discretization algorithm. This association shows in which habit a certain activity 
occurs more frequently. For instance, the activity sleeping occurs more frequently 
during the time interval “23:30–07:30” and so can be associated with both the habit 
intervals “23:00–05:15” and “05:15–07:00.” 


