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Preface

In recent years, 2D nanomaterials have emerged as a remarkable corner-
stone in the field of advanced materials research, with their unique prop-
erties and versatile applications captivating the attention of scientists and 
engineers worldwide. This book is a testament to the ever-growing inter-
est and importance of 2D nanomaterials in the realm of material science, 
nanotechnology, pharmaceuticals, and a myriad of engineering special-
izations. This book provides a comprehensive overview of the synthesis, 
modification, characterization, and application of 2D nanomaterials. Since 
the topic is vast, spanning a wide range of scientific disciplines and techno-
logical advancements, it is important to acknowledge that no single book 
can encompass the entirety of this field. However, this diverse collection 
of chapters covers essential themes and materials, focusing particularly on 
the synthesis strategies and potential applications of 2D nanomaterials.

The book is structured into three sections, each delving into different 
aspects of 2D nanomaterials. The first section explores the synthesis of 
these materials, providing an overview of both top-down and bottom-up 
strategies. Understanding the methods by which these materials can be syn-
thesized is crucial for advancing their potential applications. Additionally, 
this section delves into the structural characterization of 2D nanomateri-
als, shedding light on their intricate compositions and properties. 

The second section examines the diverse characteristics exhibited by 2D 
nanomaterials. From their magnetic and mechanical properties to their 
electrical, plasmonic, and optical behaviors, these materials possess an 
array of intriguing attributes that make them highly attractive for a wide 
range of applications. This section of the book provides a comprehen-
sive understanding of these properties, enabling readers to appreciate the 
unique potential of 2D nanomaterials. 

The final section focuses on the applications of 2D nanomaterials, 
highlighting their use in various fields such as energy, water purification, 
biomedical applications, multimodal tumor therapy, and supercapacitor 
technology. By showcasing the breadth of their applications, we hope to 



xviii  Preface

inspire readers to explore further and unlock the immense possibilities 
that lie within these materials.

The editors would like to express sincere gratitude to all the authors and 
co-authors who contributed their exceptional research to this book. Their 
expertise and dedication have enriched its content, ensuring its relevance 
and significance. Furthermore, we extend our heartfelt appreciation to the 
Wiley-Scrivener publishing team for their unwavering support through-
out the challenging process of bringing this book to fruition. Their profes-
sionalism and commitment have been invaluable in making this project a 
reality. 

As editors, we firmly believe that this book will serve as a valuable 
resource for students, researchers, and professionals in material science 
and related fields. It will spark new ideas, ignite curiosity, and pave the way 
for groundbreaking discoveries in the realm of 2D nanomaterials. We are 
confident that this book will find its rightful place in university and insti-
tute libraries across the globe and will be a source of inspiration for future 
research and innovation.

Once again, we extend our deepest gratitude to all who have contributed 
to this book. We are honored to present this collection of knowledge and 
discoveries, and we eagerly anticipate witnessing the impact it will have on 
the ever-evolving landscape of 2D nanomaterial research.

Subhendu Chakroborty 
Ph.D.; MRSC 
Kaushik Pal

Ph.D.; D.Sc. (Malaysia)
January 2024
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Top-Down Strategies Synthesis 
of 2D Nanomaterial

Pranjyan Dash1 and Pradeep Kumar Panda2*

1National Taipei University of Technology, Taipei, Taiwan 
2Department of Packaging & Logistics, Yonsei University, Gangwon-do,  

South Korea

Abstract
The nanotechnology field originated in the 21st century. Especially 2D-based 
nanomaterials have received a lot of attention since they are easily affordable, non-
toxic, and have excellent electrical, optical, thermal, and mechanical properties. 
Moreover, it is simple to synthesize and can be applied to a wide range of appli-
cations. The present chapter mainly focuses on various types of synthesis meth-
ods for 2D nanomaterials using top-down strategies. Many top-down strategies 
have been developed to synthesize 2D nanomaterials, such as etching, mechanical 
milling, sputtering, and laser ablation. In all methods, we would introduce their 
synthesis parameters, advantages, disadvantages, and applications. Moreover, its 
characterization and toxicity were briefly introduced. 

Keywords:  Nanomaterials, synthesis, 2D nanomaterials, top-down strategy, 
application of nanomaterials

1.1	 Introduction 

Nowadays, nanomaterials (NMs) are diverging materials among all 
research fields [1–4]. Nanomaterials are tiny-sized materials with external 
diameters up to 100 nm. The nanomaterials are primarily used to make the 
tubes, rods, and fibers. In addition, the nanoparticles found their physical 
existence in nature [5]. Nanomaterials possess different physical properties 

*Corresponding author: rkpanda277@gmail.com

mailto:rkpanda277@gmail.com


4  2D Nanomaterials

as well as chemical properties to form the bulk of their counterparts. As the 
size of the nanomaterials is too tiny, they cannot be seen with the naked 
eye. These nanomaterials are added to different materials, such as cloth, 
cement, and other materials. The tiny size of these materials also makes 
them useful in electronics, environmental remediation, and neutralizing 
toxins. The emergent properties of nanomaterials make them beneficial 
and impart great impacts in electronics, medicine, and other fields [6–8]. 
The chemical and physical properties of NMs highly depend on the sur-
face atoms. As per the applications, NM size can be controlled by various 
techniques, such as modification of surface and micelle concentration [9, 
10]. Dimensionally, NMs are divided into zero-dimensional (0D), one- 
dimensional (1D), two-dimensional (2D), and three dimensional (3D). 
In 0D, all three dimensions merge into a nanoscale range. A schematic 
diagram of dimension-based NMs is provided in Figure 1.1. In this cat-
egory, nanospheres, quantum dots, and nanoclusters are included. In 1D, 
two dimensions merge into one. In this category, nanotubes and nanorods 
are included. In the 2D category, one dimension is at the nanoscale and 
the other dimension is outside [11]. In this category, nanofilms and nan-
olayers are included. 3D NMs are bulk NMs with diameters greater than 
the nanoscale (1–100 nm). The building blocks for 3D NMs are 0D, 1D, 
and 2D NMs. Core shells, nanowire bundles, nanotube bundles, and multi- 
nanolayers are included in this category [12]. 

Among these, more and more attention has been paid to two-
dimensional (2D) NMs due to their unique properties, such as excellent 

Nanomaterials

0 D 1 D 2 D 3 D
Thin films,
sheets etc

y y y y

xxxx

zzzz

Nanoparticles

Nanotubes,
nanowires etc

Polycrystals

Figure 1.1  NM classification based on dimensions [13].
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electrical, optical, thermal, and mechanical properties [14–17]. Many 
strategies have been developed to synthesize it for a specific application. 
These synthesis methods are broadly divided into two types of strategies: 
top-down and bottom-up approaches. Figure 1.2 displays an illustration 
of NM top-down and bottom-up strategies. The distinction between these 
two general classifications is based on the processes involved in the cre-
ation of nanometer-sized structures, and the choice of method depends 
on the specific requirements of the desired end product and the available 
techniques and technologies [18]. In the bottom-up approach, nanoscale 
materials are constructed from atomic or molecular precursors that are 
allowed to react, grow in size, or self-assemble into more complex struc-
tures [19]. By contrast, the top-down approach carves nanoscale structures 
by controlling the removal of materials from larger or bulk solids [20]. 
Each strategy has its own advantages and disadvantages [21]. In bottom-up 
strategies, nanoshells, ultrafine nanoparticles, and even nanotubes can be 
produced with a size of 1–20 nm. However, massive production is not pos-
sible, and synthesized nanomaterials need chemical purification. In a top-
down strategy, nanomaterials can be produced massively, and purification 
is not needed. However, with this strategy, it is difficult to optimize the 
synthesized parameters [22]. This strategy is also not cost-effective. 

In this chapter, we mainly emphasize the synthesis of 2D nanomate-
rials using a top-down strategy. In this strategy, we introduce the syn-
thesis parameters, advantages, disadvantages, and applications for all 
methods. Eventually, the characterization and toxicity of 2D materials will 
be proposed.

1.2	 Top-Down Strategy Synthesis Method

In a top-down strategy, bulk material is first converted into powder-based 
materials, which are then converted into nanomaterials [20]. There are 
mainly four methods available in this strategy (Figure 1.3), such as etching, 

Top-down Bottom-up

Bulk Powders Nanoparticles Clusters Atoms

Figure 1.2  Nanoparticle’s production strategies [23].
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mechanical milling, sputtering, and laser ablation. Each method’s advan-
tages, disadvantages, and own perspectives on applications are critically 
discussed. A summary of 2D NMs is listed in Table 1.1 using different top-
down strategy methods. 

Nanomaterial

Powder materialBulk material

Top-down strategies

1. Etching
2. Mechanical Milling
3. Sputtering
4. Laser Ablation

Figure 1.3  Top-down synthesis method of 2D nanomaterials.

Table 1.1  Synthesis of 2D NMs by different methods of top-down strategy. 

NMs Method Parameters Size Applications Ref. 

GO Mechanical 
milling

Ball size 5 nm; 
rotation speed 
600 rpm, time 
(6, 16, and 24 h) 

5 nm Dye removal [33]

GO Mechanical 
milling 

Ball size 3 mm, 
rotation speed 
200 rpm, time 
12 h

40 nm Drug delivery [34]

MoO3 Laser 
ablation 

Argon emission 
lines, Oxygen 
supplied

NA Cancer therapy [42]

GO-nano 
ribbon 

Laser 
ablation 

NA NA Optical [43]

WS2 Sputtering Pulsing frequency 
of 20 kHz, DC 
power supply 

>100 NA [44]

MoS2 Sputtering Working distance 
6 mm, a base 
pressure 2 × 10−6  
Torr prior, 60 W

721 Supercapacitor [45]

(Continued)
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1.2.1	 Etching

In this method, the 2D NM surface is modified for enhanced physical and 
chemical properties. Mainly, this method of obtaining materials is appli-
cable to the semiconductor industry. In this approach, a bulk material is 
treated with an etchant that selectively removes or dissolves certain layers 
or regions, leaving behind thin layers or flakes with desired 2D NM prop-
erties. This method has been used to synthesize 2D NMs such as graphene 
oxide (GO), transition metal dichalcogenides (TMDs), and boron nitride 
by selectively oxidizing or etching away layers from their respective bulk 
materials [24]. In this method, it is necessary to understand growth mech-
anisms [25]. Etching can be used to create patterns, structures, or features 
on the nanoscale, and it is a crucial step in the fabrication of various nan-
odevices and nanosystems [26]. Depending on the material and the desired 
outcome, several etching techniques can be used for 2D nanomaterials. 
Here are some commonly used etching techniques for 2D nanomaterials:

Wet etching: Wet etching involves the use of liquid chemicals to dissolve 
or remove material from a substrate selectively. For 2D nanomaterials, wet 
etching can be performed by immersing the substrate containing the nano-
material in a chemical solution that selectively reacts with the material to 
be etched while leaving other parts of the substrate untouched [27]. Wet 
etching is relatively simple and can be used for a wide range of 2D NMs, 
including graphene, transition metal dichalcogenides (TMDs), MoS2,

 and 
WS2.

Dry etching: Dry etching, also known as plasma etching, involves using 
reactive gases and plasma to remove material from a substrate. Dry etching 

Table 1.1  Synthesis of 2D NMs by different methods of top-down strategy. 
(Continued)

NMs Method Parameters Size Applications Ref. 

MoO2 Electro 
explosion 

Surfactant, 
Thickness, 
temperatures, 
and current 
density 

18.2 Antibacterial 
activity 

[46]

MoS2 Etching Cl2 plasma and Ar
plasma 

NA Nanodevices [47]

Hexagonal 
BN

Etching O2 and N2 plasma 
(10 W); pressure: 
1 Torr

NA NA [48]



8  2D Nanomaterials

can be used for 2D NMs by exposing the substrate to a reactive gas, typ-
ically in a plasma chamber, which reacts with the material being etched 
and removed [28]. Dry etching offers higher precision and control over the 
etching process than wet etching, but it may require more complex equip-
ment and processing conditions. Standard dry etching techniques for 2D 
NMs include reactive ion etching (RIE) and plasma etching.

Chemical vapor etching: Chemical vapor etching involves using reactive 
gases that are deposited onto the substrate as a vapor, which then reacts 
with the material to be etched. Chemical vapor etching can be used for 2D 
NMs by exposing the substrate to the reactive gases in a controlled envi-
ronment, such as a vacuum chamber, and allowing the gases to react with 
the material to be etched [29]. Chemical vapor etching offers high control 
over the etching process and can be used for selective and precise material 
removal from 2D nanomaterials.

Atomic layer etching: atomic layer etching (ALE) is a specialized tech-
nique that offers precise control over the etching process at the atomic scale. 
ALE involves using sequential, self-limiting reactions to remove material 
from a substrate, layer by layer, selectively [30]. ALE can be used for 2D 
nanomaterials by controlling the exposure of the substrate to the reactive 
gases in a cyclic manner, which allows for highly controlled etching with 
atomic-level precision.

It is important to note that the choice of etching technique depends on 
the specific material properties of the 2D nanomaterial, the desired out-
come, and the equipment and facilities available for the fabrication pro-
cess. Careful consideration of the material properties, etching parameters, 
and safety precautions is necessary to ensure the successful etching of 2D 
NMs.

1.2.2	 Mechanical Milling 

Mechanical milling is the simplest top-down strategy. Mechanical milling, 
also known as mechanical alloying or ball milling, is a technique used to syn-
thesize and process materials at the nanoscale through mechanical means. 
In this method, NMs are produced by the collision of rigid balls and bulk 
materials [31]. The whole system works under high pressure and is con-
ducted through a sealed container. Usually, containers are made of ceramic 
and steel-based materials. The final product size depends upon many factors, 
such as ball size, milling time, milling duration, rotating speed, amount of 
bulky raw materials, and milling environment. The milling process is more 
effective when the ball-to-powder ratio is higher [32]. The milling process 
have many more advantages such as easy to handle, safety, high capacity, 
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and long term maintained, even sometime no need solvent [32]. Despite 
this, disadvantages include disordering the crystal structure, requiring a lot 
of energy, the chance of contamination, and noise. It has been widely used 
to fabricate 2D nanomaterials, which exhibit unique properties due to their 
thickness being limited to the nanometer scale. The process of mechanical 
milling for 2D nanomaterials typically involves the following steps: 

Material selection: Suitable precursor materials, typically in the form 
of powders, are chosen based on the desired properties of the final 2D 
nanomaterial.

Ball milling: The precursor materials are loaded into a ball mill and 
milling balls are usually made of a hard material such as stainless steel or 
tungsten carbide. The ball mill is then rotated at high speeds, causing the 
milling balls to collide with the precursor materials, leading to mechanical 
deformation, grinding, and mixing.

Milling parameter optimization: Various milling parameters, such as 
milling time, milling speed, and ball-to-powder ratio, are optimized to 
control the size, shape, and properties of the resulting 2D nanomaterials. 
These parameters can be adjusted to achieve the desired nanoscale features 
and properties of the 2D nanomaterial.

Post-milling treatment: Additional post-milling treatments such as 
annealing, doping, or functionalization may be employed to tailor the 
properties of the 2D nanomaterials further.

In this method, various types of 2D nanomaterials are synthesized and 
listed in Table 1.1 with different parameters. Recently, Mahmoud and his 
co-workers synthesized graphene oxide (GO) MPs through the ball mill-
ing method [33]. The obtained NM size was 5 nm. Authors set different 
parameters such as rotating speed (600 rpm), milling time, ball size, etc. 
Further authors characterize it using various sophisticated techniques such 
as BET, UV, XRD, TEM, and Raman. Moreover, synthesized materials are 
applicable for methylene blue dye removal. Further, Caicedo et al. fabri-
cated GO from graphite using this method. The obtained GO NM size was 
40 nm in a 12 h processing time and is applicable in drug delivery systems. 
From the graphite precursor, GO was produced [34]. The main mechanism 
is the oxidation process.

1.2.3	 Sputtering

Sputtering is a well-known synthesis method in the category of top-down 
strategies. Sputtering is a versatile and widely used technique for synthesiz-
ing 2D nanomaterials due to its ability to produce thin films with precise 
control over their thickness, composition, and properties [35]. It has been 
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employed to synthesize various types of 2D NMs and 2D layered materials, 
with applications in areas such as electronics, optoelectronics, energy stor-
age, and sensors [36]. Generally, in this method, thin films are fabricated 
on a substrate through bombardment of the target with energetic ions 
[37]. In practice, there are several types of sputtering, such as DC diodes, 
RF-diodes, magnetron diodes, and ion beam sputtering. In this method, 
thin films are commonly produced on the substrate. For the production 
films, an ultra-high vacuum system was needed [38]. The sputtering pro-
cess for the synthesis of 2D nanomaterials typically involves the following 
steps:

Target preparation: A solid target material, which is the source of the 
atoms or ions to be deposited, is selected and prepared. The target material 
can be a pure element or a compound, depending on the desired composi-
tion of the 2D nanomaterial.

Substrate preparation: A substrate, which is a flat surface onto which 
the atoms or ions will be deposited to form the 2D nanomaterial, is pre-
pared. The substrate can be made of various materials, such as silicon, 
glass, or a flexible polymer, depending on the intended application of the 
2D nanomaterial.

Sputtering process: The target material is bombarded with high-energy 
ions, which dislodge atoms or ions from the target surface. These atoms or 
ions are then deposited onto the substrate surface, where they can form a 
thin film with a thickness in the nanometer range. The substrate is typically 
placed in close proximity to the target material, and the sputtering process 
is carried out in a vacuum chamber to minimize contamination and pro-
mote uniform deposition.

Control of deposition parameters: Various parameters, such as the sput-
tering power, gas pressure, and deposition time, can be adjusted to control 
the thickness, composition, and morphology of the deposited 2D nanoma-
terial. These parameters can be optimized to achieve the desired properties 
of the final nanomaterial.

Post-deposition treatments: After the deposition, the 2D nanomaterial 
may undergo additional treatments, such as annealing or etching, to fur-
ther modify its properties, such as crystal structure, electrical conductivity, 
or surface morphology.

1.3	 Laser Ablation 

The laser concept was first introduced by Einstein. Laser ablation is a 
straightforward process. Using this process, lasers are the main source for 


