

Pratap Tumkur Renukaswamy · Nereo Markulic · Jan Craninckx

PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar

Synthesis Lectures on Engineering, Science, and Technology

The focus of this series is general topics, and applications about, and for, engineers and scientists on a wide array of applications, methods and advances. Most titles cover subjects such as professional development, education, and study skills, as well as basic introductory undergraduate material and other topics appropriate for a broader and less technical audience. Pratap Tumkur Renukaswamy · Nereo Markulic · Jan Craninckx

PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar

Pratap Tumkur Renukaswamy Circuit and IC Design IMEC Leuven, Belgium

Jan Craninckx Advanced RF IMEC Leuven, Belgium Nereo Markulic Circuit and IC Design IMEC Leuven, Belgium

 ISSN 2690-0300
 ISSN 2690-0327 (electronic)

 Synthesis Lectures on Engineering, Science, and Technology
 ISBN 978-3-031-59772-5

 ISBN 978-3-031-59772-5
 ISBN 978-3-031-59773-2 (eBook)

 https://doi.org/10.1007/978-3-031-59773-2
 (eBook)

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Acknowledgements

I take this opportunity to thank everyone who directly and indirectly helped me bring about this book. In this regard, I would like to thank my Appa and Amma for bringing me up with a great value for education. Without my parents' value for learning, I would not be interested in studies. It's been close to 1.5 years since I have heard my parents' voice and hoping to hear from them soon. Miss you all the time. Let your best wishes for me stay forever.

I started this marvelous Ph.D. journey at IMEC on 05/12/2016. I like to thank the IMEC team members for all the technical support I received during my Ph.D. time. I had never seen before such talented, complex problem-solving and extraordinarily hard-working minds who are at IMEC. I am happy to be a part of such a group and learning at IMEC.

Jan, I am fortunate to have you as my mentor at IMEC. You are one of the best analog design gurus at IMEC I have seen. Throughout my 6-year period at IMEC, I learned from you how to tackle the complex technical problems without getting trapped in the maze. Research means valuable contribution to the scientific community is what I discovered from you. Many times, I entered your office tensed due to technical complexity and always left with an approach to tackle it. I remember my first interview with you where you showed me your hobby circuits which are a hard puzzle to solve.

Nereo, I am lucky to have you as my daily mentor. Your passion for research guided my thesis in a well-defined track. Daily advising for a fresh master graduate like me quickly helped to decipher the known technical difficulties.

I thank my lovely Chinamma for bearing with my hard schedule for the past 1.5 years and just after our wedding. Chinamma you were unhappy that I spent time in office and Ph.D. work and no proper time for you during these days. Thanks a lot for your understanding and all the support even during hard times. You stood with me and helped me finish writing the Ph.D. text.

February 2024

Pratap Tumkur Renukaswamy

Contents

1	Introduction		
	1.1	Frequency-Modulated Continuous-Wave (FMCW) Radar	1
		1.1.1 Chirp Nonlinearity Characteristics	4
		1.1.2 Chirp Synthesizer Phase Noise	5
	1.2	An Open Loop Versus a Closed Loop Chirp Synthesis	8
		1.2.1 PLL Fundamentals	10
	1.3	Charge Pump (CP)-PLL	11
		1.3.1 Phase Domain Model of CP-PLL	12
	1.4	Sub-Sampling Phase-Locked Loop (SSPLL)	15
		1.4.1 Phase Domain Model of SSPLL	18
	1.5	Least-Mean-Square (LMS)-Based Calibration	19
	1.6	Motivation and Research Objectives	21
	1.7	Outline of the Book	22
	1.8	Recognition of Technical Contributions	24
	Refe	erences	24
2	A 1	0 GHz Sub-Sampling PLL Chirp Synthesizer Using	
	a Cl	harge-Integrating DAC	29
	2.1	QDAC-Based Frequency Modulator	33
		2.1.1 QDAC Versus VDAC for Frequency Modulation	36
		2.1.2 QDAC Versus Switched Capacitor DAC for Frequency	
		Modulation	39
	2.2	Nonlinearity Calibration	40
	2.3	Design Implementation	46
	2.4	Key Building Blocks	47
		2.4.1 DTC	49
		2.4.2 QDAC Design	50
		2.4.3 VCO	52

		2.4.4 VCO Buffer and Sampler	53
		2.4.5 <i>G</i> _m Stage and Sign Extraction	54
		2.4.6 Loop Filter	56
		2.4.7 FLL	57
	2.5	Measurement Results	60
	2.6	Conclusion	70
	Refe	erences	70
3	A 10	6 GHz Duty-Cycled Charge Pump PLL-Based Chirp Synthesizer	75
	3.1	CP-PLL FMCW Modulator	78
	3.2	Phase Error Sign Extraction	79
		3.2.1 DC Phase Offset Effects in Sign-Sign LMS Algorithm	81
		3.2.2 A DTC Assisted TDC-Based Sign Extraction	84
	3.3	System Implementation	87
	3.4	Key Building Blocks	90
		3.4.1 POC-DTC	91
		3.4.2 TDC	92
		3.4.3 MMD	93
		3.4.4 Charge Pump (CP)	95
		3.4.5 PFD	96
		3.4.6 Loop Filter	96
		3.4.7 VCO	97
		3.4.8 Lock Detector and VCO Coarse Tuning	98
	3.5	PLL Duty Cycling	100
	3.6	Measurement Results	100
	3.7	SSPLL Versus CP-PLL for Duty-Cycling	111
	3.8	Conclusion	116
	Refe	erences	116
4	FM	CW Chirp Frequency Error and Phase Noise Measurement	123
	4.1	Chirp Characteristics	125
	4.2	Measurement Setup	126
		4.2.1 Instrument Frequency Accuracy Evaluation	126
		4.2.2 DUT Evaluation Setup	129
	4.3	Chirp Linearity Measurement	130
	4.4	Phase Error Measurement	135
		4.4.1 Mono-Frequency Phase Noise	135
		4.4.2 Phase Noise During FMCW Modulation	136
	4.5	Radar System to Evaluate Chirp Profiles	140
	4.6	Conclusion	141
	Refe	erences	141

5	Conclusion and Future Outlook		143	
	5.1	Summ	ary of this Work	143
	5.2	Key C	Contributions	144
	5.3	Future	Research Outlook	145
		5.3.1	Fast-Locking Sub-Sampling Phase-Locked Loop (SSPLL)	
			with a Lock Detector	146
		5.3.2	Ring Oscillators for Chirp Synthesis	146
		5.3.3	Nonlinear Chirp Waveform Synthesis for FMCW Radar	147
		5.3.4	Radar LO Generation, Transmission and Reception Using	
			PLL	148
	Refe	erences		151
Aj	opend	lix A: F	ixed-Point Digital Design	153

About the Authors

Pratap Tumkur Renukaswamy obtained his M.Sc. degree in integrated systems and circuits design from the Carinthia University of Applied Sciences, Villach, Austria, in 2016 and a Ph.D. degree from the Vrije Universiteit Brussel, Brussels, Belgium, in 2023. He is currently a researcher at IMEC.

email: pratap.renukaswamy@imec.be and pratap.tr@gmail.com

Nereo Markulic received his M.Sc. degree (2012) from the University of Zagreb, Croatia, and a Ph.D. degree (2018) summa cum laude from Vrije Universiteit Brussel, Belgium. His Ph.D. work was in collaboration with IMEC, Leuven, Belgium on Digital Subsampling Phase-Locked Loops (PLLs) and Polar Transmitters.

Dr. Nereo Markulic is currently a principal member of technical staff at IMEC, working on RF and mixed-signal circuits for radar applications and next-generation connectivity. He has authored and co-authored publications and patents on PLLs and analog-to-digital converters and a book on frequency synthesis. He is a co-recipient of the ISSCC 2019 Outstanding Paper Lewis Winner Award and the CICC 2023 Outstanding Invited Paper award. He currently serves on the Technical Program Committee of the IEEE VLSI Circuits symposium.

Jan Craninckx obtained his M.S. and Ph.D. degrees in microelectronics summa cum laude from the ESAT-MICAS laboratories of the KU-Leuven in 1992 and 1997, respectively. His Ph.D. work was on the design of low-phase noise CMOS-integrated VCOs and PLLs for frequency synthesis.

From 1997 till 2002, he worked with Alcatel Microelectronics (later part of STMicroelectronics) as a senior RF engineer on the integration of RF transceivers for GSM, DECT, Bluetooth, and WLAN. In 2002, he joined IMEC (Leuven, Belgium) as a principal scientist working on RF, analog, and mixed-signal circuit design. He is currently an IMEC fellow. His research focuses on the design of RF transceiver front-ends in nanoscale CMOS, covering all aspects of RF, mm-wave, analog, and data converter design. Dr. Craninckx is an IEEE Fellow and has authored and co-authored more than 200 papers, book chapters, and patents. He is/was a regular member of the Technical Program Committee for several SSCS conferences, was the chair of the SSCS Benelux chapter (2006–2011), SSCS Distinguished Lecturer (2012–2013), and elected SSCS Ad-Com member (2017–2019). He was a co-recipient of the ISSCC 2015 Jan Van Vessem Award and the ISSCC 2019 Lewis Winner Award. He was Associate Editor (2009–2016) and Editor-in-Chief (2016–2019) of the IEEE Journal of Solid-State Circuits.

Symbols

Angular frequency in rad/s
Attenuation factor
Capacitance (F)
Chirp bandwidth (Hz)
Chirp ramp time (s)
Chirp repetition interval (s)
Chirp reset time (s)
Current (A)
Frequency of reference clock (Hz)
Frequency offset from the carrier (Hz)
Ground voltage (V)
Open loop gain
Output resistance (Ω)
Phase in radians (rad)
Phase-error detection gain
Phase noise in dBc/Hz
Power spectral density
PLL loop bandwidth (Hz)
Range resolution (m)
Speed of light in vacuum (m/s)
Supply voltage (V)
Time delay (s)
Time period of reference clock (s)
Transconductance (S)
Variance
VCO gain in Hz/V
Windowing factor

Abbreviations

ADC	Analog to Digital Converter
ADPLL	All-Digital Phase-Locked Loop
BBPLL	Bang-Bang Phase-Locked Loop
BGA	Ball Grid Array
CML	Current-Mode Logic
CMOS	Complementary Metal-Oxide Semiconductor
СР	Charge Pump
DAC	Digital-to-Analog Converter
DCO	Digitally-Controlled Oscillator
DDFS	Direct Digital Frequency Synthesizer
DFC	Digital code to Frequency Conversion
DNL	Differential Nonlinearity
DSP	Digital Signal Processor
DTC	Digital-to-Time Converter
DUT	Device Under Test
DZ	Dead Zone
FFT	Fast Fourier Transform
FLL	Frequency-Locked Loop
FM	Frequency-Modulation
FMCW	Frequency-Modulated Continuous-Wave
FOM	Figure-of-Merit
FPNC	Feedforward Phase Noise Cancellation
GaAs	Gallium Arsenide
HPF	High-Pass Filter
IC	Integrated Circuit
IDAC	Current Digital-to-Analog Converter
IF	Intermediate Frequency
INL	Integral Nonlinearity
IO	Input/Output

LiDAR	Light Detection and Ranging
LMS	Least-Mean-Square
LNA	Low-Noise Amplifier
LO	Local Oscillator
LSB	Least Significant Bit
LUT	Look-Up Table
MIMO	Multiple-Input Multiple-Output
MMD	Multi-Modulus Divider
MMIC	Monolithic Microwave Integrated Circuits
mm-wave	Millimeter-wave
MOM	Metal-Oxide-Metal
MSB	Most Significant Bit
NF	Noise Figure
PA	Power Amplifier
PCB	Printed Circuit Board
PD	Phase Detector
PFD	Phase/Frequency Detector
PLL	Phase-Locked Loop
PM	Phase Margin
POC-DTC	Phase Offset Compensating Digital-to-Time Converter
PSD	Power Spectral Density
PVT	Process-temperature-voltage
QDAC	Charge-Integrating Digital-to-Analog Converter
RADAR	Radio Detection and Ranging
RCS	Radar Cross Section
RF	Radio Frequency
rms	Root mean square
RVCO	Ring Voltage-Controlled Oscillator
RX	Receiver
SiGe	Silicon-Germanium
SISO	Single-Input Single-Output
SNR	Signal-to-Noise Ratio
SoC	System-on-Chip
SPI	Serial Peripheral Interface
SPM	Single-Point Modulation
SSPD	Sub-Sampling Phase Detector
SSPLL	Sub-Sampling Phase-Locked Loop
TDC	Time-to-Digital Converter
TMN	Tunable Matching Network
TPM	Two-Point Modulation
TRX	Transceiver

TSPC	True Single-Phase Clock
TX	Transmitter
UWB	Ultra-wideband
VCO	Voltage-Controlled Oscillator
VDAC	Voltage Digital-to-Analog Converter
VHDL	Very high-speed integrated circuit Hardware Description Language

List of Figures

Fig. 1.1	FMCW radar transceiver and corresponding IF spectrum	
	with targets at short and long distances	2
Fig. 1.2	Chirp INL a due to nonlinear tuning and b spur. c Chirp DNL	5
Fig. 1.3	Phase noise filtering due to range correlation in coherent radars	
	for targets at 1 m, 50 m and 200 m	7
Fig. 1.4	IF signals corresponding to two targets due to PLL phase noise	
	after range correlation	8
Fig. 1.5	Open loop chirp synthesis	9
Fig. 1.6	Closed loop chirp synthesis	9
Fig. 1.7	a CP-PLL block diagram. b Fractional-N mode timing diagram	
	after phase-lock. c PFD-CP transfer characteristic	12
Fig. 1.8	Phase-domain small-signal model of the CP-PLL and illustration	
	of important transfer functions	13
Fig. 1.9	a SSPLL block diagram. b Fractional-N mode sub-sampling	
	operation by delaying the reference. c SSPD/ G_m -stage transfer	
	characteristic together with the FLL	16
Fig. 1.10	Phase-domain small-signal model of the SSPLL	18
Fig. 1.11	DTC gain calibration using sign-sign LMS algorithm	20
Fig. 2.1	60 GHz FMCW radar architecture	30
Fig. 2.2	Single-point FMCW modulation (SPM): a reference modulation	
	using DDFS, b divider modulus control, c modulation at phase	
	detector output and d modulation at oscillator input	31
Fig. 2.3	Two-point FMCW modulation	32
Fig. 2.4	Proposed QDAC-based SSPLL frequency modulator	33
Fig. 2.5	FMCW modulation using a linear QDAC-based system	34
Fig. 2.6	a VDAC and b QDAC simplified schematics	36
Fig. 2.7	a Output noise of QDAC compared to VDAC. b IF output phase	
	noise profile	38
Fig. 2.8	Linear phase domain model of SSPLL frequency modulator	38

Fig. 2.9	a QDAC plus varactor in a VCO for FM. b Switched capacitor	40
Fig. 2.10	a K_{VCO2} versus V_{tupe2} , b f_{VCO2} versus time, c V_{tupe2}	-0
1.8. 2.1.0	versus time, d $D_{\text{mod}}[k]$ versus time, e DTC sampling in presence	
	of nonlinearity	41
Fig. 2.11	Block diagram of DFC INL calibration	42
Fig. 2.12	DFC INL LUT update principle	44
Fig. 2.13	a Simulated DFC INL coefficients settling and their b final values	45
Fig. 2.14	V_{tune1} and V_{tune2} during delay-spread	46
Fig. 2.15	Block diagram of the QDAC-based FMCW SSPLL	47
Fig. 2.16	DTC architecture of [53]	49
Fig. 2.17	Simulated DTC phase noise	50
Fig. 2.18	QDAC schematic	50
Fig. 2.19	VCO schematic	52
Fig. 2.20	VCO buffer and sampler	53
Fig. 2.21	a $G_{\rm m}$ stage and sign extractor schematic with b timing diagram	55
Fig. 2.22	Sub-sampling path transfer characteristic	56
Fig. 2.23	SSPLL tunable loop filter	57
Fig. 2.24	Frequency divider with enhanced range and seamless $\Delta \Sigma$ divide	
	modulus dithering	58
Fig. 2.25	Three-state PFD with a programmable dead zone	59
Fig. 2.26	FLL charge pump	60
Fig. 2.27	Die micrograph	60
Fig. 2.28	Measured SSPLL phase noise profile at in-band fractional offset	61
Fig. 2.29	Leakage on V _{tune2}	62
Fig. 2.30	Measured V _{tune1} and V _{tune2} progress with gear-shifting	64
Fig. 2.31	Measured V_{tune1} and V_{tune2} a without and b with pre-distortion	64
Fig. 2.32	a Measured $K_{\rm VCO2}$ versus $V_{\rm tune2}$. b Estimated and measured	
	DFC INL correction coefficients	65
Fig. 2.33	Measured FMCW chirp spectrum	65
Fig. 2.34	Chirp linearity measured at div/8 output with $T_{chirp} = 51.2 \mu s$	
	and $BW_{chirp} = 1.21$ GHz after DTC gain and DFC INL	
	calibration	66
Fig. 2.35	Rms-frequency-error versus temperature variation	
	for $T_{\text{chirp}} = 51.2 \mu\text{s}$ and $BW_{\text{chirp}} = 1.21 \text{GHz}$	67
Fig. 2.36	Rms-frequency-error versus supply variation for $T_{chirp} = 51.2 \mu s$	
	and $BW_{chirp} = 1.11 \text{ GHz}$	67
Fig. 2.37	Chirp linearity measured at div/8 output with $T_{\rm chirp} = 25.6 \mu s$	
	and $BW_{chirp} = 1.21$ GHz using C_{bat} for chirp reset	68
Fig. 2.38	Chirp linearity measured at div/8 output with $T_{\rm chirp} = 12.8 \mu s$	
	and $BW_{chirp} = 1.21$ GHz using C_{bat} for chirp reset	68