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Preface

There is no doubt that our current and even future lives are highly connected to
satellite. We launch satellites to establish the global positioning system to get the
precise position of the unmanned vehicles and even the mankind. We launch satellites
to achieve Earth observation, weather forecast, fire forecast, video broadcasting,
environmental monitoring, etc. Satellite has played an important role in our daily
life. To provide such services for mankind, the attitude control system should be
developed for satellite. Otherwise, the payloads such as cameras, antennas, etc.,
will not work perfectly. In the attitude control system design, attitude controller
design is one of the most important parts. Although the linear control theory-based
controllers including the proportional—integral-derivative control law and its variants
have been widely used in satellite attitude control engineering, they are becoming
inappropriate for modern satellites demanding high control performance. That is
because the dynamics of any satellite is inherently nonlinear in nature. Inspired
by the superior performance ensured by nonlinear control theory, many nonlinear
attitude control approaches have been proposed for satellites. However, the problem
of designing an nonlinear controller to accomplish attitude maneuvers with high
control performance is still open.

In addition to the nonlinear dynamics of the satellite attitude system, modeling
error is another main hindrance. This inevitably acts on the satellite attitude dynamics.
It mostly comes from uncertain and unmodeled inertia, unmeasurable flexible vibra-
tion and coupling between the rigid and the flexible part of the satellite, actuator
fault, actuator misalignment, and the environmental disturbance torques including
the gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and
the solar radiation pressure torque. Due to the current finite modeling technology, the
modeling error is unknown and even time-varying. In practice, if the modeling error
is not appropriatly handled and compensated, the attitude control performance will
be deteriorated and even the instability of the attitude control system may be resulted.
This has led to intense interest in the development of modeling error compensation
control approaches, which are supposed to solve this problem.

From the standpoint of rejecting, attenuating, and compensating for modeling
error, significant developments have been witnessed for the satellite attitude control
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system design in the past two decades. However, there is currently a lack of a unified
control framework. Most of the existing methods can compensate for a single type
of modeling error only. In addition, many of them do not consider physical and
cost limits such as actuator constraint and unmeasurable angular velocity due to
gyro failure. On the other hand, fast attitude maneuvering requirement may not be
considered during critical phases of the mission in the literature during modeling
error compensation. Moreover, the existing robust or adaptive attitude controllers
with modeling error accommodated are characterized by severe conservativeness.
This will lead to more energy consumption, and thus reduce the lifespan of a satellite.
In aerospace engineering, those issues should be addressed simultaneously.

Motivated by the demand for attitude control with the above challenges solved
and many existing approaches are unable to achieve this goal, this book attempts to
solve the above challenge during satellite attitude control system design. This book
focuses on designing advanced compensation control techniques for more types of
modeling error with fast, high-accuracy, high-stability, and or velocity-free attitude
maneuvering accomplished for satellite. This book first concentrates on developing
nonlinear robust solutions to two or more than two types of modeling error compen-
sation attitude control problem of satellite even in the presence of actuator constraint
and fault. Its focus comes to design advanced approaches to achieve fast attitude
slewing control for satellite with two or more than two types of modeling error
compensated adaptively. Finally, three new observer-based approaches are synthe-
sized to accomplish attitude control for satellite, while the modeling error is precisely
and fully compensated. The corresponding controller has less and even no conser-
vativeness. Energy is saved when they are applied to perform attitude maneuvering.
More specifically, the effectiveness and the superior attitude control performance of
those modeling error compensation approaches proposed in this book are verified by
numerical simulation and experimental tests via several testbeds on the ground.

The book itself provides the reader with the current state of the art in the nonlinear
attitude control area of rigid or flexible satellite with modeling error. Moreover, it
also contains the attitude representation, model of satellite attitude system including
the attitude kinematics and the attitude dynamics, some fundamental definitions, and
lemmas used in nonlinear control theory. Hence, this book can be used as a reference
by satellite control engineers and satellite attitude control academic researchers. The
book also has readers who are interested in attitude control of other rigid bodies such
as unmanned aerial or underwater vehicles. Prerequisites for understanding the book
are a sound of knowledge of basic nonlinear control theory especially the Lyapunov
stability analysis, rigid body attitude dynamics, basic mathematics, and fundamental
physics.

Xi’an, China Bing Xiao
Beijing, China Zhaoyue Chen
Xi’an, China Jingwen Xu
Beijing, China Lu Cao

February 2024
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1.1 Introduction

The space and universe have always been full of attraction and mystery to the
mankind. We have long had the dream and ideal of traveling to space and explor-
ing the universe. The first satellite launched on October 4, 1957 declared that the
mankind had entered the space age. The space technology has advanced by leaps
and bounds. The development of space technology has shown that the mankind has
made great achievements in its journey of the continuous research, exploration, and
utilization of space. It brings about important impetus and significant changes in the
economic and social developments of mankind. Especially, it can also “impact life
on earth through the stimulation of technological development, and generation of
scientific knowledge” said by Dr. Ernst Stuhlinger, the associate director for science
of NASA Marshall Space Flight Center, in 1970. Of course, space technology is one
of the most challenging missions and complex engineering in the world.

Satellite is the fundamental platform of any aerospace mission such as Earth obser-
vation, communication, navigation, deep space exploration, etc. For any satellite, an
attitude control system (ACS) should be designed. This system is one of the most
important subsystems of the satellite. It plays an important role and is an essential
part in satellite design. Attitude control should be carried out to accomplish attitude
stabilization or tracking maneuvers to ensure that its payloads operate normally. For
example, the desired attitude trajectory should be followed to ensure that the camera
fixed in the satellite can focus on the interested areas and then take images. The
stabilization of attitude is one of the fundamental maneuvers and the primary atti-
tude control tasks that any satellite needs to frequently perform during its mission.
It is recognized by aerospace engineers that attitude control determines whether the
space missions can be accomplished or not.

Modern space missions are becoming more and more complicated. They ask for
more and better requirements for the attitude control performance. More specifi-
cally, highly accurate slewing or pointing attitude maneuvers are necessitated. Note
that the dynamics of any satellite is inherently nonlinear in nature. Moreover, this
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4 1 Overview

nonlinear attitude dynamics is inevitably subject to modeling error. This modeling
error will deteriorate the satellite attitude maneuvering performance. It lets the linear
control theory-based control methods such as the proportional—integral-derivative
(PID) attitude controller and its variants result in an unsatisfactory/inferior perfor-
mance. That is because the PID controller has a weak capability of handling with
such modeling error. To solve this drawback, advanced attitude control schemes
are, therefore, imperative for satellites to maintain desirable stability, reliability, and
enhanced performance. Inspired by the superior performance ensured by nonlinear
control theory [1-3], although significant developments have been witnessed in the
nonlinear controller design for satellite attitude stabilization and maneuver tracking
objectives [4-7], the problem of attitude control is still open. In particular, from the
standpoint of rejecting or attenuating modeling error [8—12], there is currently a lack
of a unified attitude control framework.

1.2 Attitude Dynamics Modeling Error

Due to the current finite modeling technology, the mathematical model of the satel-
lite attitude system can not be precisely established. The nonlinear attitude dynamics
can not be fully described. There exists dynamics modeling error. The external dis-
turbance torques, uncertain inertia, flexible vibration, actuator fault, and actuator
misalignment are the five primary modeling error.

1.2.1 External Disturbance Torques

The gravity-gradient torque, the aerodynamic torque, the Earth magnetic torque, and
the solar radiation pressure torque are the primary environmental and external dis-
turbance. Any non-symmetrical satellite in the orbit is affected by a gravitational
torque. This is due to the variation in the Earth’s gravitational force over the satellite.
Magnetic disturbance torques are induced by the interaction between the satellite’s
residual magnetic field and the geomagnetic field. The aerodynamic torque results
from the satellite’s motion through the tenuous upper atmosphere. The air molecule
interaction with satellite body will produce such torque on the satellite. It is most
effective on satellites orbiting below 400-500 km. The photons from the sun gener-
ate a force that produces a torque about the center of the mass of the satellite. This
solar radiation pressure has more effect on light objects with relatively high surface.
Although there are many mathematical models for those four types of external dis-
turbance torques [13]. They can be not exactly derived. Moreover, in addition to
those four torques, there are also some unexpected disturbance torques such as the
collision torque due to debris or robotic manipulation. They can not be modeled.
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1.2.2 Unmodeling Inertia

Once the design of the satellite is finished on the ground, its inertia matrix can be
calculated and estimated by using standard equations [13]. This calculated inertia is
constantly called the nominal inertia of the satellite. When the satellite is running
in the space orbit, its mass properties will be uncertain. It may change due to the
motion of onboard payloads such as camera and antennas, rotation of solar arrays,
fuel consumption, out-gassing, etc. This leads to the actual inertia of the satellite
deviating from the nominal value. Moreover, such deviated inertia is time-varying,
uncertain, and unmodeled.

1.2.3 Flexible Vibration

To meet ever more demanding mission requirements, there has been a trend for devel-
oping satellites with large flexible appendages such as antennas and solar arrays.
Those appendages are large, lightweight, and low-stiffness. Such a type of satellite
is usually called a flexible satellite. For example, the flexible satellite ETS-VIII has
two large deployable reflectors measuring 17 m x 19 m, and also a pair of large solar
array panels measuring 19 m x 2m [14]. Although the trend towards larger satellites
can meet the increasing mission demands, this will inevitably increase the difficulty
in their attitude control. This is because the coupling between the structural vibra-
tions of the flexible components and the rigid-body motion can introduce dynamic
perturbations to the satellite’s attitude. Moreover, when performing rapid attitude
maneuvering with high-pointing accuracy demanded by aerospace tasks [15-17], it
induces flexible appendages to vibrate. For most flexible satellites, this coupling and
the flexible vibration are not measurable. Hence, those two will act on the flexible
satellite attitude dynamics as modeling error.

1.2.4 Actuator Fault

A satellite’s challenging operating conditions increase the possibility of malfunctions
in sensors and actuators and faults in the controllers. The analysis of recent satellite
accident statistics shows that the fault of the attitude control system accounts for 32%.
Moreover, in this percentage, nearly 44% of the faults are caused by actuator faults, as
shown in Fig. 1.1. Once a satellite is launched, it is highly unlikely that its hardware
can be repaired. Thus, the actuator fault cannot be fixed with replacement parts.
When an actuator fault occurs, it will result in an error torque between the nominal
torque and the actual torque generated by the satellite’s attitude control actuators.
This error torque is viewed as the modeling error in the attitude dynamics. It can
potentially cause a host of economic, environmental, and safety problems. A recent
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Fig. 1.2 The ChinaSat 6C
satellite

accident occurred with the ChinaSat 6C satellite developed by the China Academy
of Space Technology, as shown in Fig. 1.2. This satellite was launched on March
10, 2019. However, faults occurred in its thrusters on December 25, 2023. This led
to more energy consumption and a reduction in its lifespan. This incident strongly
motivates the development of attitude control systems that ensure an efficient and
timely response to maintain stability, reliability, and required performance properties
even when components fail.

1.2.5 Actuator Misalignment

Actuator misalignment is another type of modeling error in the satellite attitude
system. Due to this misalignment, the actual torque acting on the three-axis of the
satellite is different from the nominal torque. The extreme case of a backward actuator
is especially important. In practice, whether due to finite manufacturing tolerances
or warping of the satellite structure during launch, some actuator alignment error
exists indeed. Moreover, the satellite’s inertia properties are highly coupled to the
actuator alignments. Hence, actuator misalignment may cause the onboard attitude
controller to fail. This may cause mission performance to degrade and thus pose a
significant risk to the successful operation of the satellite.
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Fig. 1.4 The schematic representation of reaction wheel misalignment

Figure 1.3 shows the mechanical configuration of four reaction wheels used to
activate a satellite attitude system. Three wheels are mounted orthogonally, aligned
with the satellite body axes, i.e., +X g, + Y, and +Zp, respectively. A fourth, redun-
dant, wheel is mounted skewed at equal angles (54.7 degrees) to each of the body
axes, aligned diagonally in the +Xp, +Yp, and +Zp quadrant. This “skew” wheel
could be used to provide control power about any of the other axes if one of the
orthogonal wheels was to fail. In practice, some alignment errors will exist in this
reaction wheel. As an example, actuator alignment error can be mathematically mod-
eled as shown in Fig. 1.4 for this configuration misalignment. The reaction wheel
mounted on + X p axis is tilted over the nominal direction with constant angles, A«
and Apf;; also the reaction wheels mounted on +Xpg and +Yp axis are tilted over
the nominal direction with Aay, AB,, Aaz, and ABs, respectively. While the “skew”
wheel is titled over the nominal direction with Acy and ABy.

1.3 External Disturbance Attenuation Control

To attenuate the effect of the external disturbance on satellite attitude control per-
formance, many solutions have been developed for satellite [19-22]. In the exist-
ing literature on solving the problem, there are two types of approaches. One is to
view disturbance torque and uncertain inertia as lumped disturbances/uncertainties,
and then design a robust attitude controller [23]. Applying such a robust controller,
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robustness to disturbance and uncertain inertia is guaranteed [24, 25]. Desired atti-
tude control performance is resulted despite external disturbances, system uncertain-
ties, and even flexible vibrations. The other type to achieve disturbance/uncertainties
rejection control is the disturbance observer-based (DOB) control design [26, 27].
For this type, an observer is first designed to estimate disturbance/uncertainties, and
the controller is developed by using the observed value to achieve the control objec-
tives with the disturbance accommodated.

1.3.1 Robust Attenuation Control

Robust control of external disturbance is widely seen in the literature [28-30]. For
instance, the H, control theory was applied to achieve robust control of external dis-
turbance [31, 32]. In [33], another robust controller was reported to handle external
disturbance for the rigid bodies subject to actuator faults and angular velocity con-
straints. This method was further applied in [34] for satellite attitude tracking with
the prescribed performance ensured despite disturbance. In [35], a backstepping-
based attitude stabilization controller was designed with external disturbances and
constraints in input and measurement solved. The problem of robust disturbance
control was also studied in [36]. Only a class of external disturbances with known
dynamics was addressed. In [37], the attitude stabilization problem of rigid bodies
with external disturbance was solved in the event-triggered framework.

In [38], an adaptive robust tracking controller was presented for robot manip-
ulators. The tracking error was governed to be finite-time stable. In [39], robust
cooperative control design of multiple surface vessels was studied, while the vessels
were subject to unknown ocean currents and unmodelling dynamics. In [40], the
problem of designing a robust tracking controller for rigid body with uncertainty
was studied, and it was further investigated in [41] and [42]. The proposed schemes
were verified on quadrotors. For surface vessels subject to disturbance uncertainty,
a backstepping-based robust trajectory tracking controller was reported in [43]. In
[44], a novel controller was developed for aerial robots to achieve attitude trajectory
tracking with robustness guaranteed. The proposed law governed the tracking error
converging into a small ball, and such error is robust to unknown dynamics. Using the
technique of uncertainty and disturbance estimator, a robust tracking control strategy
was synthesized for non-affine systems.

In the robust attitude control design, disturbance and uncertainties will not be
rejected, and robustness to them is achieved with acceptable attitude control perfor-
mance. In contrast, another approach to achieve attitude control with good accuracy
is to reject disturbance/uncertainties [45—48]. For this type of approach, the magni-
tude or its upper bound of disturbance torque and uncertainties will be estimated,
and then a controller will be designed to compensate for it. To achieve this goal, the
adaptive control technique is one widely applied approach [49, 50]. In [51], robust
trajectory tracking control was guaranteed for a delta robot. Disturbance rejection
was achieved by the adaptive control technique. In [52], an adaptive estimation law
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was firstly designed to estimate the parameters of uncertain inertia. By using the
estimated information, a nonlinear controller was proposed for the attitude track-
ing maneuver. In [53], the Chebyshev neural network was adopted to approximate
the uncertain dynamics introduced by disturbance and uncertain parameters. Using
the approximated value, a terminal sliding mode attitude controller was proposed.
In addition to those adaptive controllers, some investigations on attitude control by
using adaptive control were also available in [54, 55].

Of particular interest, taking the sliding mode control theory’s (SMC) advantages
including rapid response and insensitiveness to uncertain parameters or disturbances,
this technique has become one of the widely applied tool to design robust attitude
controller [56, 57]. In [58], a high-order sliding mode controller was developed.
Attitude tracking with high-pointing accuracy was achieved. The proposed controller
guaranteed that the system output was robust to disturbance and uncertain inertia.
In [59], the problem of attitude tracking control despite disturbance and uncertain
inertia was addressed by presenting a sliding mode controller. This problem was also
investigated in [60] for satellite attitude stabilization maneuver with actuator output
torque constrained. The rejection of disturbance was achieved via the SMC [61].

1.3.2 Observer-Based Attenuation Control

The disturbance robust control of satellite is characterized that the developed robust
controllers are conservative. In practice, this conservativeness is not desirable for
rigid bodies. Motivated by avoiding this drawback, the disturbance-observer-based
(DOB) control is a common solution with the disturbance rejection ensured [62—66].
In this solution, a disturbance observer (DO) is preliminarily designed to estimate
the external disturbance. Then, a control law is designed by using the estimation
of the disturbance to stabilize the closed-loop attitude system [67-70]. A recent
review on observer-based uncertainty or disturbance attenuation control design was
given in [71]. More specifically, observer-based PID tracking control design was
witnessed for uncertain systems in [72, 73]. In [74], a DOB anti-windup controller
was presented for hypersonic vehicles. Integrating the DO with the adaptive control
theory, a neural-network-based controller was developed for robots with variable
stiffness joints and uncertainties [75]. For a class of uncertain stochastic systems, a
DOB H, control law was designed in [76]. Although the disturbances acting on the
system were accommodated, the disturbances were required to satisfy an exogenous
model. In [77], to handle the external disturbances and uncertainties in the hybrid
active-passive heave system, a robust prediction control approach was presented via
the DOB technique.

The development of DO plays an important role in the DOB rejection control. To
ensure perfect estimation for disturbance, a number of investigations on DO design
have been reported. In [78, 79], a high-gain DO was seen to estimate the external
disturbance or the uncertainties. However, the high gains would amplify the effect
of sensor noise on the system performance. Due to the robustness property of sliding
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mode control, sliding mode observer (SMO) [80-82] or high-order sliding mode
observer (HOSMO) [83-85] are widely applied in DOB control design with external
disturbance compensated.

The extended-state-observer (ESO) is another widely applied technique to accom-
plish the design of DO [86-88]. For example, the estimation of the mismatched
uncertainty was studied in [89]. An ESO was presented in [90] for the quadrotor
to estimate the external disturbance due to unknown gust wind. In [91], the trajec-
tory tracking control problem of underwater robots despite external disturbance and
uncertainties was studied by including an ESO. In [92], the problem of robust load
frequency control of power systems was studied via sliding mode control and ESO.
For a class of multi-input-multi-output systems, a generalized ESO was presented in
[93]. Moreover, the adaptive ESO (AESO) was another solution to the problem of
disturbance or uncertainty estimation [94].

The most existing DO design requires the external disturbance to satisfy some
strict conditions. For instance, most ESO are only feasible for the unknown constant
disturbance or the disturbance with slow variation [95]. More specifically, because the
external disturbance is treated as an extended state in ESO, the external disturbance
should be differentiable. On the other hand, it usually requires the SMO or HOSMO
to be upper bounded by a known value. In practice, however, the external disturbance
may not satisfy these assumptions. The class of the external disturbance handled by
the existing DO is limited. Hence, it is of interest to determine observers that can
release these constraints or assumptions. Although this is achieved in [95], its result
is applicable to linear systems only.

To solve the above drawback [96], viewing disturbance as an unknown input, and
then applying the theoretical framework of unknown-input-observer (UIO) [97] is
becoming an effective way to estimate disturbances. In [98], the tracking control
problem of the linear parameter-varying system was solved by using an unknown
input observer. For linear/nonlinear systems, the problem of high-performance con-
trol design by using UIO to estimate system uncertainties and disturbances has been
extensively investigated [99]. An output feedback bilateral teleoperation approach
was designed for robot manipulators [100]. In this approach, UIO was applied to
estimate external forces. On the other hand, the problem of observer-based distur-
bance rejection approach design has also attracted considerable attention in the field
of satellite/unmanned aerial vehicle attitude control design in recent years. The result
of applying this approach to achieve attitude control can be referred to [101]. In [102],
a disturbance observer-based SMC approach was proposed for quadrotor vehicles. A
sliding mode observer was presented to estimate external disturbances. The problem
of designing observer-based disturbance control for satellite attitude system design
was solved in [103].



