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Preface 

The 6th International Virtual Workshop on Nonlinear and Modern Mathematical 
Physics (NMMP2022) took place virtually from June 17 to 19, 2022, hosted by 
Florida Agricultural and Mechanical University. This workshop is part of a series 
of conferences organized periodically, starting with the inaugural workshop held 
in China from July 15 to 21, 2009. Subsequent events took place in Tampa at the 
University of South Florida from March 9 to 11, 2013, at the African Institute for 
Mathematical Sciences in Cape Town, South Africa from April 9 to 11, 2015, in 
Kuala Lumpur, Malaysia, from May 4 to 8, 2017, and the 5th edition, which was 
successfully conducted in Honolulu, Hawaii, from May 20 to 24, 2019. 

The 6th edition of the NMMP workshop served as a dynamic forum, bringing 
together scholars and researchers from various institutions worldwide. Florida A&M 
University led the organization, with support from the University of South Florida, 
Florida State University, Embry-Riddle Aeronautical University, Savannah State 
University, Prairie View A&M University, and Beijing Jiaotong University. The 
focus of the workshop was on recent advances and prevailing trends in nonlinear 
science, with a specific emphasis on nonlinear partial differential equations and their 
applications. Featuring 42 distinguished speakers, the three day event attracted over 
300 participants globally, fostering collaboration and knowledge exchange in the 
field. 

This book, a compilation of papers from both speakers and participants of 
NMMP2022, aims to showcase new ideas and discoveries in the field of partial 
differential equations (PDEs), integrable systems, and related areas in mathemat-
ical physics. In the dynamic landscape of mathematical physics, the exploration of 
nonlinear phenomena takes center stage, and this compendium, titled “Nonlinear and 
Modern Mathematical Physics,” endeavors to encapsulate the forefront of research 
and discourse in this field. As customary, each contribution in the book has undergone 
standard double-blind refereeing. 

Nonlinearity, with its intriguing and often unpredictable nature, has emerged as 
a central theme in contemporary mathematical physics. From the theoretical realms 
of chaos theory to the practical applications in fluid dynamics, the study of nonlinear 
phenomena has opened up new avenues of exploration and understanding. One

ix



x Preface

remarkable example of this is the discovery of solitons, which has had a profound 
impact on mathematical physics, reshaping our understanding of nonlinear dynamics 
and leaving a lasting imprint on various scientific disciplines. The introduction of 
solitons has not only revolutionized our conceptual framework but has also brought 
forth powerful mathematical methods. Techniques such as the inverse scattering 
transform and Hirota’s method have been developed, offering sophisticated tools to 
solve a wide range of nonlinear equations across diverse fields. These methods have 
not only expanded our analytical capabilities but have also facilitated deeper insights 
into the behavior of nonlinear systems. 

This compilation of works boldly explores the forefront of advancements in 
nonlinear theories, offering a comprehensive examination of the richness and diver-
sity inherent in this dynamic field. The contributors, by delving into the intricacies 
of nonlinear dynamics, illuminate the multifaceted nature of nonlinear phenomena. 
Their collective efforts shed light on the profound implications and versatile applica-
tions of nonlinear theories across various scientific domains. This volume serves as a 
testament to the far-reaching impact and ongoing exploration within the captivating 
realm of nonlinear mathematical physics. 

As editors, our aim is to curate a collection that not only reflects the current state 
of nonlinear mathematical physics but also serves as an intellectual catalyst for future 
explorations. The breadth and depth of topics covered herein cater to both seasoned 
researchers navigating the cutting edge and aspiring scholars embarking on their 
journey into this captivating realm. May this compilation serve as both a testament 
to the vibrant state of nonlinear mathematical physics and an inspiration for those 
who embark on the quest to unravel the mysteries that lie beyond the linear veil. 

Tallahassee, USA 
Tampa, USA 

Solomon Manukure 
Wen-Xiu Ma
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A Hamiltonian Set-Up for 4-Layer 
Density Stratified Euler Fluids 

R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and T. T. Vu Ho 

Abstract By means of the Hamiltonian approach to two-dimensional wave motions 
in heterogeneous fluids proposed by Benjamin [ 1] we derive a natural Hamiltonian 
structure for ideal fluids, density stratified in four homogenous layers, constrained 
in a channel of fixed total height and infinite lateral length. We derive the Hamilto-
nian and the equations of motion in the dispersionless long-wave limit, restricting 
ourselves to the so-called Boussinesq approximation. The existence of special sym-
metric solutions, which generalise to the four-layer case the ones obtained in [ 11] 
for the three-layer case, is examined. 
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Keywords Hamiltonian structures · Stratified fluids · Boussinesq approximation 

1 Introduction 

Density stratification in incompressible fluids is an important aspect of fluid dynam-
ics, and plays an important role in variety of phenomena occurring in both the ocean 
and the atmosphere. In particular, displacement of fluid parcels from their neutral 
buoyancy position within a density stratified flow can result in internal wave motion. 
Effective one-dimensional models (in particular, their quasi-linear limit) were intro-
duced to study these phenomena, and were the subject of a number of investigations 
(see, e.g., [ 6– 10, 13, 14, 16] and references therein). Although most of the theoretical 
and numerical results that can be found in the literature are focussed on the .2-layer 
case, multiply-layered fluid configurations appear as effective models of physical 
phenomena, e.g., in the atmosphere or in mountain lakes. The extension to the. n > 2
layers case can also be seen as a refined approximation to the real-world continuous 
stratification of incompressible fluids. 

The focus of the present paper is on the dynamics of an ideal (incompressible, 
inviscid) stably stratified fluid consisting of . 4 layers of constant density . ρ1 < ρ2 <

ρ3 < ρ4, confined in a channel of fixed height . h (see Fig. 1 for a schematic of our 
setup), and, in particular, on its Hamiltonian setting. This will be obtained by a 
suitable reduction of the Hamiltonian structure introduced by Benjamin [ 1] in the  
study of general density stratifications for Euler fluids in . 2 dimensions. 

We shall follow the approach set forth in our recent paper [ 4], where the .3-layer 
case was considered by extending to the multiple layer case a technique introduced 
in [ 3]. In particular, after having discussed in details the construction of the Hamilto-
nian operator for an effective . 1D model, we shall consider the so-called Boussinesq 
limit of the system, and explicitly determine its Hamiltonian structure and Hamilto-
nian functional, as well as point out the existence of special symmetric solutions. 

Our mathematical model is based on some simplifying hypotheses. At first, we 
assume that an inviscid model suffices to capture the essential features of the dynam-
ics since the scales associated with internal waves are large, and consequently the 
Reynolds number is typically high (. >10. 5). Although in the ocean and the atmo-
sphere (as well as in laboratory experiments) the density stratification arises as a 
consequence of diffusing quantities such as temperature and salinity, we can neglect 
diffusion and mixing since the time scales associated with diffusion processes are 
far larger than the time scale of internal wave propagation. Finally, we use the rigid 
lid assumption for the upper surface since the scales associated with internal wave-
motion are greatly exceeding the scales of the surface waves (see, e.g., [17] for further 
details on these assumptions). 

The Hamiltonian .4-layer model herewith discussed is a natural extension of the 
. 2 and.3-layer model. Indeed, when two adjacent densities are equal (and as a conse-
quence the relative interface becomes meaningless) we fully recover the dynamics
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of the . 3 layer model (see, e.g., [ 4, 11]). Similarly, the .3-layer model reduces to the 
ordinary .2-layer model when two mass densities coincide. 

The layout of the paper is the following. In Sect. 2 we briefly review the Hamilto-
nian representation for .2-dimensional incompressible Euler fluids of [ 1]. Section 3 
is devoted to a detailed presentation of our Hamiltonian reduction scheme, which 
endows the dynamics of the set of.4-layer stratified fluids with a natural Hamiltonian 
structure. In Sect. 4 we compute the reduced Hamiltonian and the ensuing equations 
of motion, confining ourselves to the case of the so-called Boussinesq approximation. 
In Sect. 5 a class of special evolutions, selected by a symmetry of the Hamiltonian, 
is found and briefly examined. 

2 The 2D Benjamin Model for Heterogeneous Fluids 
in a Channel 

Benjamin [ 1] proposed and discussed a set-up for the Hamiltonian formulation of an 
incompressible stratified Euler system in . 2 spatial dimensions, which we hereafter 
summarize for the reader’s convenience. 

The Euler equations for a perfect inviscid and incompressible but heterogeneous 
fluid in 2D, subject to gravity .−gk, are usually written for the the density . ρ(x, z)
and the velocity field .u = (u, w) as 

.
Dρ

Dt
= 0, ∇ · u = 0, ρ

Du
Dt

+ ∇ p + ρgk = 0 (1) 

together with appropriate boundary conditions, where, as usual,. D/Dt = ∂/∂t + u ·
∇ is the material derivative. 

ρ3 

η2(x,t) 

η4(x,t)=ζ3(x,t) 

z 

x 

ρ2 

ρ1 

η3(x,t) 

ζ2(x,t) 

h 

ρ4 

η1(x,t) 

ζ1(x,t) 

0 

Fig. 1 Four-layer rigid lid setup and relevant notation: .ζi are the surface heights and .ηi are the 
layer thicknesses
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Benjamin’s contribution was to consider, as basic variables for the evolution of 
such a fluid, the density . ρ together with the “weighted vorticity” .∑ defined by 

..∑ = ∇ × (ρu) = (ρw)x − (ρu)z . (2) 

The equations of motion for these two fields, ensuing from the Euler equations for 
incompressible fluids, are 

..
ρt + uρx + wρz = 0
∑t + u∑x + w∑z + ρx

(
gz − 1

2 (u
2 + w2)

)
z + 1

2ρz
(
u2 + w2

)
x = 0 .

(3) 

They can be written in the form 

..ρt = −
[
ρ,

δH

δ∑

]
, ∑t = −

[
ρ,

δH

δρ

]
−

[
∑,

δH

δ∑

]
, (4) 

where, by definition, the bracket is .[A, B] ≡ Ax Bz − Az Bx , and the functional 

.H =
{

D
ρ

(
1

2
|u|2 + gz

)
dx dz (5) 

is simply given by the sum of the kinetic and potential energy, .D being the fluid 
domain. The most relevant feature of this coordinate choice is that.(ρ,∑) are physical, 
directly measurable, variables. Their use, though confined to the 2D case with the 
above definitions, allows one to avoid the introduction of Clebsch variables (and 
the corresponding subtleties associated with gauge invariance and limitations of the 
Clebsch potentials) which are often used in the Hamiltonian formulation of both 2D 
and the general .3D case (see, e.g., [ 18]). 

As shown by Benjamin, Eq. (4) are a Hamiltonian system with respect to a Lie-
theoretic Hamiltonian structure, that is, they can be written as 

.. ρt = {ρ, H}, ∑t = {∑, H},

for the Poisson bracket defined by the Hamiltonian operator 

.JB = −
(

0 ρx∂z − ρz∂x
ρx∂z − ρz∂x ∑x∂z − ∑z∂x

)
. (6) 

3 The Hamiltonian Reduction Process 

As mentioned in the Introduction, we shall consider special stratified fluid configura-
tions, consisting of a fluid with.n = 4 layers of constant density. ρ1 < ρ2 < ρ3 < ρ4

and respective thicknesses. η1, . η2, . η3, . η4, confined in a channel of fixed height. h. We
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define, as in Fig. 1, the locations of the interfaces at .z = ζk , .k = 1, 2, 3, related to 
the thickness .η j by 

.ζ3 = η4, ζ2 = η4 + η3, ζ1 = η4 + η3 + η2. (7) 

The velocity components in each layer are denoted by .(ui (x, z), wi (x, z)), . i =
1, . . . , 4. By means of the Heaviside. θ and Dirac. δ generalized functions, a four-layer 
fluid configuration can be described within Benjamin’s setting as follows. First, the 
.2D density and velocity variables can be written as 

.

ρ(x, z) = ρ4 + (ρ3 − ρ4)θ(z − ζ3) + (ρ2 − ρ3)θ(z − ζ2) + (ρ1 − ρ2)θ(z − ζ1)

u(x, z) = u4 + (u3 − u4)θ(z − ζ3) + (u2 − u3)θ(z − ζ2) + (u1 − u2)θ(z − ζ1)

w(x, z) = w4 + (w3 − w4)θ(z − ζ3) + (w2 − w3)θ(z − ζ2) + (w1 − w2)θ(z − ζ1) .

(8) 

Thus, the density-weighted vorticity .∑ = (ρw)x − (ρu)z can be computed as 

.

∑ =
3∑

j=1

(
ρ j+1Ω j+1 − ρ jΩ j

)
θ(z − ζ j ) + ρ4Ω4

+
3∑

j=1

(
(ρ j+1u j+1 − ρ j u j ) + (ρ j+1w j+1 − ρ jw j )ζ j x

)
δ(z − ζ j ) ,

(9) 

where .Ωi = wi x − ui z for .i = 1, . . . , 4 are the bulk vorticities. 
Next, we assume the bulk motion in each layer to be irrotational, so that . Ωi = 0

for all .i = 1, . . . , 4. Thus the density weighted vorticity is explicitly given by 

. ∑ = (
(ρ4u4 − ρ3u3) + (ρ4w4 − ρ3w3)ζ3x

)
δ(z − ζ3)

+ (
(ρ3u3 − ρ2u2) + (ρ3w3 − ρ2w2)ζ2x

)
δ(z − ζ2) (10) 

+ ((ρ2u2 − ρ1u1) + (ρ2w2 − ρ1w1)ζ1x ) δ(z − ζ1) .  

A further assumption we make right from the outset is that of the long-wave asymp-
totics, with small parameter .∈ = h/L << 1, . L being a typical horizontal scale of the 
motion such as wavelength. This assumption implies (see, e.g., [ 8] for further details) 
that at the leading order as .∈ → 0 we have 

. ui ∼ ui , wi ∼ 0 ,

i.e., we can neglect the vertical velocities .wi and trade the horizontal velocities . ui
with their layer-averaged counterparts, 

.ui = 1

ηi

{ ζi−1

ζi

u(x, z)dz, where ζ0 ≡ h, ζ4 ≡ 0 . (11)
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Hence, from (10) and recalling the first of (8), we obtain 

.

ρ(x, z) = ρ(x, z) = ρ4 +
3∑

i=1

(ρi − ρi+1) θ(z − ζi )

∑(x, z) =
3∑

i=1

σi δ(z − ζi ) ,

(12) 

where, hereafter, 
.σi ≡ ρi+1ui+1 − ρi ui (13) 

is the horizontal averaged momentum shear. We remark that field configurations of 
the form (12) can be regarded as defining a submanifold, which will be denoted by. I, 
of Benjamin’s Poisson manifold .M described in Sect. 2. 

The . x and .z-derivative of the Benjamin’s variables given by Eq. (12) are gener-
alized functions supported at the interfaces .{z = ζ1} ∪ {z = ζ2} ∪ {z = ζ3}, and are 
computed as 

.
ρx = − ∑3

i=1(ρi − ρi+1)δ(z − ζi )ζi x

ρz =∑3
i=1(ρi − ρi+1)δ(z − ζi ) ,

(14) 

and 

.
∑x = − ∑3

i=1σiζi xδ
'(z − ζi ) + ∑3

i=1σi xδ(z − ζi )

∑z =∑3
i=1σiδ

'(z − ζi ) .
(15) 

To invert the map (12) we choose to integrate along the vertical direction . z. To  
this end, we define the two intermediate isopycnals 

.ζ 12 = ζ1 + ζ2

2
, ζ 23 = ζ2 + ζ3

2
. (16) 

ζ3(x,t) 

z 

x 

ζ2(x,t) 

h 

ζ1(x,t) 

0 

ζ12(x,t) 

ζ23(x,t) 

Fig. 2 Choice of the isopycnals:. ζi are the surface heights and.ζ 12, ζ 23 the intermediate isopycnals
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Remarking that .ζ 12 lies in the .ρ2-layer and .ζ 23 in the .ρ3-layer (see Fig. 2), by 
means of this choice we can introduce on . I the “projection” . π by 

.

π (ρ(x, z),∑(x, z)) ≡ (ξ1, ξ2, ξ3, τ1, τ2, τ3)

=
({ h

0 (ρ(x, z) − ρ4) dz,
{ ζ 12

0 (ρ(x, z) − ρ4) dz,
{ ζ 23

0 (ρ(x, z) − ρ4) dz,{ h
0 ∑(x, z)dz,

{ ζ 12

0 ∑(x, z)dz,
{ ζ 23

0 ∑(x, z)dz

)
(17) 

which maps Benjamin’s manifold of.2D fluid configurations to the space of effective 
.1D fields . S, parameterized by the six quantities .(ζk, σk). A straightforward compu-
tation shows that the relations 

.

ξ1 = (h − ζ1)(ρ1 − ρ2) + (h − ζ2)(ρ2 − ρ3) + (h − ζ3)(ρ3 − ρ4)

ξ2 = ρ2 − ρ3

2
(ζ1 − ζ2) + ρ3 − ρ4

2
(ζ1 + ζ2 − 2ζ3)

ξ3 = 1

2
(ρ3 − ρ4)(ζ2 − ζ3)

τ1 = σ1 + σ2 + σ3, τ2 = σ1 + σ2, τ3 = σ3

(18) 

hold. 
To obtain a Hamiltonian structure on the manifold .S by reducing Benjamin’s 

parent structure (6), we have to perform, as per the Hamiltonian reduction scheme 
of [ 15], the following steps: 

1. Starting from a 1-form on the manifold . S, represented by the 6-tuple 

. (α1
S, α

2
S, α

3
S, α

4
S, α

5
S, α

6
S) ,

we construct its lift to . I, that is, a 1-form.βM = (βρ, β∑) satisfying the relation 

.

{ +∞

−∞

{ h

0
(βρρ̇ + β∑∑̇) dx dz =

{ +∞

−∞

6∑

k=1

αk
S · (

π∗(ρ̇, ∑̇)
)k

dx , (19) 

where.π∗ is the tangent map to (17) and.(ρ̇, ∑̇) are generic infinitesimal variations 
of .(ρ,∑) in the tangent space to . I. 

2. We apply Benjamin’s operator (6) to the lifted one form.βM to get the vector field 

.

(
ρ̇

∑̇

)
=

(
Y (1)
M

Y (2)
M

)
= JB ·

(
βρ

β∑

)
. (20) 

3. We project the vector .(Y (1)
M ,Y (2)

M ) under .π∗ and obtain a vector field on . S. The  
latter depends linearly on .{α(i)

S }i=1,...,6, and defines the reduced Poisson operator 
.P on . S.
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As in the three layer case of [ 4] this construction essentially works as in the two-layer 
case considered in [ 3], provided one subtle point is taken into account. Thanks to the 
relations (12) and the definition of . π , we have that, for tangent vectors .(ρ̇, ∑̇), 

.π∗
(

ρ̇

∑̇

)
=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

{ h
0 ρ̇ dz

{ ζ 23

0 ρ̇ dz + ζ̇ 23 (ρ(x, ζ 23) − ρ4){ ζ 12

0 ρ̇ dz + ζ̇ 12 (ρ(x, ζ 12) − ρ4){ h
0 ∑̇ dz

{ ζ 23

0 ∑̇ dz + ζ̇ 23 ∑(x, ζ 23){ ζ 12

0 ∑̇ dz + ζ̇ 12 ∑(x, ζ 12)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

. (21) 

Note that in this formula we have an explicit dependence on the variations . ζ̇ 12

and .ζ̇ 23. To express these quantities in terms of . ρ̇, which is needed to perform 
the abovementioned steps of the Poisson reduction, we can use the analogue of 
relations (14), that is 

.ρ̇ = ∑3
i=1(ρi+1 − ρi )ζ̇iδ(z − ζi ) . (22) 

Integrating this with respect to. z on the relevant intervals.[0, h], .[0, ζ 12] and. [0, ζ 23]
yields 

..

{ h

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 + (ρ3 − ρ2)ζ̇2 + (ρ2 − ρ1)ζ̇1 ,

{ ζ 12

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 + (ρ3 − ρ2)ζ̇2 ,

{ ζ 23

0
ρ̇ dz = (ρ4 − ρ3)ζ̇3 .

(23) 

Solving the linear system (23) with respect to the . ζ̇k’s, we can obtain .ζ̇ 12 and .ζ̇ 23 in 
terms of integrals of . ρ̇ along . z, and thus trade Eq. (21) for  

..π∗
(

ρ̇

∑̇

)
=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

{ h
0 ρ̇ dz

c1
{ h
0 ρ̇ dz + (1 + c3 − c2)

{ ζ 12

0 ρ̇dz − c3
{ ζ 23

0 ρ̇dz

c2
{ ζ 12

0 ρ̇dz +
(
1

2
− c2

) { ζ 23

0 ρ̇dz
{ h
0 ∑̇ dz

{ ζ 12

0 ∑̇ dz
{ ζ 23

0 ∑̇ dz

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (24) 

where, for the sake of compactness, we use the notation 

.c1 = 1

2

ρ2 − ρ4

ρ2 − ρ1
, c2 = 1

2

ρ3 − ρ4

ρ3 − ρ2
, c3 = 1

2

ρ2 − ρ4

ρ3 − ρ2
. (25)
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We now have at our disposal all the elements to perform the Poisson reduction 
process. 

Step 1: The construction of the lifted 1-form.(βρ, β∑) satisfying (19), i.e., 

.

{ +∞

−∞

{ h

0
(ρ̇ βρ + ∑̇ β∑) dx dz =

{ +∞

−∞
∑6

k=1α
k
Sπ★(ρ̇, ∑̇)kdx , (26) 

yields 

.

βρ = α1
S + (

c1 + (1 + c3 − c1)θ(ζ 12 − z) − c3θ(ζ 23 − z)
)
) α2

S+(
c2θ(ζ 12 − z) + (

1

2
− c2)θ(ζ 23 − z)

)
α3
S

β∑ = α4
S + θ(ζ 12 − z) α5

S + θ(ζ 23 − z)α6
S .

(27) 

In this equation, Heaviside . θ ’s appear and enable the computation of integrals from 
the bottom to the chosen isopycnals .ζ 12 and .ζ 12 along the full channel .[0, h]. 
Step 2: The computation of the vector fields .(Y 1

M ,Y 2
M) from the relation 

.

(
Y (1)
M

Y (2)
M

)
= JB ·

(
βρ

β∑

)
=

(
0 ρx∂z − ρz∂x

ρx∂z − ρz∂x ∑x∂z − ∑z∂x

)
·
(

βρ

β∑

)
(28) 

is greatly simplified by the specific dependence of the lifted 1-form.(βρ, β∑) of (27) 
on . z and and on the crucial fact that the inequalities 

. ζ3 <
ζ3 + ζ2

2
= ζ 23 < ζ2 < ζ 12 = ζ1 + ζ2

2
< ζ1

hold in the strict sense, so that the terms .ρx∂z and .∑x∂z when acting on . (βρ, β∑)

generate products of Dirac . δ’s supported at different points, which vanish qua gen-
eralized functions. Moreover, 

. 

∑z · ∂x (β∑) = (∑3
i=1σiδ

'(z − ζi ))
(
α4
S + θ(ζ 12 − z) α5

S + θ(ζ 23 − z)α6
S

)
x

= (∑3
i=1σiδ

'(z − ζi ))
(
α4
S,x + θ(ζ 12 − z) α5

S,x + θ(ζ 23 − z)α6
S,x

)

+ (∑3
i=1σiδ

'(z − ζi ))
(
δ(ζ 12 − z)ζ 12,xα

5
S + δ(ζ 23 − z)ζ 23,xα

6
S

)

= (∑3
i=1σiδ

'(z − ζi ))
(
α4
S,x + θ(ζ 12 − z) α5

S,x + θ(ζ 23 − z)α6
S,x

)
,

(29) 
still due to the above observation about the supports of the Dirac . δ’s. Denoting by 
.Δ(2) this term, we can write (28) as  

.Y (1)
M = −ρz(β∑)x , Y (2)

M = −ρz(βρ)x − Δ(2) . (30)
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We obtain 

.

Y (1)
M =

(
3∑

k=1

(ρk − ρk+1)δ(z − ζk)

)

α4
S,x

+
(

3∑

k=2

(ρk − ρk+1)δ(z − ζk)

)

α5
S,x + (ρ3 − ρ4)δ(z − ζ3)α

6
S,x ,

(31) 

as well as the more complicated formula for .Y (2)
M , 

.Y (2)
M = (

3∑

i=1

(ρi − ρi+1)δ(z − ζi )) (α1
S,x + K2α

2
S,x + K3α

3
S,x ) − Δ(2) , (32) 

where 

.

K2 = c1 + (1 + c3 − c1)θ(ζ 12 − z) − c3θ(ζ 23 − z)

K3 = c2θ(ζ 12 − z) +
(
1

2
− c2

)
θ(ζ 23 − z) .

(33) 

Step 3: The computation of the push-forward under the map .π∗ of the vector field 
.(Y (1)

M ,Y (2)
M ), to obtain the six-component vector field .(ξ̇k, τ̇k) on .S is a direct but 

tedious task. Thanks to the explicit expressions (25) and (33), substituting in (24) 
and noticing that, due to the presence of the .z-derivatives of the Dirac . δ, .Δ(2) is in 
the kernel of .π∗, yields 

.

ξ̇1 = α4
S,x (ρ1 − ρ4) + α5

S,x (ρ2 − ρ4) + α6
S,x (ρ3 − ρ4)

ξ̇2 = 1

2
(ρ2 − ρ4)α

5
S,x + (ρ3 − ρ4)α

6
S,x

ξ̇3 = 1

2
(ρ3 − ρ4)α

6
S,x

σ̇1 = (ρ1 − ρ4)α
1
S,x

σ̇2 = (ρ2 − ρ4)α
1
S,x + 1

2
(ρ2 − ρ4)α

2
S,x

σ̇3 = (ρ3 − ρ4)α
1
S,x + (ρ3 − ρ4)α

2
S,x + 1

2
(ρ3 − ρ4)α

3
S,x .

(34) 

Thus, the Poisson tensor. P on the manifold. S in the coordinates. (ξ1, ξ2, ξ3, τ1, τ2, τ3)
becomes 

.P =
(

0 A
AT 0

)
∂x , where A =

⎛

⎜⎜
⎝

ρ1 − ρ4 ρ2 − ρ4 ρ3 − ρ4

0
ρ2 − ρ4

2
ρ3 − ρ4

0 0
ρ3 − ρ4

2

⎞

⎟⎟
⎠ .
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Recalling relations (18), a straightforward computation shows that in the coordinates 
.(ζ1, ζ2, ζ3, σ1, σ2, σ3) the reduced Poisson operator acquires the particularly simple 
form 

.P =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∂x . (35) 

Remark 1 According to the terminology favored by the Russian school, for Hamil-
tonian quasi-linear systems of PDEs the coordinates.(ξl, τl) and, a fortiori, the coor-
dinates .(ζl, σl), are “flat” coordinates for the system. In view of the particularly 
simple form of the Poisson tensor (35), the latter set could be called a system of flat 
Darboux coordinates. 

Remark 2 In [ 4] we conjectured that in the.n-layered case, with a stratification given 
by densities .ρ1 < ρ2 < · · · < ρn and interfaces .ζ1 > ζ2 > · · · > ζn−1, a procedure 
yielding a natural Hamiltonian formulation for the averaged problem was to consider 
intervals 

. I1 = [0, h], I2 =
[
0,

ζ1 + ζ2

2

]
, I3 =

[
0,

ζ2 + ζ3

2

]
, . . . , In =

[
0,

ζn−2 + ζn−1

2

]
.

(36) 
We explicitly proved it here for.n = 4, together with the conjecture that the quantities 

.(ζ1, ζ2, ζ3, σ1, σ2, σ3), (37) 

where .σk = ρk+1uk+1 − ρkuk , are flat Darboux coordinates for the reduced Poisson 
structure. 

4 The Reduced Hamiltonian Under the Boussinesq 
Approximation 

The energy of the .2D fluid in the channel is just the sum of the kinetic and potential 
energy, 

.H =
{ +∞

−∞

{ h

0

ρ

2

(
u2 + w2

)
dx dz +

{ +∞

−∞

{ h

0
g(ρ − ρ0)z dx dz , (38) 

where .ρ0 is the reference density fixed by the far field constant values of the layers’ 
thicknesses. In our case we have.ρ0 = ∑4

i=1 ρiη
(∞)
i , where.η

(∞)
i are the asymptotic 

values of the . ηi ’s as .|x | → ∞.
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The potential energy is thus readily reduced, using the first of (8), to 

. U =
{ +∞

−∞
1

2

(
g (ρ2 − ρ1) ζ1

2 + g (ρ3 − ρ2) ζ2
2 + g (ρ4 − ρ3) ζ 2

3

)
dx +UΔ ,

(39) 
where.UΔ contains constant and linear in the. ζk’s terms, which ensure the convergence 
of the integral, but that do not affect the equations of motion in view of the form (35) 
of the Poisson tensor. 

To obtain the reduced kinetic energy density, we use the fact that at order . O(∈2)

we can disregard the vertical velocity. w, and trade the horizontal velocities with their 
layer-averaged means. Thus the .x-density is computed as 

.

T = 1

2

({ ζ3

0
ρ4u

2
4 dz +

{ ζ2

ζ3

ρ3u
2
3 dz +

{ ζ1

ζ2

ρ2u
2
2 dz +

{ h

ζ1

ρ1u
2
1 dz

)

= 1

2

(
ρ4ζ3u

2
4 + ρ3(ζ2 − ζ3)u

2
3 + ρ2(ζ1 − ζ2)u

2
2 + ρ1(h − ζ1)u

2
1

)
.

(40) 

The so-called Boussinesq approximation consists of the double scaling limit 

.ρi → ρ̄, i = 1, . . . , 4, g → ∞ with g(ρ j+1 − ρ j ) finite, j = 1, 2, 3, (41) 

where 

. ρ̄ = 1

4

4∑

i=1

ρi

denotes the average density. This approximation then consists of neglecting density 
differences in the inertia terms of stratified Euler fluids, while retaining these differ-
ences in the buoyancy terms, owing to the relative magnitude of gravity forces with 
respect to those from inertia. This results in the Boussinesq energy density 

.

E = ρ̄

2

(
ζ3u

2
4 + (ζ2 − ζ3)u

2
3 + (ζ1 − ζ2)u

2
2 + (h − ζ1)u

2
1

)

+ 1

2

(
g (ρ2 − ρ1) ζ 2

1 + g (ρ3 − ρ2) ζ 2
2 + g (ρ4 − ρ3) ζ 2

3

)
.

(42) 

To express this energy in terms of the Hamiltonian variables .(ζi , σi ), .i = 1, 2, 3, we  
use the dynamical constraint 

.(h − ζ1)u1 + (ζ1 − ζ2)u2 + (ζ2 − ζ3)u3 + ζ3u4 = 0 , (43) 

as well as the definitions (13) that, in the Boussinesq approximation, are turned into 

.σk = ρ̄(uk+1 − uk) . (44)
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We get 

.

u1 = −ζ1σ1 + ζ2σ2 + ζ3σ3

hρ̄
,

u2 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1

hρ̄
,

u3 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1 − hσ2

hρ̄
,

u4 = −ζ1σ1 + ζ2σ2 + ζ3σ3 − hσ1 − hσ2 − hσ3

hρ̄
.

(45) 

Hence, from (42), the Hamiltonian functional acquires its final form in the Boussinesq 
approximation as 

.

HB =
{

IR

(
1

2 hρ̄

(
σ 2
1 ζ1 (h − ζ1) + σ 2

2 (h − ζ2) ζ2 + σ 2
3 (h − ζ3) ζ3+

2σ1σ2ζ2 (h − ζ1) + 2σ1σ3ζ3 (h − ζ1) + 2σ2σ3ζ3 (h − ζ2)) +
g

2

(
(ρ2 − ρ1)ζ

2
1 + (ρ3 − ρ2)ζ

2
2 + (ρ4 − ρ3)ζ

2
3

))
dx .

(46) 

Thanks to the simple form of the Poisson tensor (35), the ensuing equations of 
motion can be written as the conservation laws 

.. 

ζ1t +
(

σ1ζ1 (h − ζ1)

hρ
+ σ3ζ3 (h − ζ1)

hρ
+ σ2ζ2 (h − ζ1)

hρ

)

x

= 0

ζ2t +
(

σ2 (h − ζ2) ζ2

hρ
+ σ3 (h − ζ2) ζ3

hρ
+ σ1ζ2 (h − ζ1)

hρ

)

x

= 0

ζ3t +
(

σ3 (h − ζ3) ζ3

hρ
+ σ2 (h − ζ2) ζ3

hρ
+ σ1ζ3 (h − ζ1)

hρ

)

x

= 0

σ1t +
(

(h − 2ζ1) σ 2
1

2hρ
− σ1σ2ζ2

hρ
− σ1σ3ζ3

hρ
+ g (ρ2 − ρ1) ζ1

)

x

= 0

σ2t +
(

(h − 2ζ2) σ 2
2

2hρ
− σ2σ3ζ3

hρ
+ σ1σ2 (h − ζ1)

hρ
+ g (ρ3 − ρ2) ζ2

)

x

= 0

σ3t +
(

(h − 2ζ3) σ 2
3

2hρ
+ σ2σ3 (h − ζ2)

hρ
+ σ1σ3 (h − ζ1)

hρ
+ g (ρ4 − ρ3) ζ3

)

x

= 0 .

(47) 
The Hamiltonian formalism easily shows the existence of the eight conserved quan-
tities 

.

Z j =
{ +∞

−∞
ζ j dx, Sj =

{ +∞

−∞
σ j dx, j = 1, 2, 3 ,

K =
{ +∞

−∞

3∑

k=1

ζkσk dx and HB given by (4.9).

(48)
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Remark 3 The first six quantities are Casimir functionals for the Darboux Poisson 
tensor (35), while the seventh one, . K , is the generator of .x-translations. Note that, 
formulas (45) imply that the total linear momenta of the individual layers are con-
served quantities. This is consistent with the fact that the dispersionless limit of the 
.N -layer equations are conservation laws for the averaged momenta, and no pressure 
imbalances can arise in the Boussinesq approximation [ 2]. 

Remark 4 The steps leading to the computation of the effective Hamiltonian (46) 
can be performed also by dropping the assumptions (41) of the Boussinesq approxi-
mation. In this case, the kinetic energy acquires a non trivial rational dependence on 
the density differences .ρi − ρi+1, and the equations of motion become much more 
complicated (as already seen in the . 2 and .3-layer cases). However, they are still 
Hamiltonian equations of motion that preserve, together with their Hamiltonian, the 
quantities.Z j , Sj , j = 1, 2, 3 and the generator of.x-translations.K of Eq. (48). Note 
that, as shown in [ 2] and further discussed in [ 4], once beyond the Boussinesq approx-
imation pressure imbalances can appear. Hence the individual layer momenta are no 
longer conserved quantities and .K does not even coincide with the total horizontal 
momentum. 

5 Symmetric Solutions 

Symmetric solutions of the three-layer configurations were ingeniously found in [ 11] 
by a direct inspection of the equations of motion (written in velocity – thickness coor-
dinates). They exist provided a certain relation is enforced on the density differences 
of the individual layers, and were interpreted in [ 4] as the fixed point of a suitable 
canonical involution of the phase space of the 3-layer model. 

Here we shall adopt the latter point of view, and identify an involution of the phase 
space of the.4-layer model above that leads to the existence of a family of symmetric 
solutions. First, we focus on the kinetic energy part of the Boussinesq model (46), 

.

TB = 1

2 hρ̄

(
σ 2
1 ζ1 (h − ζ1) + σ 2

2 (h − ζ2) ζ2 + σ 2
3 (h − ζ3) ζ3+

2σ1σ2ζ2 (h − ζ1) + 2σ1σ3ζ3 (h − ζ1) + 2σ2σ3 (h − ζ2) ζ3

)
.

(49) 

This expression is clearly invariant under the involutive map 

.ζ1 → h − ζ3, ζ2 → h − ζ2, ζ3 → h − ζ1, σ1 → −σ3, σ2 → −σ2, σ3 → −σ1 . (50) 

If we assume that the densities .ρk fulfill the relations 

.ρ4 − ρ3 = ρ2 − ρ1 ≡ ρ
Δ

, (51)
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the Hamiltonian density (46) is invariant as well, up to the addition of linear terms 
in the. ζ ’s, that is, up to constant terms and Casimir densities of the Poisson tensor. P
of (35) which do not affect the equations of motion. A straightforward computation 
shows that the Poisson tensor (35) is left invariant by the above involution. Hence, the 
manifold .F of fixed points of the involution (50) is invariant under the Hamiltonian 
flow (47). 

The above statement can be cast in a more geometrical light. Suppose that we are 
given a Poisson manifold .(M, P) with Hamilton equations written generically as 

.zt = P dH , (52) 

and suppose that .z → ϕ(z) is an involution preserving . P , i.e., 

(i) . ϕ ◦ ϕ = Id
(ii) .ϕ∗ P ϕ∗ = P , where .ϕ∗ is the (Fréchet) derivative of . ϕ, and .ϕ∗ is its pull-back 

(from the linear algebra perspective, the adjoint map). 

Then 

.ϕ(z)t = ϕ∗zt = ϕ∗P dH = ϕ∗Pϕ∗ϕ∗dH = Pϕ∗dH = Pdϕ∗H . (53) 

Hence, if . z satisfies .ϕ(z) = z we have .ϕ(z)t − zt = 0 so that initial data fixed by 
the involution . ϕ remain on the invariant submanifold during the time evolution. In 
our case, the invariant manifold can be explicitly described as the submanifold of . S
characterized by the constraints (see Fig. 3) 

.ζ1 + ζ3 − h = 0 , ζ2 − h

2
= 0 , σ1 + σ3 = 0 , σ2 = 0 , (54) 

and is parametrized by two of the remaining variables, for instance the two quantities 

.σ ≡ σ3 , ζ ≡ ζ3. (55) 

The reduced equations of motion on .F in these variables are 

.

⎧
⎪⎪⎨

⎪⎪⎩

ζt − 2(ζ 2σ)x

hρ̄
+ (ζσ )x

ρ̄
= 0

σt + 1

2

((h − 4ζ )σ 2)x

hρ̄
+ 2gρ

Δ
ζζx = 0

, (56) 

while the restriction of the Hamiltonian (46) is  

.HF =
{

IR

(
ζ (h − 2ζ ) σ 2

hρ̄
+ gρΔζ 2

)
dx . (57) 

One can readily check that Eq. (56) are the Hamiltonian equations of motion.
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ρ3 ζ3(x,t) 

z 

x 

ρ2=ρ1+ρΔ 

ρ1 

ζ2(x,t)=h/2 

h 

ρ4=ρ3+ρΔ 

ζ1(x,t)=h-ζ3(x,t) 

0 

u2(x,t) 

u3(x,t) 

Fig. 3 Example of a symmetric solution 

.

(
ζt
σt

)
= PF

(
δζ HF
δσ HF

)
with PF =

⎛

⎜
⎝

0 −1

2
∂x

−1

2
∂x 0

⎞

⎟
⎠ . (58) 

The appearance of the factor.1/2 in the expression of.PF is readily explained within 
Dirac’s theory of constrained Hamiltonian systems. Indeed, if we consider the con-
straints (54), we notice that, renaming the constraint densities as 

.ϕ1 = ζ1 + ζ3 − h , ϕ2 = ζ2 − h/2 , ϕ3 = σ1 + σ3 , ϕ4 = σ2 , (59) 

the sixtuple.(ζ = ζ3, σ = σ3,ϕ1, . . . , ϕ4) is clearly a set of coordinates. The Poisson 
tensor in these coordinates is given by the block matrix 

.P = −∂x

(
A BT

B C

)
, (60) 

with 

.A =
(
0 1
1 0

)
, B =

⎛

⎜⎜
⎝

0 1
0 0
1 0
0 0

⎞

⎟⎟
⎠ , C =

⎛

⎜⎜
⎝

0 0 2 0
0 0 0 1
2 0 0 0
0 1 0 0

⎞

⎟⎟
⎠ . (61) 

In this formalism, Dirac’s formula [ 12] for the.2 × 2 reduced tensor.PD with respect 
to the pair of coordinates .(ζ, σ ) on the constrained manifold is 

.PD = (
A − BT · C−1 · B)

∂x , (62) 

by which we recover the tensor .PF of (58).


