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Chapter 1 ®
Introduction Check for

1.1 Background

The power electronics (PE) are widely applied in the electrified energy conversion
systems ranged from low power chip level supplies, consumer electronics, middle
power domestic compliance, server power supplies, to high power electric vehicle
charger, solar energy, E-motor traction, wind power generation, and so on. The
power electronics techniques mainly focus on leveraging electronics knowledge
to design and control the electric power conversion systems. With the increasing
global carbon dioxide emissions, the electrification of energy conversion system
is attracting significant research interests. Especially in the transportation systems,
the carbon dioxide generated by burning fossil fuels accounts for the majority of
greenhouse gas (GHG) emissions. In the automobile industry, the traditional internal
combustion engines are the main source of GHG emissions. The fuel burning
efficiency is positively related to the degree of electrification in the automotive
propulsion system as is shown in Fig. 1.1 [1]. From hybrid electric vehicle (HEV) to
plug-in hybrid electric vehicle (PHEV) then to all-electric vehicle (BEV), the ratio
of electrification is scaled up. Accordingly, the GHG emissions are reduced due
to the improvement of fuel efficiency. Besides the attenuation of GHG emissions,
the electric vehicles also have comfortable driving experience, intelligent autopilot
techniques, and safe propulsion system. Thus, the global electric vehicle stock is
surging in the recent 10 years as is shown in Fig. 1.2.! Power electronics techniques
are crucial to the electrification of transportation since the EV battery charg-
ing/discharging, electric motor traction, and automotive electronics system are all
relying on the design and control techniques of PE. Besides the automobile industry,
the usage of renewable energy resources for electricity power demanding is another

'IEA, Global electric passenger car stock, 2010-2020, IEA, Paris https://www.iea.org/data-and-
statistics/charts/global-electric-passenger-car-stock-2010-2020.
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crucial application of power electronics which has drawn significantly increasing
attentions as shown in Fig. 1.3. Among various renewable energy applications in
the electrified energy conversion systems, solar energy, wind power, grid-connected
power supplies rely on the power electronic techniques to convert the energy for
our satisfied purposes as shown in Fig. 1.4. The main components of PE system are
power converters to transform the electric power between alternate current (AC)
and direct current (DC) formats. Four typical power converters include DC/DC
converter, DC/AC inverter, AC/DC rectifier, and AC/AC converter as is shown
in Fig. 1.5. Thus, generally speaking, the PE techniques focus on the design and
development of hardware/software based on the four types of power converters.
Power electronics design and development are typically specialized field for
different types of electrified energy conversion systems. The design of the power
electronics devices is always application-oriented since the requirements of different
electrified load/source may vary. Thus, the corresponding hardware and software
design will be diverse. Conventionally, to design a power converter, the specific
parameter configuration requirement should firstly be comprehensively analyzed.
On the one hand, for the hardware part, the rated voltage/current/power require-
ments determine the device selection and PCB board design. The power converter
topologies can also vary and are largely dependent on the interfaced load/source.
Different types of interfaced load/source would also require disparate sensing
circuits. On the other hand, for the software part, various types of applications
need different number of sampling information, I/O channels, control function
algorithms, and so on. The different detailed configuration requirements of various
industrial products make the power electronics design an application-oriented
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Solar

Battery

Fig. 1.4 Different applications of power electronics

= A~ — A~
DC AC DC AC

DC/DC DC/AC AC/DC AC/AC
Converter Inverter Rectifier Converter

Fig. 1.5 Typical power converter structures

profession. The existing studies rarely focus on the generalization of the electrified
energy conversion system.

1.1.1 Power Electronics for Renewable Energy

The renewable energy resources are the key solutions to achieve the Net Zero
Emission target. Thus, substantial studies have been focusing on the discovery,
usage, and optimization of the renewable energy related technologies. Generally,
the renewable energy is defined as the energy that can be obtained from the
natural resources which are replenished at a higher rate than they are consumed.
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Fig. 1.6 Power electronics in renewable energy system interfaced grid utility

Typical types of the renewable energy resources include solar energy, wind power,
geothermal energy, hydropower, ocean energy, bioenergy, and so on. The typical
renewable energy interfaced microgrid system can be sketched in Fig. 1.6 where
different resources have been connected to the grid utility through power electronic
components and transformers.

The pursuit of achieving net zero targets has intensified the focus on renewable
energy conversion systems. These techniques are diverse and innovative, aiming to
harness energy from sustainable sources while minimizing environmental impact.
The key renewable energy conversion system techniques include solar power, wind
energy, hydropower, bioenergy, geothermal energy, ocean energy, energy storage,
and so on. Specifically, solar power systems are designed to convert sunlight directly
into electricity using solar cells. Wind Turbines capture kinetic energy from wind
and convert it into electrical energy. Both onshore and offshore wind farms are
pivotal in this sector. Hydropower is composed of Run-of-the-river by generating
electricity from the natural flow of rivers, without large dams and pumped storage
by pumping water uphill to a reservoir and releasing it through turbines during
peak demand for energy storage. Bioenergy includes the biomass by involving the
burning organic materials (wood, agricultural waste) to produce heat and electricity
and the biogas by anaerobic digestion of organic matter for heating, electricity
generation, or as a vehicle fuel. Geothermal energy utilizes heat from the Earth’s
interior for heating and electricity generation, with techniques varying from deep-
earth drilling to shallow ground heat extraction. Ocean energy covers the tidal
energy by exploiting the energy from the rise/fall of tides and the wave energy by
converting the energy from surface waves into electricity.

1.1.1.1 Solar Energy Interfaced Power Electronics

Firstly, for the solar energy interfaced grid connection system, Fig. 1.7 shows the
diagram that the solar panels can be connected to the grid utility by the distributed
power converters and transformers. Different number of solar cells can be integrated
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Power Converter

Transformer

Solar Panel

e Power Flow
—————— Signal Flow

Monitor Center

Fig. 1.7 Solar energy grid connection system

Fig. 1.8 Integrated solar energy power converters system connected to the grid

to collect the solar energy and convert it into electricity through photovoltaic effect.
And the specially designed solar inverters can further convert the solar energy
from the DC panel side to AC grid. Since the voltage levels of point of common
coupling (PCC) are usually higher than the individual solar inverter output voltage,
transformers are typically leveraged to step-up the AC voltage from the solar
inverters. The integrated solar inverter grid-connected system and the individual
solar power converter diagrams have been shown in Figs. 1.8 and 1.9, respectively.
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Fig. 1.9 Individual solar DC/AC Inverter
energy power converter

connected to the grid Solar Panel Grid
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1.1.1.2 Wind Power Interfaced Power Electronics

Another crucial type of renewable energy resource is wind power. Wind power
energy conversion systems utilize the kinetic energy of wind to generate electricity
which also plays a significant role in the global shift toward renewable energy
sources and net zero emissions. The typical wind power grid-connected system has
been sketched in Fig. 1.10 where different distributed wind turbines are connected to
the grid utility through the power electronic blocks and the transformers. The wind
turbine is the most crucial component to collect the wind power and transfer the
corresponding mechanical energy to AC format of the energy into the grid utility.
Two typical types of the wind turbine power conversion systems have been shown in
Figs. 1.11 and 1.12. Specifically, Fig. 1.11 demonstrates the Doubly Fed Induction
Generator (DFIG) wind turbine system. It is a type of wind turbine where both the
rotor and the stator windings are connected to the electric grid, allowing for more
efficient energy conversion and control. In a DFIG system, the wind turbine’s rotor
is connected to the grid through a set of power converters. This allows for variable
speed operation, meaning the turbine can operate efficiently over a wide range of
wind speeds. Figure 1.12 shows the Permanent Magnet Synchronous Generator
(PMSG) wind turbine system. It is gaining popularity due to its efficiency and
reliability in converting wind power into electrical energy. PMSG wind turbines
leverage a generator that has permanent magnets in its rotor. This design eliminates
the need for electrical power to generate a magnetic field which leads to the
improvement on energy conversion efficiency.

1.1.1.3 Fuel Cell Energy Interfaced Power Electronics

Fuel cell energy conversion systems represent a clean, efficient, and versatile
technology for generating electricity. They convert the chemical energy from a fuel,
typically hydrogen, directly into electricity and heat through an electrochemical
reaction, rather than combustion. A typical fuel cell energy system integrated into
the electric motor has been shown in Fig. 1.13. Basically, the fuel cells generate
electricity through an electrochemical reaction process where hydrogen and oxygen
combine to form water and in the same time the energy will be released within the
process.
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1.1.2 Power Electronics for Electric Vehicle

Electric vehicles (EVs) are a crucial component for net zero emissions, as they
offer a significant reduction in greenhouse gas emissions compared to traditional
internal combustion engine vehicles. The typical components for the EV energy
conversion system include the following parts: (1) electric motor to convert the
electrical energy into mechanical energy to drive the wheels; (2) battery pack to
store electrical energy. Lithium-ion batteries are most common due to their high
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Fig. 1.13 Fuel cell energy integrated into the electric motor drive energy conversion system

energy density and efficiency; (3) power electronics which includes inverters and
converters to manage the flow of electrical energy within the vehicle between DC
and AC; (4) charging system that allows the vehicle to recharge its battery from the
electrical grid or other charging sources; (5) regenerative braking system to capture
the kinetic energy during braking and convert it back into electrical energy for the
improvement of efficiency. Among the aforementioned key components, the power
electronic system is playing a role as an interconnected manager among different
EV energy sources and loads to manipulate the energy flows within their rated
levels. The typical EV energy conversion system with the power electronic diagram
has been shown in Fig. 1.14 where the EV internal electronic loads, electric motor,
battery, and grid utility are interconnected through the power electronic components.

1.1.2.1 EV Charger Interfaced Power Electronics

The EV charging systems are a critical component of the EV ecosystem which is
responsible for providing the necessary infrastructure to recharge EV batteries. The
EV chargers are mainly composed of power converters to convert the energy from
the grid utility to the EV batteries. Figure 1.15 shows the typical grid-connected EV
charging system with different EVs and the corresponding chargers to be interfaced
with the grid utility. Based on the charging power levels and voltage levels, the
EV charging systems can be classified as level 1, 2, and 3. Specifically, level 1
charging (slow charging) uses a standard 110-120V household outlet. It is the
slowest charging method, typically adding about 2-5 miles of range per hour of
charging. Level 2 charging (fast charging) operates on 208—240 V and is much faster
than level 1, typically found in public charging stations and homes. It can add about
10-60 miles of range per hour. Level 3 is also called DC fast charging (or ultra-fast
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charging) which uses direct current (DC) instead of alternating current (AC) and
can charge an EV battery to 80% in around 20-30 minutes. It is an ideal option for
highway rest stops and urban charging stations. Figure 1.16 demonstrates a typical
DC charging system which includes battery, DC/DC energy stage, DC/AC energy
stage, and grid utility.

1.1.2.2 Motor Drive Interfaced Power Electronics

EV motor drive interfaced power electronics are at the heart of the modern EV
technology which plays a pivotal role in converting electrical energy from the
battery into mechanical energy to drive the vehicle’s motor. The energy efficiency
and effective operation of EV are largely dependent on the EV motor drive system.
The key components of EV motor driving system include (1) inverter to convert the
DC power from the battery to AC power for the motor. It is a critical component
for controlling the motor’s speed and torque; (2) converter for the systems that
need DC at different voltages, DC-DC converters adjust the voltage level to suit
various components; (3) micro-controller to manage the operation of the motor
by controlling the inverter and converter to achieve the desired speed, torque, and
overall performance of the motor.

1.2 State of the Art for Modular Power Electronics

To manage various types of loads and sources for the electrified energy conversion
to be connected to the grid utility or feed the electric facilities, the power electronic
components need to be specially designed to meet different voltage/current and
power requirements. The design cost could be high for the power converters from
application to application. The concept of modular power electronics has been
developed with standardized modules to satisfy various loads/sources requirements.

A concept of power electronics building block (PEBB) has been proposed to
standardize the hardware components for stackable energy conversion systems [2—
5]. The PEBB concept is more focusing on the physical components design to
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generalize the hardware power modules with extensible voltage/current capacity.
Deshpande et al. [3] developed a T-type PEBB for the aircraft electric-propulsion
drives with high current capability (>100 A) by leveraging the hybrid insulated gate
bipolar junction transistor (IGBT) and silicon carbide switches. Guacci et al. [6] also
targeted for the more electrical aircraft applications with all SiC, two-level PEBB.
Iyer et al. [4] designed a direct AC/AC PEBB for medium-voltage grid-connected
applications which can be applied to the grid utility of 13 kV, 1 MVA. Similarly, [7]
developed three-level neutral-point-clamped PEBB for the AC transmission system
application. The PEBB concept can also be leveraged to form typical circuitry
topologies such as matrix converters in [8], modular multi-level converters (MMC)
in[8, 9].

Besides the PEBB for the hardware reconfigurability, some studies have also
developed power electronics control architectures in a high level perspective to
cover various applications [10, 11]. Except for generalized hardware and software
control architecture designs for power electronics, some research developed modu-
lar concept for power converters to further generalize the power electronics design
procedures [12, 13]. Other technical concepts studied the building of universal
platform or infrastructure for the real-time power electronics testing and design
[14, 15].

1.3 Motivations

The typical power electronics design procedures are demonstrated in Fig. 1.17a.
Various types of applications are featured with different power converter, hardware
and software control configurations. Thus, it is hard to generalize a universal design
protocol that can cover all types of electrified energy load/source. The specificity of
power electronics design is mainly reflected in the following three aspects.

Firstly, the characteristics of the interfaced loads/sources to the power converters
are disparate. For example, the energy loads/sources can be divided into DC and
AC. DC types of electric power include battery, solar energy, automotive 48-volt
system, and other low voltage power supplies. Among the DC electric power
loads/sources, the required voltage/current or power control algorithms are different.
Battery charging/discharging processes are typically featured with constant current
(CC) and constant voltage (CV) control modes. The photo-electric effect in the
solar energy system requires a maximum power point tracking (MPPT) technique
to perform an optimal energy transformation efficiency. Grid-tied inversion systems
demand a phase-locked loop (PLL) to synchronize the power converter with the grid
frequency. Motor traction inverter of the electric vehicle needs to sample the rotor
position for the speed and torque control.

Secondly, the difference of rated voltage and current configurations can lead
to huge divergence on the power converter and the corresponding sensor circuit
design. The rated voltage/current values limit the selection of power switches for
the tolerable maximum current/voltage across the switch. The sensor circuit design
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defined power electronics architecture

is also sensitive to the current/voltage ranges which could influence the sampling
resolution and accuracy.

Thirdly, the time scales of the power electronics signals are different for
various types of communicated information. The updating frequencies of the
communication signals can be ranged from ns to min according to the control
needs and micro-controller computation capability. For instance, the protection
signals by detecting voltage/current samples may be iterated within ns to us.
The voltage/current signals for power control purposes can be updated with the
time periods from ws to ms. Other grid service commands, user interfaced data
monitoring may not require fast updating period which could be ranged from ms to
s.

Since the existence of the three aspects of specificity for the power electronics
design, the power converters need to be specifically designed based on the demands.
The targets for the power converters design mainly include high energy conversion
efficiency, high power density, low cost to improve the energy conversion perfor-
mance. In detail, the high efficiency means low power losses during the energy
conversion processes. The high power density requests a high power level and low
volume in the mean time. Low cost pursues less cost on the hardware components
per volume of the energy conversion system.

Comprehensively considering the specificity feature of power electronics design
and the target of improving the energy conversion performance, this book develops
a software-defined power electronics architecture to abstractly generalize the elec-
trified energy conversion system and improve the energy conversion performance by
leveraging advanced control, estimation algorithms, and novel design techniques.
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