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Ratko Magjarević, Faculty of Electrical Engineering and Computing, ZESOI,
University of Zagreb, Zagreb, Croatia

Associate Editors
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Preface

This publication is the Proceedings of the International Conference on Biomedical and
Health Informatics, ICBHI 2022, held in Concepción, Chile, from November 24–26,
2022, as the fifth in the series of topical conferences on biomedical and health informatics
of the International Federation for Medical and Biological Engineering (IFMBE). The
conference was jointly organized by the Digital Health Division (DHD) of the IFMBE,
the Electrical Engineering Department at the University of Concepción and the Chilean
Society of Health Informatics ACHISA, and it was endorsed by CORAL—the Latin
American Regional Council on Biomedical Engineering. This conference is special for
two reasons: it is the first IFMBE international conference in the field of BHI organized
in Latin America and it is the first international conference organized by DHD after it
achieved a significant and permanent position as a Division within IFMBE.

Implementation of digital technology in health care is often addressed as digital
transformation aiming to increase the outcome and the quality of health care at each
level. However, there are a lot of challenges in that process including capacity building,
standardization, and interoperability within the health care system aswell as security and
privacy issues. Emerging technologies like big data and artificial intelligence are promis-
ing in terms of improving diagnostics and treatment, increasing efficiency, and reducing
the costs of health care delivery. Therefore, it is important for scientists, researchers, and
all those who work in development, application, management, and education and train-
ing in the health sector to hold gatherings like this conference, at the national level and
for the whole of Latin America. At informal meetings of DHD members in conjunction
with the conference, it was proposed to hold a regional Latin American BHI confer-
ence with the support of IFMBE every other year to encourage strengthening digital
transformation in health care in the region.

For all those who are not familiar with the structure of the IFMBE, the change in
status of a group within the Federation from a “working group” in health informatics and
e-health to the Digital Health “Division” may not seem important. However, that change
means that the activities and projects of the group have significantly increased from the
time of its foundation in 2012 and that within the IFMBE-affiliated member societies,
globally, there is a large interest for networking, exchange of ideas, research results, and
cooperation in digital health. This change will not only increase the workload of the
board members of the division, but it will also raise the expectations for the outcomes
of the division’s activity outcomes. Digital transformation is a global phenomenon, but
it should be noticed that there are significant differences in the level of development
and income, most often visible in individual regions of the world. The IFMBE DHD
and CORAL will in future work systematically and build a wide network of scientists,
professionals, and industry in the region of Latin America and the Caribbean in order to
facilitate the implementation of digital technology and associated knowledge to health
care in the region.
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The described aspirations were also reflected in the program of the conference and
in the content of its proceedings. The ICBHI 2022 Proceedings are divided into four
parts:

Part I: Artificial intelligence and precision medicine
Part II: E-health and education
Part III: Medical devices and wearables technologies
Part IV: ICBHI Challenge: Ballistocardiogram beat detection.

While the first three parts bring some of the newest research and innovation mainly
from the region, the fourth part presents papers of the finalists of the ICBHI 2022 Scien-
tific Challenge. The Challenge is a competition meant for master and doctoral students,
individuals or groups, who express their creativity in solving a clinically relevant open
problem in digital health. The Challenge was established in 2017 by the HIeH working
group and continued by the DHD. The best solutions in each competition are presented
during the conference and the best solutions are awarded. The Challenge is supported by
large databases that are offered to the DH community after the competition. In the fifth,
ICBHI 2022 edition of the competition, the Challenge was in detection of heartbeats
from Ballistocardiogram time series.

The conference in Concepción was held in the post-pandemic era but still suffered
the consequences and travel restrictions. Therefore, it was organized in a hybrid mode,
partially online. This proceedings volume covers selected presentations from the confer-
ence since not all authors were able to make the presentation. However, all submissions
have been carefully and critically reviewed by at least two independent experts and
additionally by at least one member of the scientific program committee. The editors are
indebted to the acknowledged and highly experienced reviewers for their contribution to
the quality of the conference publication. Both the ICBHI 2022 Conference and the pub-
lication of the proceedings by Springer Nature would not have been possible without the
support and sponsorship of the IFMBE and its Digital Health Division. The editors are
also grateful to the efforts of the local organizing committee members and their support-
ers for carefully and smoothly preparing and operating the conference. They especially
thank all the team members from the University of Concepción for their dedication to
the event.

Esteban Pino
Paulo de Carvalho
Ratko Magjarević
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Data-Driven Model for Long-Term
Prediction of Blood Glucose in Type 2

Diabetes

Milene Jesus1(B), Sara Zulj2, Rogério T. Ribeiro3, Marco Simões1,
Jorge Henriques1, and Paulo Carvalho1

1 Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
mijesus99@hotmail.com

2 Faculty of Electrical Engineering and Computing, University of Zagreb,
Zagreb, Croatia

3 Department of Medical Sciences, University of Aveiro, Aveiro, Portugal

Abstract. Type 2 diabetes mellitus (T2DM) is a disease that affects
more than 380 million people worldwide. In this study, we developed
a model, for these type of patients, that predicts blood glucose values
over long prediction horizons (PHs), whose existence in the literature
is almost nonexistent. These horizons allow patients to be warned in
advance so that they can take action to avoid dangerous health situ-
ations. We used data from 3 of the 10 real patients available to test
the implemented models. The overall results for the best model (sim-
ple Recurrent Neural Network) were: 34.82 mg/dL for root mean square
error (RMSE) and 18.33% for mean absolute percentage error (MAPE)
(PH = 2h); 46.59 mg/dL for RMSE and 24.35% for MAPE (PH = 4h).

Keywords: Type 2 diabetes mellitus · Glucose level prediction · CGM
data

1 Introduction

Type 2 diabetes mellitus (T2DM), also called non-insulin-dependent diabetes,
occurs due to a progressive loss of adequate insulin secretion from beta cells,
often in the context of insulin resistance [1]. In 2017, the global prevalence of
diabetes was 8.8% (in the 20–79 age group), representing 424.9 million individ-
uals. By 2045, this figure is estimated to increase to 628.6 million people with
diabetes [2]. About 90% of these cases correspond to patients with T2DM [2,3].
These values are mainly due to the increase in urbanization, population aging,
obesity, unhealthy eating habits and sedentary lifestyle [1]. This pathology, when
uncontrolled, has serious consequences, increasing the risk of cardiovascular and
end-stage renal disease, retinopathy and neuropathy [1,3].

In an effort to keep glycemic values in range, these patients must follow a
set of behavioral actions, such as sticking to a food plan, practicing sufficient
physical activity and taking medication [3]. Some studies show that lifestyles
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Pino et al. (Eds.): ICBHI 2022, IFMBE Proceedings 108, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-59216-4_1
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interventions are more effective than pharmacological ones and can even prevent
cases of T2DM [3].

Blood glucose monitoring has been revolutionized in the last few decades
by Continuous Glucose Monitoring devices (CGMs), which are temporary min-
imally invasive sensors inserted in subcutaneous tissue. These provide blood
glucose (BG) readings every 1 to 5 min. Currently, there are intelligent com-
putational techniques, such as Machine Learning (ML) and Artificial Intelli-
gence (AI), that analyze and extract timely information for patients through
the acquired data [4]. Some studies show that this combination of technologies
(monitoring devices with intelligent algorithms) can contribute to the decrease
in the value of Hemoglobin A1c (HbA1c) and improves glycemic control, self-
efficacy, and self-care activities [5,6].

Several studies have been conducted on BG forecasting using only CGM
data as input. Most models focus only on type 1 diabetes mellitus (T1DM),
while literature regarding predictions in T2DM is scarce [7]. Martinsson et al.
[8] used the Ohio T1DM Dataset for Blood Glucose Level Prediction to vali-
date an long short-term memory (LSTM) model. They obtained RMSE values
of 18.87 mg/dL for a 30 min prediction horizon (PH) - which specifies the target
value that the algorithm should predict - and 31.40 mg/dL for a 60 min pre-
diction horizon. A patient-specific prediction model based on LSTM was also
trained and validated using the OhioT1DM dataset by Aliberti et al. [9]. The
patient with the best predicted outcome out of the six patients had RMSE val-
ues of 11.55 mg/dL, 19.86 mg/dL, 25 mg/dL, and 30.95 mg/dL for 30, 45, 60, and
90 min. Zecchin et al. [10] proposed a predictor that combines a neural network
model and a first-order polynomial extrapolation algorithm used in parallel to
describe, respectively, the nonlinear and linear components of glucose dynamics.
They monitored 15 Type-1 diabetic patients for 7 days using a CGM system
that returns glucose values every minute. They showed that using carbohydrate
intake information improves the accuracy of short-term prediction of glucose
concentration. These deep learning based black-box models approaches carry
significant limitations in interpretability, which becomes critical in algorithms
that directly affect patient care. In order to overcome this difficulty, Zulj et al.
[11] implemented case-based reasoning (CBR) for glucose prediction using CGM
data. The study was conducted using data from 20 subjects recorded under free-
living conditions. The best models developed by the authors achieved a mean
absolute error (MAE) of 13.35 mg/dL for PH = 30 min and 30.23 mg/dL for PH
= 60 min.

Regarding the prediction of glucose values for T2DM patients, one study was
found for hospitalized patients with this disease. Kim et al. [12] collected data
from 20 patients for one week on a CGM device. The model used the last 35 min
to predict blood sugar for the next 30 min. The best model developed, using gated
recurrent unit (GRU), obtained an RMSE of 21.5 mg/dL and a mean absolute
percentage error (MAPE) of 11.1%. Other studies aiming to predict T2DM out-
break have been found [13,14]. Although they are performed in patients with
T2DM they differ from our study, which predicts blood glucose with CGM data.
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To our knowledge, there are no studies on the prediction of blood glucose over
very long prediction horizons, these rarely exceed 1h, in either type 1 or type 2
diabetes patients.

The main goal of our study is to develop a model that predicts clinically
relevant long-term blood sugar values for patients with type 2 diabetes. This
prediction is based solely on the patients’ CGM history. These patients may
benefit from longer predictions, such as for 2h, 4h or 12h prediction horizons,
since these have the ability to reflect their everyday behaviors, such as eating a
meal or exercising.

2 Materials and Methods

2.1 Dataset

In the present work a dataset provided by Associação Protetora dos Diabéticos
de Portugal (APDP), with real patient data, was used to validate the models
implemented. Blood sugar levels were recorded in free-living conditions using the
Medtronic iPro2 CGMs with a 5-minute sampling period. The CGM time-series
containing the blood glucose concentration levels were collected as part of an
observational research that included adult participants with type 1 and type 2
diabetes mellitus who were receiving hemodialysis. The duration of the CGM
time-series ranged from 2 days to 8 days, had cutoffs for values below 40 mg/dL
and above 400 mg/dL, which corresponds to the sensor range, and may include
several periods of missing data.

For the experiments, anonymized data from 10 subjects were selected from
the larger dataset based on the following criteria: 1) Have type 2 diabetes melli-
tus, 2) Participate in two experiments. Following the selection criteria, we derived
the new dataset that includes 10 T2DM subjects, each represented by variable
sizes of the CGM time series. Descriptive statistics for the selected subjects are
presented in Table 1, and an overview of the CGM profiles is presented in Table 2.

Table 1. Descriptive statistics of the dataset.

Characteristic Mean ± SD

Gender 5F/5M

Age (years) 73.7 ± 7.4

Diabetes duration (years) 16.7 ± 8.2

Body mass index (BMI) (kg/m2) 31.8 ± 2.8

Fat mass (%) 44.0 ± 5.1

HbA1c (%) 7.4 ± 1.8
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Table 2. Glucose profile statistics of the dataset per trial.

Trial No.1 Trial No.2 Total

Average glucose
concentration
(mg/dL)

175.8 ± 58.3 163.8 ± 40.7 169.8 ± 49.5

Minimal glucose
concentration
(mg/dL)

63.9 ± 19.1 52.4 ± 17.2 58.1 ± 18.1

Maximal glucose
concentration
(mg/dL)

310.7 ± 99.1 322.4 ± 70.1 316.5 ± 84.6

% hypoglycemic
values (≤70 mg/dL)

2.7 ± 5.2 3.1 ± 2.4 2.9 ± 3.8

% values in healthy
range

55.9 ± 32.7 62.3 ± 24.6 59.1 ± 28.7

% hyperglycemic
values (≥180 mg/dL)

41.4 ± 34.5 34.5 ± 25.6 38.0 ± 30.0

2.2 Methods

As preprocessing, missing values were treated and the data were normalized. For
the latter we used data scaling based on min-max normalization between values
[−1, 1].

We transformed the CGM records into a supervised learning problem by
framing the data using the sliding window method (with a step size of 1 gener-
ating each sample). Each example in supervised learning is a pair that includes
an input item and the desired output value. The number of prior values that
must be used simultaneously by the algorithm is called the lookback (L). A grid
search was performed to obtain which lookback is optimal per PH, that is, the
one that, using the selected evaluation criteria, produces values that are the most
satisfactory. For PHs equal to 2h, 4h and 12h the lookbacks that obtained the
best results were 12h, 12h and 24h, respectively.

When performing the hyperparameter tuning tests, some difficulties arose
in the prediction task. The continuous use of all measurements to determine
only one exact value after a few hours becomes very demanding for the models.
The dynamics of glucose is complex and depends on various factors such as
diet, exercise, hormonal values, psychological stress, etc. For longer horizons
where the intervention of the above mentioned factors is accentuated, it becomes
difficult to achieve satisfactory results. Therefore, since the aim of this study is
to predict BG values for T2DM patients and not for T1DM patients (who due
to their dependence on insulin and medication need continuous and rigorous
predictions), a different approach was created to input the data into the models.
In this, the points of the CGM record were grouped by the average every 24
points, corresponding to every 2h. This aims to prioritize glucose trends rather
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than its exact value. Here, the crucial point is not to tell the patient the exact
glucose value within 4h, but to be able to predict whether the blood glucose
value will tend to rise or fall to dangerous values, so that the patient on being
alerted can have some kind of reaction that prevents this outcome.

So, Table 3 illustrates an example of how the data is framed for the forecast.
For a forecasting horizon of 4h, i.e., to predict the average of two 2h blocks after
the last input value, the averages of 6 previous 2h blocks (12h) are needed as
inputs.

Table 3. Form of the input sample. Example where x is a CGM time series with the
values grouped by the average every 2h, where the lookback corresponds to 12h and
PH = 4h.

Input values PH Target value

x1 x2 x3 ... x6 ... x8

x2 x3 x4 ... x7 ... x9

x3 x4 x5 ... x8 ... x10

...

The prediction module was built with the high-level neural networks API
Keras version 2.7.0 in the Python 3.9.7 environment. Six prediction models were
implemented to determine the best one for the task of forecasting blood sugar
level at the 2h, 4h, and 12h PHs. The selected algorithms were Autoregres-
sive Integrated Moving Average (ARIMA), CBR and four neural networks: sim-
ple recurrent neural network (RNN), GRU, LSTM and Jump Neural Network
(JNN), since they stood out in the literature review for better performance com-
pared to other models.

The ARIMA model was implemented as a baseline, since this model is con-
sidered to be one of the most flexible and popular autoregressive techniques for
continuous time series forecasting [15].

CBR is a methodology based on the intuition that similar problems often
have similar solutions. It provides an inherent model-specific approach to inter-
pretability [11]. A case is represented as the ordered pair (problem, solution)
[11]. As mentioned earlier, in this project the CGM data is organized as pairs.
Thus, a case base is created with all cases from all training patients. The solu-
tion is learned from the set of existing instances in the case base for each new
instance of the problem [16]. The proposed CBR model described in [11] was
implemented. All the steps described in the proposed method were followed, so
we suggest the reader to analyse the point regarding Methods from the original
article for a better understanding.

Relatively to the neural network models, the JNN proposed in [10] was imple-
mented. Four neurons were used in the hidden layer and as input only the blood
glucose concentration values were considered, disregarding the input absorption
model. The implementation with this limitation on input was performed by the
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same author in [17]. Thus, for a detailed description of the network architecture,
we would like to refer the reader to the appendix found in the original paper
[17]. For the remaining neural networks, all implementations consisted of a single
hidden layer. In each network 50 units were used in the hidden layers. A dense
layer of one unit was also used to produce the final predicted blood glucose value.
The rest of the network parameters (number of epochs, batch size, optimization
function, loss function and learning rate) were selected from a grid search. The
results are shown in Table 4. This table presents the most common parameter
choices across the different training sets used.

Table 4. Grid search results for the RNN, GRU and LSTM hyperparameters.

Hyperparameter Most common option

Number of epochs 300

Batch size 8

Optimization function ReLu

Loss function MSE

Learning rate 3e − 5

2.3 Evaluation Metrics

Empirical accuracy of the model was evaluated using RMSE and MAPE between
predicted time-series ŷ by and target time-series y:

RMSE =

√
1
N

∑N

i=1

(
ŷi − yi

)2

(1)

MAPE =
1
N

∑N

i=1

| ŷi − yi |
yi

∗ 100% (2)

To measure the clinical accuracy of the models’ predictions the Clarke Error
Grid (CEGA) was used. Errors are divided into zones in this grid system, and
each zone is made up of a range of reference and forecast values. On the error grid,
the correspondence between real and predicted blood glucose levels is displayed.
Each of these pairs falls into one of the error grid zones. Zones A and B are
completely appropriate in terms of the therapeutic setting.

3 Results

3.1 Analytical Evaluation

The subjects in the APDP dataset were randomly divided into 70% of the data
for training and 30% for testing. That is, 7 subjects (14 trials) constituted the
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training set and the remaining 3 subjects (6 trials) constituted in the test set.
We show the results of both trials (marked with an identification code 102, 106,
and 116).

Tables 5 and 6 report the experimental results obtained by running the final
models for PH = 2h, using L = 12h, evaluated by RMSE and MAPE, respectively.

Table 5. Comparison of the performance for PH = 2h - RMSE.

RMSE (mg/dL) - PH = 2h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 26.81 22.89 22.74 23.75 23.71 24.67

102 2 45.28 40.19 41.64 41.02 41.09 43.36

106 1 50.11 36.85 34.43 35.42 35.68 37.04

106 2 44.63 31.87 30.68 30.71 30.84 33.20

116 1 46.84 33.46 32.76 32.54 32.58 32.37

116 2 66.01 48.75 46.68 47.74 47.87 51.91

Mean 46.61 35.67 34.82 35.20 35.29 37.09

SD 11.45 7.91 7.69 7.63 7.67 8.67

Table 6. Comparison of the performance for PH = 2h - MAPE.

MAPE (%) - PH = 2h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 18.01 17.30 16.03 16.38 16.41 16.97

102 2 28.08 25.88 27.49 26.50 26.31 27.01

106 1 24.32 17.71 17.03 17.42 17.56 18.20

106 2 20.31 16.27 16.02 15.99 15.20 16.66

116 1 19.60 12.98 13.47 13.06 12.87 12.96

116 2 29.14 19.40 19.92 19.77 19.90 21.38

Mean 23.24 18.26 18.33 18.19 18.04 18.86

SD 4.26 3.92 4.51 4.21 4.27 4.41

Tables 7 and 8 report the experimental results obtained by running the final
models for PH = 4h, using L = 12h, evaluated by RMSE and MAPE, respectively.

Analyzing the results, it can be seen that the CBR and JNN shown overall
better results than the ARIMA model, but not as satisfactory as the other three
neural networks. The RNN, GRU and LSTM models presented very close results
at both horizons. As for PH = 12h, it showed lower results than the others. This
is due to the fact that glucose dynamics depends on several parameters, and in
a 12h horizon there may be several episodes that influence the patient’s glucose
values.
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Table 7. Comparison of the performance for PH = 4h - RMSE.

RMSE (mg/dL) - PH = 4h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 26.75 27.89 27.15 25.84 25.36 27.63

102 2 49.99 50.40 49.20 48.85 48.04 48.49

106 1 56.87 48.91 47.13 47.55 47.16 49.35

106 2 54.79 44.11 41.75 42.02 44.78 47.64

116 1 56.08 47.27 47.73 46.90 48.46 47.16

116 2 76.15 69.97 66.59 67.73 69.28 70.43

Mean 53.44 47.97 46.59 46.48 47.18 48.45

SD 14.50 12.09 11.62 12.27 12.73 12.38

Table 8. Comparison of the performance for PH = 4h - MAPE.

MAPE (%) - PH = 4h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 17.87 20.88 19.12 18.62 17.91 19.36

102 2 31.71 32.27 31.66 31.06 30.61 29.03

106 1 29.51 24.21 24.09 24.46 24.33 25.33

106 2 27.78 23.06 22.35 22.14 23.49 23.75

116 1 24.05 17.96 19.51 19.40 19.59 19.06

116 2 34.80 30.14 29.37 31.19 32.23 31.70

Mean 27.62 24.76 24.35 24.48 24.69 24.70

SD 5.47 5.00 4.71 5.06 5.25 4.64

The results of this study are presented using two trials for each of the three
test subjects. This allows us to gain insight into inter- and intra-subject varia-
tions. By analyzing the MAPE values we can get a better idea of these variations.
Patient 102 shows the largest differences between trials for the 2h and 4h pre-
diction horizons. There is an increase in the error by ∼10% and ∼23% from the
first to the second trial, respectively.

3.2 Clinical Evaluation

Despite the fact that the metrics mentioned above are crucial for comprehending
the performance and prediction accuracy of different models from a regression
analysis point of view, they are unable to identify the most significant outliers
and do not offer any details about the clinical impact of prediction errors and
their effects on medical treatment decisions. Therefore, we combined our assess-
ment with CEGA analysis to present a more full view of the models’ performance.

The comparison results for PH = 2h and 4h for a percentage of predictions
falling into zones A and B of the error grid analysis are in Tables 9 and 10,
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Table 9. Comparison of the performance for PH = 2h - Grid error analysis, zones A
and B.

Zone A, zone B (%) - PH=2h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 67.90,

30.86

61.73,

37.04

69.14,

29.63

66.67,

32.10

66.67,

32.10

64.20,

34.57

102 2 42.50,

55.00

46.25,

52.50

42.50,

56.25

42.50,

56.25

38.75,

60.00

45.00,

53.75

106 1 52.5,

45.00

71.25,

28.75

68.75,

31.25

66.25,

33.75

68.75,

31.25

67.50,

32.50

106 2 53.16,

43.04

64,56,

34,18

68.35,

30.38

68.35,

30.38

67.09,

31.65

68.35,

30.38

116 1 60.34,

37.93

84,48,

15,52

82.76,

17.24

84.48,

15.52

86.21,

13.79

82.76,

32.91

116 2 44.30,

44.30

68,35,

26,58

68.35,

26.58

68.35,

26.58

68.35,

26.58

62.02,

32.91

Mean 53.45,

42.69

66,10,

32,43

66.64,

31.89

66.10,

32.43

65.97,

32.56

64.97,

32.91

SD 8.76, 7.33 11,44,

11,26

11.97,

11.86

12.28,

12.20

13.94,

13.81

11.12,

10.70

Table 10. Comparison of the performance for PH = 4h - Grid error analysis, zones A
and B.

Zone A, zone B (%) - PH=4h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 67.50,

32.50

57.50,

42.50

62.50,

37.50

60.00,

40.00

65.00,

35.00

65.00,

35.00

102 2 43.04,

54.43

39.24,

58.23

37.97,

59.49

45.57,

51.90

41.77,

55.70

45.57,

51.90

106 1 46.83,

48.10

54.43,

41.77

58.23,

40.51

54.43,

44.30

51.90,

46.83

51.28,

42.31

106 2 48.72,

43.59

57.69,

38.46

57.69,

39.74

57.69,

38.46

61.54,

32.05

61.40,

36.84

116 1 49.12,

47.37

63.16,

33.33

57.89,

42.10

56.14,

38.46

59.65,

40.35

42.31,

50.00

116 2 34.61,

48.72

47.44,

43.59

42.31,

50.00

42.31,

50.00

41.03,

51.28

52.07,

44.45

Mean 48.30,

45.78

53.24,

42.98

52.77,

44.89

52.69,

43.86

53.48,

43.53

52.07,

44.45

SD 9.89, 6.74 7.82, 7.62 9.16, 7.61 6.48, 4.86 9.40, 8.50 8.37, 6.78

respectively. For each patient in both trials, the percentages of predictions falling
into zones A and B, separated by a comma, are shown.

All models tested performed satisfactorily. More than 96% of the data in the
2h prediction horizon fall into zones A and B. For the 4h prediction horizon, the
percentage of values in the clinically acceptable zones decreases to 95%. Con-
sistently with analytical assessment, the performance got worse when increasing
further the prediction horizon. The ARIMA model presented, again, the worst
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results. For a prediction interval of 2h and 4h, the CBR model presented some
of the best results together with the neural networks.

3.3 Discussion

By taking into consideration the balance between performance and time cost
for pre-train, the RNN model is chosen as the final model for this module. An
associated complexity, and consequent computational burden, of the GRU and
LSTM models do not contribute significantly to the improvement of the results.

There are large differences in prediction between subjects (inter-subject vari-
ability), which suggests that personalized models, i.e., using the patient’s own
historical glucose data, would be able to achieve better results. Furthermore,
since there was also large variability between trials for each patient (intra-subject
variability), it could suggest the need for the algorithms to relearn the param-
eters as time progresses to overcome dynamic changes in the subject’s glucose.
Using only past and present glucose values as input data do not portray the com-
plexity of BG dynamics. Adding data from other sources and viable sensors that
measure variables affecting the metabolic process could lead to optimized results.
These information could be about food intake, insulin injections, exercise, and
mental health-related parameters such as stress levels.

These experiments have a number of notable drawbacks. First, we are con-
scious of the big bias presented by the fact that the dataset size of 10 participants
is regarded as small. Second, the dataset was not evaluated in any way as a repre-
sentation of the dynamics of the general population. The process for expanding
the dataset with new participants should be investigated in greater detail in
order to enhance the model.

4 Conclusion

In this study we addressed the problem of glucose level forecasting, using only
CGM data as input, for T2DM patients. Our specific goal was to use a multi-
patient training set to create a generalizable model for glucose level prediction
that may be used to forecast future glucose levels for a new patient. This makes
it possible to increase the models’ usefulness even when they are just based on
prior patient records.

It is concluded that the implementation of the RNN model can be used
achieving satisfactory results for the 2h and 4h forecast horizon. Its use in a
12h forecast horizon does not show satisfying results. The global results of the 3
patients for the final model were: 34.82 mg/dL for RMSE and 18.33% for MAPE
(PH = 2h) and 46.59 mg/dL for RMSE and 24.35% for MAPE (PH = 4h).

A contribution of this work is that we have developed a prediction model for
patients with type 2 diabetes, which is scarce in the literature. Further studies
in this area are needed to identify which prediction horizons are most useful and
to improve models for patients with T2DM. We believe that these predictions
can be a good basis to support a recommendation system that infers about diet
and exercise in patients with T2DM.
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Abstract. Medical image segmentation plays a crucial role in diagnosis assis-
tance. In previous works, we proposed a classification method called Type-2
Label-based Fuzzy Predicate Classification (T2-LFPC), which generates Interval-
Valued Membership Functions (IVMF) and fuzzy predicates. They can be ana-
lyzed to interpret the images. In this work, a methodology is proposed to study
the semantic of IVMF generated from brain MRI as input of the T2-LFPC. It
is possible to understand both membership functions and predicates by visual
inspecting positions and shapes of the IVMF. Some changes are applied on the
images. Transformations include: zero mean additive noise, contrast-stretching
and brightness increase and decrease. Changes in the images by transformations
are reflected in the histograms of the pixels belonging to white matter, gray matter,
and cerebrospinal fluid, in the IVMF and the values of their measures. Therefore,
as changes are reflected in the IVMF as expected, the methodology proposed here
could be considered suitable for image analysis.

Keywords: Brain magnetic resonance image segmentation · Semantic ·
Knowledge discovery · Interval-valued fuzzy membership functions

1 Introduction

Medical images play a crucial role in diagnosis assistance [1]. The technological advance
of the past decades has substantially increased the available information, so emerging
newprocessing techniques [1, 2].As a consequence, new segmentation problems are con-
stantly generated [3]. Therefore, anymethodwhich not only solves the segmentation but,
also, allows to discover interpretable knowledge, expressed in a human language, can
lead to significant contributions to the study and solution of certainmedical problems [1].

In previous works [4, 5], we proposed a classification method called Type-2 Label-
based Fuzzy Predicate Classification (T2-LFPC), which can be used for image segmen-
tation when a Gold-Standard is provided. It consists of four stages: A) random partition
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Fig. 1. Definition of the three measures proposed for analyzing interval-valued membership
functions.

of the data, B) extraction of class prototypes, C) generation of a fuzzy predicates sys-
tem, and D) optimization. The stages A and B are focused in providing prototypes for
each label in the Gold-Standard capturing collections of common attributes in the data
in each label. The stage C is focused on generating both membership functions and
predicates, relating attributes of the features with properties observed in the prototypes.
Besides classification, the method automatically generates Interval-Valued Membership
Functions (IVMF) and fuzzy predicates, which can be analyzed to interpret the images.
In these works, we also proposed some visual methods to perform the analysis. In the
present paper, we focus on brain PD, T1, and T2 weighted Magnetic Resonance Images
(MRI) to continue the analysis, considering new relevant aspects and tests. The main
contributions are: a) analysis of the effects of zero mean additive noise, global con-
trast and brightness transformations, and noise in the acquisition channel (in simulated
images); b) analysis of the effects of these transformations on the tissues histograms for
each sequence; c) link the histograms changes with changes in the IVMF and in the seg-
mentation performance; d) definition of a general criteria connecting the transformations
applied to the input images with changes in the functions generated by the T2-LFPC.

2 Proposed Approach

An IVMF is bounded by two type-1 membership functions called Lower Membership
Function (LMF) and Upper Membership Function (UMF) [6]. The area between the
LMF and the UMF is called Footprint of Uncertainly (FOU) which is related to the
vagueness or imprecision around the attribute described [6–8].

Asmentioned, it is possible to understand both membership functions and predicates
generated by the T2-LFPC method by visual inspecting position and shapes of the
IVMF. In the present work the next three measures on interval membership functions
are introduced (see Fig. 1):

i. max_MF: Position of the maximum of the IVMF. It is the value of the feature who
better satisfy the attribute of the label.
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ii. diff_MF: Width of the IVMF where it is equal to 0.5, associated to the imprecision
for describing the values related to a label: small, medium, and high width means
low, medium, and high imprecision, respectively.

iii. area_MF: Area of the IVMF: small area = low vagueness (it is possible to be more
precisewhen explaining the grade inwhat the attribute ismet by the feature),medium
area = average vagueness, and large area = high vagueness.

The previously defined measure provides a way of quantify and describe attributes
associated to IVMF as well as imprecision and vagueness. If IVMF are automatically
generated from data (as it is the case of the T2-LFPC method), the conclusions of
analyzing the values of the measures can be extended to the data used as input of the
T2-LFPC.

Two brain MRI datasets were using, with pixel classified in three classes: White
Matter (WM), GrayMatter (GM) and Cerebrospinal Fluid (CSF). The datasets used are:

• Dataset #1: 10000 pixels per tissue randomly selected from real brain MRI (30000
data, 3 classes, 3 features), acquired at the Dementia Clinic of the Institute for Neu-
rological Research “Raúl Carrea” (Buenos Aires, Argentina) with a 1.5 T system
with protocol: coronal 3D T1-weighted gradient echoes orthogonal to the AC-PC
line (TR/TE = 24/5 ms, slice thickness = 1.5 mm); coronal proton density (PD);
T2-weighted fast spin echoes oriented (TR/TE1/TE2 = 3,500/32/96 ms, echo train
length = 8, slice thickness = 3 mm). In order to have a Gold Standard, pixels were
classified using BRAINS [9] and optimized by medical experts.

• Dataset #2: Simulated brain MRI [10], 4000 pixels randomly selected per class
(12000 data, 3 classes, 3 features). Data were taken without any distortion and were
generated by computer simulation.

The next methodology is proposed to study the semantic of IVMF generated from
brain MRI as input of the T2-LFPC:

a) Define a dataset of PD, T1, and T2 weighted brain MRI and their Gold Standard.
b) Apply changes on the images (PD, T1, and T2). In the case of dataset #1, transfor-

mations include: zero mean additive noise, contrast-stretching (considering a linear
transformation mapping the minimum level of gray to 0 and the maximum to 255)
and brightness changes: brightness increase (adding an offset mapping the maximum
to 255 and so on), and brightness decrease (subtracting an offset mapping the mini-
mum to 0 and so on). As noted, the brightness changes do not affect the contrast. The
dataset #2 was selected as it provides a simulation of noise in the acquisition channel.

c) Apply the T2-LFPC method to each dataset, computing segmentation performance.
d) Study visually the IVMF generated for each variant and compute the measures pre-

viously introduced in order to analyze: relative position in the scale of the feature
(discovering the attribute), area (describing vagueness around the attributes), and
width (describing the spread of the data in the label).

e) Compute the histograms of the pixel belonging to each tissue in each variant to link
the transformations applied with changes in the histograms and in the IVMF.

The methods T1-LFPC (a variant of the T2-LFPC using type-1 membership func-
tions), Probabilistic Neural Networks (PNN) [11], Multi-Layer Perceptrons (MLP) [12],


