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Preface

This book contains a selection of papers accepted for presentation and discussion at
ROBOT2023, the Sixth Iberian Robotics Conference, held in Coimbra, Portugal, dur-
ing November 22–24, 2023. ROBOT2023 is part of a series of conferences that are
jointly organized by Sociedade Portuguesa de Robótica (SPR)/Portuguese Society for
Robotics and by Sociedad Española para la Investigación y Desarrollo en Robótica
(SEIDROB)/Spanish Society for Research and Development in Robotics. The confer-
ence organization had also the collaboration of several universities and research insti-
tutes, including Institute for Systems and Robotics, University of Coimbra (ISR-UC);
Polytechnic Institute of Bragança; University of Minho; University of Zaragoza; and
Universidad Politécnica de Madrid.

ROBOT2023 builds on several previous events held in Zaragoza 2022, Porto 2019,
Seville 2017, Lisbon 2015, andMadrid in 2013. The conference is focused on presenting
research results, newdevelopments, and applications in thefield ofRobotics in the Iberian
Peninsula, although open to contributions from all over the world. ROBOT2023 featured
four plenary talks on state-of-the-art subjects on robotics, the first one by Paloma de
la Puente from the Universidad Politécnica de Madrid, Spain, on “Understanding the
environment and the users: towards mobile robot navigation and interaction in the real
world”, followed byDenis FernandoWolf from the University of São Paulo, Brazil, on
“Intelligent Vehicles: from autonomy to interaction”; António Pedro Aguiar from the
University of Porto, Portugal, on “Model based control design combining Lyapunov and
optimization tools to empower trusted autonomy of robotic vehicles”; and Sven Behnke
from the University of Bonn, Germany, on “From Intuitive Immersive Telepresence
Systems to Conscious Service Robots”.

ROBOT2023 included ninety scientific papers presented in fourteen thematic ses-
sions organized in three parallel tracks. Some of these were Special Sessions organized
by members of the Program Committee, to whom we are thankful for their hard work
by promoting the conference and helping to make it a successful event. We also express
our gratitude to the members of all the Program Committees and additional reviewers,
as they were crucial for ensuring the high scientific quality of the event and to all the
authors and delegates that, with their research work and participation, made this event a
huge success.

Finally, we would like to express our gratitude to the local organization members,
Sedat Dogru, PauloMenezes, Cristiano Premebida, Hélder Araújo, Dylan Denizon, Vera



vi Preface

Baptista, and João Leite, for their hard and valuable work on the local arrangements,
publicity, proceedings publication, financial issues, and website management.

November 2023 Lino Marques
José Lima

Cristina Santos
Danilo Tardioli
Manuel Ferre
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Abstract. This paper presents a control framework for the retrieval
operation of an inspection crawler from a pipeline, using an UAV
(Unmanned Aerial Vehicle) with a cable. The inspection crawler inspects
the pipeline until it is retrieved using the UAV with a cable. In order
to create this control framework, the task has been divided in two dif-
ferent phases: the tethered UAV phase and the flight of the UAV with
a suspended load. For each phase, we study the dynamic and we pro-
pose a specific controller. The control framework is composed of a con-
troller obtained using the feedback linearization technique for the teth-
ered phase, while the controller of the second phase is based on an IDA-
PBC (Interconnection and Damping Assignment-Passivity Based Con-
trol) controller. The proposed control framework is validated through
simulations in Matlab-Simulink, showing that the UAV can properly
recover the inspection crawler from the pipeline and stabilizes with the
crawler as a suspended load at a new position.

Keywords: Pipe inspection · Control Framework · Multirotors

1 Introduction

The development of UAVs (Unmanned Aerial Vehicles) in recent years has been
driven by the wide variety of applications they offer [10,12], allowing to carry
out tasks more efficiently than traditional methods. The rise of these aerial
robots is due to their mechanical simplicity, their ability to reach places that
were previously inaccessible or reduce considerably the risk. The fact that they
are light and inexpensive makes them even more attractive. Some of these new
applications are infrastructure inspections [5], inspections in industrial plants
[2], search and rescue tasks [14], maintenance of bridges [13], turbines [4] or
high-voltage cables [7] and pipeline inspections [8].

In the case of pipelines, refineries and industrial oil and gas plants have
hundreds of meters of pipelines, which are exposed to corrosion and possible
spills. These failures within an industrial plant, if consolidated, could cause fatal
errors. In addition, these pipes can be located in risky places for humans. Hence,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Marques et al. (Eds.): ROBOT 2023, LNNS 978, pp. 3–13, 2024.
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the use of UAVs proposes a new solution for pipeline inspections, offering a more
efficient and faster way than traditional methods (crane, scaffolding, harness, ...),
allowing companies to save time and money.

The solutions proposed involve an UAV that flies to the pipeline, where it
is able to land thanks to a landing gear. It also has a system that allows to
glide or roll along the pipeline and finally take off again once the mission is
over. All this, with the needed sensors for the pipe inspection, allows to carry
out the inspection properly, in search of faults or defects due to corrosion. This
is the solution addressed in the HYFLIER project [9,18], being the MHYRO
(Modular HYbrid RObot) [8], one of the examples of drones that flies to the
pipeline, lands and moves along it. This robot has a built-in robotic arm with
3 DoFs (Degrees Of Freedom) thanks to its joints. The robotic arm is made of
lightweight materials and acts once the multirotor has landed to facilitate the
operation. Moreover, the MHYRO can also land on one or more pipes depending
on the landing gear added to it. Thus, it has a crawler type landing gear that is
used to land on a single pipeline, while a roller type landing gear is used to land
on several pipelines that are not too far apart.

However, this solution presents certain problems, since it is a single aerial
robot that performs the entire mission, both the take-off and the inspection,
including the landing and movement on the pipeline. Due to this, limitations
arise in terms of time of use, since the flight time limits the effective use of the
UAV during the inspection. The batteries attached to the drone do not provide
sufficient battery life to carry out inspections over the hundreds of meters that
industrial plants possess. The first and simplest solution would be either to
add more batteries or to make the batteries larger. However, the weight of the
batteries already constitutes a high percentage of the total weight of the UAV,
so it is not desirable to increase it further. Moreover, adding batteries would
increase not only the weight but also the cost of the drone.

To deal with this problem, we propose a new solution based on a drone that
transports a crawler thanks to a cable that joins them together. In this way, the
UAV will take the crawler to the pipeline, depositing it on top of the pipeline.
Then, the robotic crawler inspects the pipeline looking for faults or defects thanks
to the sensors installed. After the inspection, the drone approaches the pipeline,
deploys again the cable and take the crawler from the pipeline. In this work,
we present the control framework for performing this new solution. This control
framework is divided in two phase: the stabilization with certain angle of the
UAV tethered with the crawler, and the flight with the crawler as a suspended
load.

The rest of the paper is organized as follows. Firstly, the solution given to
this problem is outlined in Sect. 2. Section 3 presents the dynamics of the sys-
tem. Section 4 explains the control strategy used during the take-off. Section 5
validates the proposed control framework with simulations. Finally, Sect. 6 sum-
marizes the conclusions of the work.
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2 Problem Statement

The proposed solution of this work combines two applications of aerial robots:
the transport of materials and the inspection of pipelines in industrial plants
or refineries. Normally, these pipelines must be checked with high frequency to
avoid possible catastrophes, which added to the large lengths of the pipelines
makes human inspection of them totally inefficient. Not only because of the
time it takes to carry out these checks, but also because the worker’s life is put
at risk.

The proposed solution is composed of a crawler and an UAV, that can be con-
nected together with a cable. The robotic crawler can move along the pipeline,
and it mounts all the sensors for performing the inspection, such as PEC (Pulsed
Eddy Current) sensor or XR (X-Ray) sensor. For doing the pipeline inspection,
the UAV takes off with the crawler attached to it through a cable. Then, the
UAV release the robotic crawler on the pipeline. The robotic crawler moves along
the pipelines and perform the inspection using its onboard sensors. When the
inspection is finished, the UAV goes to pick up the crawler where it is located.
For taking it, the UAV will use a cable that attaches the crawler, using for that a
magnetic device or similar. Finally, the UAV takes off with the crawler attached
as a suspended load. Figure 1 shows a schematic of the proposed solution, includ-
ing all phases of the operation.

Fig. 1. Schematic of the operation: 1) Flight with UAV 2) Deployment of the crawler
3) Pipeline inspection with the crawler 4) Cable connection with the crawler 5) Take-off
and flight with the crawler as a suspended load.

This work is focused on the control side of this operation, which poses several
challenges. First, having the crawler suspended with a cable makes the UAV
flight difficult as the center of gravity of the system is continuously displaced,
which can destabilize the system. Because of this, traditional UAV controllers
are not suitable for this type of flight. Then, as pipelines in refineries has others
elements (pipelines, tanks, walls,..) in its proximity, the UAV may not be able to
take-off from the pipe in the vertical direction with the crawler. Because of this,
it is necessary to stabilize the UAV tethered to the crawler at a specific angle
prior to takeoff. Figure 2 shows this limitation and the need for inclined take-off.

We focus on the stabilization of the tether UAV connected with the crawler
and in the take-off with the crawler as a suspended load, as are the most chal-
lenging phases. We propose for each phase a controller that can deal with the
challenges of the phase. In this work, we study the problem in the XZ plane.
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Fig. 2. UAV attached to the crawler before taking-off: a) the UAV can take off in the
vertical direction (90◦) and b) the UAV has to take off with a 60◦ angle due to the
proximity of the wall.

3 Dynamics

3.1 Tethered UAV

In this stage, the drone is attached to the crawler with a cable, while the crawler
keeps the contact with the pipe through a claw or magnetic devices. In order
to take-off from the pipeline, the UAV can be stabilized with a certain angle to
avoid possible collisions with the surroundings, as shown in Fig. 2. In this phase,
the system has 2 DoFs (Degrees of Freedom), which are the pitch angle θ and
the elevation angle of the cable ϕ. The dynamic equations for this phase are the
following [15]:

MLϕ̈ = −Mg cos ϕ + fR cos(ϕ + θ) (1a)

Jθ̈ = τR (1b)

fL = −Mg sin ϕ + fR sin(ϕ + θ) + MLϕ̇2 (1c)

where M is the UAV mass, J is the UAV inertia, L is the length of the cable
and g is the gravity. In addition, the control force and torque of the UAV are
represented with fR and τR respectively, while fL represents the tension force
of the cable. All these variables are shown in Fig. 3.

Fig. 3. Variables of the model: a) tethered UAV and b) UAV with suspended crawler.
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3.2 UAV with Suspended Crawler

In the second stage of the task, the UAV transports the crawler suspended from
a cable. To simplify the problem, we consider the cable inextensible and the
crawler is assumed as a point mass. In this case, the system has 4 DoFs, which
are the 2D position of the UAV x and z, the pitch angle θ and the angle of the
cable α, as Fig. 3 shows. Using the Euler-Lagrange equations [3], the dynamic
equations of the system remain:

−fR sin θ = (M + m)ẍ + mL(α̈ cos α − α̇2 sinα) (2a)

fR cos θ = (M + m)z̈ + mL(α̈ sinα + α̇2 cos α) + (M + m)g (2b)

τR = Jθ̈ (2c)
0 = Lα̈ + ẍ cos α + z̈ sinα + g sinα (2d)

where M is the UAV mass, J is the UAV inertia, m is the crawler mass, L is
the cable length and g is the gravity. In addition, fR is the control force and τR

is the control torque applied by the UAV. These dynamics equations will allow
to work on the controller of the system during the task.

4 Control

4.1 Tethered UAV

In order to control the elevation angle ϕ and the force on the cable fL in the first
phase, a feedback linearization [6] is applied to the system. This technique allows
to convert a non-linear dynamics system into a linear and decoupled dynamics
system, so that linear control techniques can be applied. This is carried out by
canceling the non-linear terms, allowing the closed-loop system to be linear.

This control strategy allows (ϕ, fL) to follow the trajectories (ϕd, fd
L). To

achieve this, the state vector is defined as x=[ϕ, ϕ̇, θ, θ̇]T =[x1, x2, x3, x4]T , the
input vector as u=[fR, τR]T =[u1, u2]T and the output vector y=[ϕ, fL]T =
[y1, y2]T [15–17]. The dynamics of the system is now rewritten as:

ẋ1 = x2 (3a)
ẋ2 = a1 cos(x1) + a2 cos(x1 + x3)u1 (3b)
ẋ3 = x4 (3c)
ẋ4 = a3u2 (3d)

where a1 = −g/L, a2 = 1/(ML), a3 = 1/J . The first approach of this
technique gives the following matrix equation for the output vector:

[
y
(II)
1

y2

]
=

[
a1 cos x1

MLx2
2 − Mg sinx1

]
+

[
a2 cos(x1 + x3) 0
sin(x1 + x3) 0

]
︸ ︷︷ ︸

E[x]

u (4)
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However, the decoupling matrix E[x] is not invertible, as u2 does not appear
in the equations. To deal with this problem, we differentiate the equations twice.
In this case, the state vector is modified, considering the thrust and its derivative,
resulting in x=[ϕ, ϕ̇, θ, θ̇, u1, u̇1]T , and the control vector u = [ü1, u2]T =
[u1, u2]T , where ü1 = f̈R. Doing this, we have:[

y
(IV )
1

y
(II)
2

]
= b(x) +

[
a2 cos(x1 + x3) −a2a3 sin(x1 + x3)u1

sin(x1 + x3) a3 cos(x1 + x3)u1

]
︸ ︷︷ ︸

E[x]

u (5)

where the new decoupling matrix E[x] is now invertible. Finally the following
control action is obtained as:

u = E
−1

(−b(x) + v) (6)

where the virtual input vector is v=[v1, v2]T , and e1 = yd
1 − y1, e2 = yd

2 − y2
are the errors. Now, the control gains k11, k12, k13, k14, k21, k22 can be obtained
using linear control techniques.

v1 = y
d(IV )
1 + k11e1 + k12e

(I)
1 + k13e

(II)
1 + k14e

(III)
1 (7a)

v2 = y
d(II)
2 + k21e2 + k22e

(I)
2 (7b)

4.2 UAV with Suspended Crawler

During the second phase, to stabilize the UAV while carrying the crawler, a con-
troller following the Interconnection and Damping Assignment-Passivity Based
Control (IDA-PBC) [11] has been designed. This type of control is useful for sta-
bilizing linear systems through the Hamiltonian, with a closed-loop structure. To
carry out the control, the system maintains a passive behavior with respect to
a storage function while generating damping. It is an ideal method for systems
where the equations of motion are calculated from the Euler-Lagrange method.
In this case, the storage function will be the swing angle α and its value will be
minimized, due to this, it will not appear on the control expressions.

The IDA-PBC strategy is then applied to the system, minimizing the cable
twist angle. The Hamiltonian of the system is expressed as:

H(q, p) =
1
2
pT M−1

d (q)p + Vd(q) (8)

where Md is a symmetric matrix defined positive, known as the inertia matrix in
the closed loop, and the matrix Vd represents the potential energy of the system,
which must have a minimum known as q∗ = argmin Vd(q). As it is usual in PBC
control systems, the inputs are decomposed as:

u = ues(q, p) + udi(q, p) (9)

The first term ues(q, p) is in charge of reaching the desired energy, known as
the energy shaping, while the second udi(q, p) will introduce damping into the



Control Framework for Take-Off of UAVs from Pipelines 9

system, and it is known as damping injector. Finally, after applying the steps
developed on [3] the control expressions used are the following:

fR = −Kbẋ − Kdż − Keθ̇ + (M + m)g − Kpz(z − zd) (10a)

τR = −(Ka + Kc)ẋ − (Kb + Ke)ż − (Kc + Kf )θ̇ − Kpx(x − xd) − Kpθ(θ − θd)
(10b)

where the different constants Ki are the control gains.

5 Simulations

The aerial robot chosen to perform the task is a quadrotor and its specifications
are presented in the Table 1. The control gains have been adjusted to guarantee
the control of an UAV with these characteristics. During the simulations, we
suppose that the UAV is attached to the crawler with the cable, so it can start
directly in the stabilization phase as tethered UAV. The simulations have been
performed in Matlab-Simulink, and the videos of the simulations are available
in [1].

Table 1. UAV and crawler variables.

Variable Symbol Value

UAV mass M 4 kg

UAV inertia J 0.25 kg m2

Cable length L 1 m

Crawler mass m 0.6 kg

In order to validate the proposed control framework, we perform two types of
simulations: a vertical take-off and a inclined take-off. The vertical take-off corre-
sponds with the retrieval of the robotic crawler from an isolated pipeline, where
there is no obstacles close to the UAV, as presented in Fig. 2a. The inclined take-
off corresponds with the retrieval of the crawler from a pipeline with obstacles
in its surroundings, as Fig. 2b shows.

In the vertical take-off, the UAV starts with the following initial conditions:
ϕ0 = 30◦, θ0 = 0◦, where ϕ is the angle between the cable and the horizontal
plane and θ is the UAV pitch angle. During the first phase, the references are
ϕd = 90◦ and fd

L = 4 N , with all derivatives equal to zero. We impose that
the UAV achieve these references in 5 s. After this, the UAV is oriented in the
vertical direction, and applying the desired force, as Fig. 4 shows.

Then, in t = 15 s, the crawler detaches from the pipe, starting the second
phase of the task. In this phase, the references are Xd = 2 m and Zd = 5 m. As
Fig. 4 shows, the UAV can reach the desired position, having some oscillations
of the suspended crawler. Finally, Fig. 5a shows the 2D trajectory followed by
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Fig. 4. Results of the vertical take-off. The initial conditions are ϕ0 = 30◦, θ0 = 0◦,
while the references for the first phase are ϕd = 90◦ and fd

L = 4 N and for the second
phase are Xd = 2 m and Zd = 5 m.

(a) Vertical take-off (b) Inclined take-off

Fig. 5. 2D trajectory followed by the robotic crawler in both simulations.
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the crawler, marked as black circles, while the initial orientation is marked as a
red arrow.

For the second case, the tilted take-off, the UAV starts with the following
initial conditions ϕ0 = 90◦ and θ0 = 0◦. During the stabilization phase of the
tethered UAV, the references are ϕd = 45◦ and fd

L = 1 N . We can see as the
elevation is now ϕd = 45◦, as the UAV will take-off in a tilted direction in order
to avoid possible collisions with the surroundings, as Fig. 2b shows. The UAV
achieves these values in t = 5 s, while in t = 15 s the second phase starts.

In the second phase of the task, the UAV flies with the crawler as a suspended
load with references Xd = −1.5 m and Zd = 4 m. As Fig. 6 shows, the UAV
converges to the reference position, despite the oscillations of the crawler. In
addition, Fig. 5b shows the 2D trajectory followed by the crawler, marked as
black circles, while the initial orientation is marked as a red arrow.

Fig. 6. Results of the tilted take-off. The initial conditions are ϕ0 = 90◦ and θ0 = 0◦,
while the references for the first phase are ϕd = 45◦ and fd

L = 1 N and for the second
phase are Xd = −1.5 m and Zd = 4 m.
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6 Conclusion

This paper has presented a control framework to an alternative solution for
pipe inspections with UAVs. After a first approach to solve the problem with
UAVs such as the MHYRO [8], our solution divides the task between two robots,
an UAV and a robotic crawler. The UAV is assumed to be able to fly and
deploy the crawler over the pipeline, which can slide along the pipelines. This
work has proposed a control framework for the retrieval of the crawler from
the pipeline with the UAV, which is a challenging task. The control framework
is composed of two different controllers. The first controller, obtained through
feedback linearization, stabilizes the UAV attached to the crawler. The second
controller, obtained through IDA-PBC, minimizes the oscillations during the
flight with the crawler as a suspended load. The control framework has been
validated with simulations, showing that the UAV can perform properly the
retrieval of the crawler from the pipe in the 2D case.
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