




�

� �

�

Data Science Fundamentals with R, Python, and Open Data



�

� �

�



�

� �

�

Data Science Fundamentals with R, Python, and
Open Data

Marco Cremonini
University of Milan
Italy



�

� �

�

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates in the United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback ISBN: 9781394213245

Cover Design: Wiley
Cover Image: © Andriy Onufriyenko/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


�

� �

�

v

Contents

Preface xiii
About the Companion Website xvii
Introduction xix

1 Open-Source Tools for Data Science 1
1.1 R Language and RStudio 1
1.1.1 R Language 2
1.1.2 RStudio Desktop 2
1.1.3 Package Manager 2
1.1.4 Package Tidyverse 4
1.2 Python Language and Tools 5
1.2.1 Option A: Anaconda Distribution 6
1.2.2 Option B: Manual Installation 6
1.2.3 Google Colab 7
1.2.4 Packages NumPy and Pandas 7
1.3 Advanced Plain Text Editor 8
1.4 CSV Format for Datasets 8

Questions 10

2 Simple Exploratory Data Analysis 13
2.1 Missing Values Analysis 13
2.2 R: Descriptive Statistics and Utility Functions 15
2.3 Python: Descriptive Statistics and Utility Functions 17

Questions 19

3 Data Organization and First Data Frame Operations 23
3.1 R: Read CSV Datasets and Column Selection 24
3.1.1 Reading a CSV Dataset 26
3.1.1.1 Reading Errors 27
3.1.2 Selection by Column Name 29
3.1.3 Selection by Column Index Position 30
3.1.4 Selection by Range 31
3.1.5 Selection by Exclusion 32
3.1.6 Selection with Selection Helper 35
3.2 R: Rename and Relocate Columns 36



�

� �

�

vi Contents

3.3 R: Slicing, Column Creation, and Deletion 38
3.3.1 Subsetting and Slicing 39
3.3.2 Column Creation 42
3.3.3 Column Deletion 43
3.3.4 Calculated Columns 44
3.3.5 Function mutate() and Data Masking 44
3.4 R: Separate and Unite Columns 45
3.4.1 Separation 46
3.4.2 Union 48
3.5 R: Sorting Data Frames 49
3.5.1 Sorting by Multiple Columns 50
3.5.2 Sorting by an External List 51
3.6 R: Pipe 55
3.6.1 Forward Pipe 55
3.6.2 Pipe in Base R 57
3.6.2.1 Variant 57
3.6.3 Parameter Placeholder 58
3.7 Python: Column Selection 59
3.7.1 Selecting Columns from Dataset Read 61
3.7.2 Selecting Columns from a Data Frame 62
3.7.3 Selection by Positional Index, Range, or with Selection Helper 63
3.7.4 Selection by Exclusion 64
3.8 Python: Rename and Relocate Columns 67
3.8.1 Standard Method 67
3.8.2 Functions rename() and reindex() 67
3.9 Python: NumPy Slicing, Selection with Index, Column Creation and Deletion 69
3.9.1 NumPy Array Slicing 69
3.9.2 Slicing of Pandas Data Frames 70
3.9.3 Methods .loc and .iloc 73
3.9.4 Selection with Selection Helper 77
3.9.5 Creating and Deleting Columns 79
3.9.6 Functions insert() and assign() 80
3.10 Python: Separate and Unite Columns 81
3.10.1 Separate 81
3.10.2 Unite 84
3.11 Python: Sorting Data Frame 85
3.11.1 Sorting Columns 85
3.11.2 Sorting Index Levels 86
3.11.3 From Indexed to Non-indexed Data Frame 88
3.11.4 Sorting by an External List 89

Questions 91

4 Subsetting with Logical Conditions 99
4.1 Logical Operators 99
4.2 R: Row Selection 101
4.2.1 Operator %in% 104
4.2.2 Boolean Mask 105



�

� �

�

Contents vii

4.2.3 Examples 106
4.2.3.1 Wrong Disjoint Condition 107
4.2.4 Python: Row Selection 114
4.2.5 Boolean Mask, Base Selection Method 115
4.2.6 Row Selection with query() 119

Questions 121

5 Operations on Dates, Strings, and Missing Values 127
5.1 R: Operations on Dates and Strings 129
5.1.1 Date and Time 129
5.1.1.1 Datetime Data Type 129
5.1.2 Parsing Dates 130
5.1.3 Using Dates 132
5.1.4 Selection with Logical Conditions on Dates 133
5.1.5 Strings 136
5.2 R: Handling Missing Values and Data Type Transformations 141
5.2.1 Missing Values as Replacement 142
5.2.1.1 Keywords for Missing Values 142
5.2.2 Introducing Missing Values in Dataset Reads 143
5.2.3 Verifying the Presence of Missing Values 144
5.2.3.1 Functions any(), all(), and colSums() 146
5.2.4 Replacing Missing Values 147
5.2.5 Omit Rows with Missing Values 149
5.2.6 Data Type Transformations 150
5.3 R: Example with Dates, Strings, and Missing Values 154
5.3.1 When an Invisible Hand Mess with Your Data 158
5.3.2 Base Method 159
5.3.3 A Better Heuristic 162
5.3.4 Specialized Functions 162
5.3.4.1 Function parse_date_time() 162
5.3.5 Result Comparison 165
5.4 Pyhton: Operations on Dates and Strings 165
5.4.1 Date and Time 165
5.4.1.1 Function pd.to_datetime() 165
5.4.1.2 Function datetime.datetime.strptime() 167
5.4.1.3 Locale Configuration 168
5.4.1.4 Function datetime.datetime.strftime() 169
5.4.1.5 Pandas Timestamp Functions 169
5.4.2 Selection with Logical Conditions on Dates 171
5.4.3 Strings 172
5.5 Python: Handling Missing Values and Data Type Transformations 173
5.5.1 Missing Values as Replacement 173
5.5.1.1 Function pd.replace() 175
5.5.2 Introducing Missing Values in Dataset Reads 175
5.5.3 Verifying the Presence of Missing Values 176
5.5.4 Selection with Missing Values 178
5.5.5 Replacing Missing Values with Actual Values 179



�

� �

�

viii Contents

5.5.6 Modifying Values by View or by Copy 180
5.5.7 Data Type Transformations 182
5.6 Python: Examples with Dates, Strings, and Missing Values 182
5.6.1 Example 1: Eurostat 182
5.6.2 Example 2: Open Data Berlin 186

Questions 190

6 Pivoting and Wide-long Transformations 195
6.1 R: Pivoting 197
6.1.1 From Long to Wide 197
6.1.2 From Wide to Long 199
6.1.3 GOV.UK: Gender Pay Gap 200
6.2 Python: Pivoting 202
6.2.1 From Wide to Long with Columns 203
6.2.2 From Long to Wide with Columns 204
6.2.3 Wide-long Transformation with Index Levels 206
6.2.4 Indexed Data Frame 207
6.2.4.1 Function unstack() 208
6.2.4.2 Function stack() 211
6.2.5 From Long to Wide with Elements of Numeric Type 213

Questions 216

7 Groups and Operations on Groups 221
7.1 R: Groups 222
7.1.1 Groups and Group Indexes 224
7.1.1.1 Function group_by() 224
7.1.1.2 Index Details 226
7.1.2 Aggregation Operations 227
7.1.2.1 Functions group_by() and summarize() 227
7.1.2.2 Counting Rows: function n() 228
7.1.2.3 Arithmetic Mean: function mean() 228
7.1.2.4 Maximum and Minimum Values: Functions max() and min() 230
7.1.2.5 Summing Values: function sum() 231
7.1.2.6 List of Aggregation Functions 232
7.1.3 Sorting Within Groups 232
7.1.4 Creation of Columns in Grouped Data Frames 234
7.1.5 Slicing Rows on Groups 236
7.1.5.1 Functions slice_*() 236
7.1.5.2 Combination of Functions filter() and rank() 238
7.1.6 Calculated Columns with Group Values 242
7.2 Python: Groups 244
7.2.1 Group Index and Aggregation Operations 247
7.2.1.1 Functions groupby() and aggregate() 247
7.2.1.2 Counting Rows, Computing Arithmetic Means, and Sum for Each Group 247
7.2.2 Names on Columns with Aggregated Values 251
7.2.3 Sorting Columns 252
7.2.4 Sorting on Index Levels 254



�

� �

�

Contents ix

7.2.5 Slicing Rows on Groups 255
7.2.5.1 Functions nlargest() and nsmallest() 259
7.2.6 Calculated Columns with Group Values 259
7.2.7 Sorting Within Groups 261

Questions 265

8 Conditions and Iterations 271
8.1 R: Conditions and Iterations 272
8.1.1 Conditions 272
8.1.1.1 Function if_else() 275
8.1.1.2 Function case_when() 276
8.1.1.3 Function if() and Constructs If-else and If-else If-else 277
8.1.2 Iterations 278
8.1.2.1 Function for() 278
8.1.2.2 Function Foreach() 280
8.1.3 Nested Iterations 280
8.1.3.1 Replacing a Single-Element Value 282
8.1.3.2 Iterate on the First Column 283
8.1.3.3 Iterate on all Columns 283
8.2 Python: Conditions and Iterations 284
8.2.1 Conditions 284
8.2.1.1 Function if() 285
8.2.1.2 Constructs If-else and If-elif-else 285
8.2.1.3 Function np.where() 286
8.2.1.4 Function np.select() 287
8.2.1.5 Functions pd.where() and pd.mask() 289
8.2.2 Iterations 291
8.2.2.1 Functions for() and while() 291
8.2.3 Nested Iterations 294
8.2.3.1 Execution Time 296
8.2.4 Iterating on Multi-index 297
8.2.4.1 Function join() 300
8.2.4.2 Function items() 301

Questions 302

9 Functions and Multicolumn Operations 307
9.1 R: User-defined Functions 308
9.1.1 Using Functions 309
9.1.2 Data Masking 312
9.1.3 Anonymous Functions 315
9.2 R: Multicolumn Operations 316
9.2.1 Base Method 316
9.2.1.1 Functions apply(), lapply(), and sapply() 316
9.2.1.2 Mapping 319
9.2.2 Mapping and Anonymous Functions: purrr-style Syntax 321
9.2.3 Conditional Mapping 321
9.2.4 Subsetting Rows with Multicolumn Logical Condition 323



�

� �

�

x Contents

9.2.4.1 Combination of Functions filter() and if_any() 323
9.2.5 Multicolumn Transformations 324
9.2.5.1 Combination of Functions mutate() and across() 324
9.2.6 Introducing Missing Values 325
9.2.7 Use Cases and Execution Time Measurement 326
9.2.7.1 Case 1 327
9.2.7.2 Case 2 328
9.3 Python: User-defined and Lambda Functions 330
9.3.1 User-defined Functions 330
9.3.1.1 Lambda Functions 333
9.3.2 Python: Multicolumn Operations 334
9.3.2.1 Execution Time 336
9.3.3 General Case 337
9.3.3.1 Function apply() 337

Questions 342

10 Join Data Frames 347
10.1 Basic Concepts 348
10.1.1 Keys of a Join Operation 349
10.1.2 Types of Join 350
10.1.3 R: Join Operation 351
10.1.4 Join Functions 354
10.1.4.1 Function inner_join() 354
10.1.4.2 Function full_join() 356
10.1.4.3 Functions left_join() and right_join() 357
10.1.4.4 Function merge() 357
10.1.5 Duplicated Keys 358
10.1.6 Special Join Functions 363
10.1.6.1 Semi Join 363
10.1.6.2 Anti Join 365
10.2 Python: Join Operations 369
10.2.1.1 Function merge() 371
10.2.1.2 Inner Join 372
10.2.1.3 Outer/Full Join 374
10.2.2 Join Operations with Indexed Data Frames 375
10.2.3 Duplicated Keys 378
10.2.4 Special Join Types 384
10.2.4.1 Semi Join: Function isin() 384
10.2.4.2 Anti Join: Variants 386

Questions 389

11 List/Dictionary Data Format 393
11.1 R: List Data Format 395
11.1.1 Transformation of List Columns to Ordinary Rows and Columns 401
11.1.1.1 Other Options 403
11.1.2 Function map in List Column Transformations 406
11.2 R: JSON Data Format and Use Cases 410



�

� �

�

Contents xi

11.2.1 Memory Problem when Reading Very Large Datasets 421
11.3 Python: Dictionary Data Format 422
11.3.1 Methods 424
11.3.2 From Dictionary to Data Frame With a Single Level of Nesting 427
11.3.2.1 Functions pd.Dataframe() and pd.Dataframe.from_dict() 427
11.3.3 From Dictionary to Data Frame with Several Levels of Nesting 429
11.3.3.1 Function pd.json_normalize() and Join Operation 429
11.3.4 Python: Use Cases with JSON Datasets 436

Questions 443

Index 447



�

� �

�



�

� �

�

xiii

Preface

Two questions come along with every new text that aims to teach someone something. The first is,
Who is it addressed to? and the second is, Why does it have precisely those contents, organized in
that way? These two questions, for this text, have perhaps even greater relevance than they usually
do, because for both, the answer is unconventional (or at least not entirely conventional) and to
some, it may seem surprising. It shouldn’t be, or even better, if the answers will make the surprise
a pleasant surprise.

Let’s start with the first question: Who is the target of a text that introduces the fundamentals
of two programming languages, R and Python, for the discipline called data science? Those who
study to become data scientists, computer scientists, or computer engineers, it seems obvious, right?
Instead, it is not so. For sure, future data scientists, computer scientists, and computer engineers
could find this text useful. However, the real recipients should be others, simply all the others, the
non-specialists, those who do not work or study to make IT or data science their main profession.
Those who study to become or already are sociologists, political scientists, economists, psychol-
ogists, marketing or human resource management experts, and those aiming to have a career in
business management and in managing global supply chains and distribution networks. Also, those
studying to be biologists, chemists, geologists, climatologists, or even physicians. Then there are
law students, human rights activists, experts of traditional and social media, memes and social net-
works, linguists, archaeologists, and paleontologists (I’m not joking, there really are fabulous data
science works applied to linguistics, archeology, and paleontology). Certainly, in this roundup, I
have forgotten many who deserved to be mentioned like the others. Don’t feel left out. The artists
I forgot! There are contaminations between art, data science, and data visualization of incredible
interest. Art absorbs and re-elaborates, and in a certain way, this is also what data science does: it
absorbs and re-elaborates. Finally, there are also all those who just don’t know yet what they want
to be; they will figure it out along the way, and having certain tools can come in handy in many
cases.

Everyone can successfully learn the fundamentals of data science and the use of these computa-
tional tools, even with a few basic computer skills, with some efforts and time, of course, necessary
but reasonable. Everyone could find opportunities for application in all, or almost all, existing pro-
fessions, sciences, humanities, and cultural fields. And above all, without the need to take on the
role of computer scientist or data scientist when you already have other roles to take on, which
rightly demand time and dedication.

Therefore, the fact of not considering computer scientists and data scientists as the principal
recipients of this book is not to diminish their role for non-existent reasons, but because for them
there is no need to explain why a book that presents programming languages for data science has,
at least in theory, something to do with what they typically do.



�

� �

�

xiv Preface

It is to the much wider audience of non-specialists that the exhortation to learn the fundamentals
of data science should be addressed to, explaining that they do not have to transform themselves
into computer scientists to be able to do so (or even worse, into geeks), which, with excellent rea-
sons that are difficult to dispute, have no intention to do. It doesn’t matter if they have always been
convinced to be “unfit for computer stuff,” and that, frankly, the rhetoric of past twenty years about
“digital natives,” “being a coder,” or “joining the digital revolution” sounds just annoying. None of
this should matter, time to move on. How? Everyone should look at what digital skills and tech-
nologies would be useful for their own discipline and do the training for those goals. Do you want
to be a computer scientist or a data scientist? Well, do it; there is no shortage of possibilities. Do you
want to be an economist, a biologist, or a marketing expert? Very well, do it, but you must not be cut
off from adequate training on digital methodologies and tools from which you will benefit, as much
as you are not cut off from a legal, statistical, historical, or sociological training if this knowledge
is part of the skills needed for your profession or education. What is the objection that is usually
made? No one can know everything, and generalists end up knowing a little of everything and
nothing adequately. It’s as true as clichés are, but that’s not what we’re talking about. A doctor who
acquires statistical or legal training is no less a doctor for this; on the contrary, in many cases she/he
is able to carry out the medical profession in a better way. No one reproaches an economist who
becomes an expert in statistical analysis that she/he should have taken a degree in statistics. And
soon (indeed already now), to the same economist who will become an expert in machine learning
techniques for classification problems for fintech projects, no one, hopefully, will reproach that as
an economist she/he should leave those skills to computer scientists. Like it or not, computer skills
are spreading and will do so more and more among non-computer scientists, it’s a matter of base
rate, notoriously easy to be misinterpreted, as all students who have taken an introductory course
in statistics know.

Let’s consider the second question: Why this text presents two languages instead of just one as
it is usually done? Isn’t it enough to learn just one? Which is better? A friend of mine told me he’s
heard that Python is famous, the other one he has never heard of. Come on, seriously two? It’s a
miracle if I learn half of just one! Stop. That’s enough.

It’s not a competition or a beauty contest between programming languages, and not even a ques-
tion of cheering, as with sports teams, where you have to choose one, none is admissible, but you
can’t root for two. R and Python are tools, in some ways complex, not necessarily complicated,
professional, but also within anyone’s reach. Above all, they are the result of the continuous work
of many people; they are evolving objects and are extraordinary teaching aids for those who want
to learn. Speaking of evolution, a recent and interesting one is the increasingly frequent conver-
gence between the two languages presented in this text. Convergence means the possibility of
coordinated, alternating, and complementary use: Complement the benefits of both, exploit what
is innovative in one and what the other has, and above all, the real didactic value, learning not to
be afraid to change technology, because much of what you learned with one will be found and will
be useful with the other. There is another reason, this one is more specific. It is true that Python is
so famous that almost everyone has heard its name while only relatively few know R, except that
practically everyone involved in data science knows it and most of them uses it, and that’s for a
pretty simple reason: It’s a great tool with a large community of people who have been contribut-
ing new features for many years. What about Python? Python is used by millions of people, mainly
to make web services, so it has enormous application possibilities. A part of Python has specialized
in data science and is growing rapidly, taking advantage of the ease of extension to dynamic and
web-oriented applications. One last piece of information: Learning the first programming language
could look difficult. The learning curve, so-called how fast you learn, is steep at first, you struggle



�

� �

�

Preface xv

at the very beginning, but after a while it softens, and you run. This is for the first one. Same ramp
to climb with the second one too? Not at all. Attempting an estimate, I would say that just one-third
of the effort is needed to learn the second, a bargain that probably few are aware of. Therefore, let’s
do both of them.

One last comment because one could certainly think that this discussion is only valid in theory,
putting it into practice is quite another thing. Over the years I have required hundreds of social
science students to learn the fundamentals of both R and Python for data science and I can tell
you that it is true that most of them struggled initially, some complained more or less aloud that
they were unfit, then they learned very quickly and ended up demonstrating that it was possible for
them to acquire excellent computational skills without having to transform into computer scientists
or data scientists (to tell the truth, someone transformed into one, but that’s fine too), without
possessing nonexistent digital native geniuses, without having to be anything other than what they
study for, future experts in social sciences, management, human resources, or economics, and what
is true for them is certainly true for everyone. This is the pleasant surprise.

Milan, Italy
2023

Marco Cremonini



�

� �

�



�

� �

�

xvii

About the Companion Website

This book is accompanied by student companion website.

www.wiley.com/go/DSFRPythonOpenData

The student website includes:
● MCQs
● Software

http://www.wiley.com/go/DSFRPythonOpenData


�

� �

�



�

� �

�

xix

Introduction

This text introduces the fundamentals of data science using two main programming languages and
open-source technologies : R and Python. These are accompanied by the respective application
contexts formed by tools to support coding scripts, i.e. logical sequences of instructions with the
aim to produce certain results or functionalities. The tools can be of the command line interface
(CLI) type, which are consoles to be used with textual commands, and integrated development
environment (IDE), which are of interactive type to support the use of languages. Other elements
that make up the application context are the supplementary libraries that contain the additional
functions in addition to the basic ones coming with the language, package managers for the
automated management of the download and installation of new libraries, online documentation,
cheat sheets, tutorials, and online forums of discussion and help for users. This context, formed
by a language, tools, additional features, discussions between users, and online documentation
produced by developers, is what we mean when we say "R" and "Python," not the simple program-
ming language tool, which by itself would be very little. It is like talking only about the engine
when instead you want to explain how to drive a car on busy roads.

R and Python, together and with the meaning just described, represent the knowledge to start
approaching data science, carry out the first simple steps, complete the educational examples, get
acquainted with real data, consider more advanced features, familiarize oneself with other real
data, experiment with particular cases, analyze the logic behind mechanisms, gain experience with
more complex real data, analyze online discussions on exceptional cases, look for data sources in
the world of open data, think about the results to be obtained, even more sources of data now
to put together, familiarize yourself with different data formats, with large datasets, with datasets
that will drive you crazy before obtaining a workable version, and finally be ready to move to other
technologies, other applications, uses, types of results, projects of ever-increasing complexity. This
is the journey that starts here, and as discussed in the preface, it is within the reach of anyone who
puts some effort and time into it. A single book, of course, cannot contain everything, but it can
help to start, proceed in the right direction, and accompany for a while.

With this text, we will start from the elementary steps to gain speed quickly. We will use simplified
teaching examples, but also immediately familiarize ourselves with the type of data that exists in
reality, rather than in the unreality of the teaching examples. We will finish by addressing some
elaborate examples, in which even the inconsistencies and errors that are part of daily reality will
emerge, requiring us to find solutions.



�

� �

�

xx Introduction

Approach

It often happens that students dealing with these contents, especially the younger ones, initially
find it difficult to figure out the right way to approach their studies in order to learn effectively.
One of the main causes of this difficulty lies in the fact that many are accustomed to the idea that
the goal of learning is to never make mistakes. This is not surprising, indeed, since it’s the criteria
adopted by many exams, the more mistakes, the lower the grade. This is not the place to discuss the
effectiveness of exam methodologies or teaching philosophies; we are pragmatists, and the goal is
to learn R and Python, computational logic, and everything that revolves around it. But it is pre-
cisely from a wholly pragmatic perspective that the problem of the inadequacy of the approach that
seeks to minimize errors arises, and this for at least two good reasons. The first is that inevitably
the goal of never making mistakes leads to mnemonic study. Sequences of passages, names, formu-
las, sentences, and specific cases are memorized, and the variability of the examples considered is
reduced, tending toward schematism. The second reason is simply that trying to never fail is exactly
the opposite of what it takes to effectively learn R and Python and any digital technology.

Learning computational skills for the data science necessarily requires a hands-on approach. This
involves carrying out many practical exercises, meticulously redoing those proposed by the text, but
also varying them, introducing modifications, and replicating them with different data. All those
of the didactic examples can obviously be modified, but also all those with open data can easily
be varied. Instead of certain information, others could be used, and instead of a certain result, a
slightly different one could be sought, or different data made available by the same source could be
tried. Proceeding methodically (being methodical, meticulous, and patient are fundamental traits
for effective learning) is the way to go. Returning to the methodological doubts that often afflict
students when they start, the following golden rule applies, which must necessarily be emphasized
because it is of fundamental importance: exercises are used to make mistakes, an exercise without
errors is useless.

Open Data

The use of open data, right from the first examples and to a much greater extent than examples with
simplified educational datasets, is one of the characteristics, perhaps the main one, of this text. The
datasets taken from open data are 26, sourced from the United States and other countries, large
international organizations (the World Bank and the United Nations), as well as charities and inde-
pendent research institutes, gender discrimination observatories, and government agencies for air
traffic control, energy production and consumption, pollutant emissions, and other environmental
information. This also includes data made available by cities like Milan, Berlin, and New York City.
This selection is just a drop in the sea of open data available and constantly growing in terms of
quantity and quality.

Using open data to the extent it has been done in this text is a precise choice that certainly imposes
an additional effort on those who undertake the learning path, a choice based both on personal
experience in teaching the fundamentals of data science to students of social and political sciences
(every year I have increasingly anticipated the use of open data), and on the fundamental drawback
of carrying out examples and exercises mainly with didactic cases, which are inevitably unreal and
unrealistic. Of course, the didactic cases, also present in this text, are perfectly fit for showing a



�

� �

�

Introduction xxi

specific functionality, an effect or behavior of the computational tool. As mentioned before, though,
the issue at stake is about learning to drive in urban traffic, not just understanding some engine
mechanics, and at the end the only way to do that is…driving in traffic, there’s no alternative. For us
it is the same, anyone who works with data knows that one of the fundamental skills is to prepare
the data for analysis (first there would be that of finding the data) and also that this task can easily
be the most time- and effort-demanding part of the whole job. Studying mainly with simplified
teaching examples erases this fundamental part of knowledge and experience, for this reason, they
are always unreal and unrealistic, however you try to fix them. There is no alternative to putting
your hands and banging your head on real data, handling datasets even of hundreds of thousands
or millions of rows (the largest one we use in this text has more than 500 000 rows, the data of all US
domestic flights of January 2022) with their errors, explanations that must be read and sometimes
misinterpreted, even with cases where data was recorded inconsistently (we will see one of this kind
quite amusing). Familiarity with real data should be achieved as soon as possible, to figure out their
typical characteristics and the fact that behind data there are organizations made up of people, and
it is thanks to them if we can extract new information and knowledge. You need to arm yourself
with patience and untangle, one step at a time, each knot. This is part of the fundamentals to learn.

What You Don’t Learn

One book alone can’t cover everything; we’ve already said it and it’s obvious. However, the point
to decide is what to leave out. One possibility is that the author tries to discuss as many different
topics as she/he can think of. This is the encyclopedic model, popular but not very compatible with a
reasonably limited number of pages. It is no coincidence that the most famous of the encyclopedias
have dozens of ponderous volumes. The short version of the encyclopedic model is a “synthesis,”
i.e. a reasonably short overview that is necessarily not very thorough and has to simplify complex
topics. Many educational books choose this form, which has the advantage of the breadth of topics
combined with a fair amount of simplification.

This book has a hybrid form, from this point of view. It is broader than the standard because
it includes two languages instead of one, but it doesn’t have the form of synthesis because it
focuses on a certain specific type of data and functionality: data frames, with the final addition of
lists/dictionaries, transformation and pivoting operations, group indexing, aggregation, advanced
transformations and data frame joins, and on these issues, it goes into the details. Basically, it
offers the essential toolbox for data science.

What’s left out? Very much, indeed. The techniques and tools for data visualization, descriptive
and predictive models, including machine learning techniques, obviously the statistical analysis
part (although this is traditionally an autonomous part), technologies for "Big Data," i.e. distributed,
scalable software infrastructures capable of managing not only a lot of data but above all data
streams, i.e. real-time data flows, and the many web-oriented extensions, starting from data col-
lection techniques from websites up to integration with dynamic dashboards and web services,
are not included. Again, there are specialized standards, such as those for climate data, financial
data, biomedical data, and coding used by some of the large international institutions that are not
treated. The list could go on.

This additional knowledge, which is part of data science, deserves to be learned. For this, you
need the fundamentals that this book presents. Once equipped with them, it’s the personal interests



�

� �

�

xxii Introduction

and the cultural and professional path of each one to play the main role, driving in a certain direc-
tion or in another. But again, once it has been verified firsthand that it is possible, regardless of
one’s background, to profitably acquire the fundamentals of the discipline with R and Python, any
further insights and developments can be tackled, in exactly the same way, with the same approach
and spirit used to learn the fundamentals.



�

� �

�

1

1

Open-Source Tools for Data Science

1.1 R Language and RStudio

In this first section, we introduce the main tools for the R environment: the R language and the
RStudio IDE (interactive development environment). The first is an open-source programming
language developed by the community, specifically for statistical analysis and data science; the
second is an open-source development tool produced by Posit (www.posit.com), formerly called
RStudio, representing the standard IDE for R-based data science projects. Posit offers a freeware
version of RStudio called RStudio Desktop that fully supports all features for R development; it has
been used (v. 2022.07.2) in the preparation of all the R code presented in this book. Commercial
versions of RStudio add supporting features typical of managing production software in corporate
environments. An alternative to RStudio Desktop is RStudio Cloud, the same IDE offered as a
service on a cloud premise. Graphically and functionally, the cloud version is exactly the same as
the desktop one; however, its free usage has limitations.

The official distribution of the R language and the RStudio IDE are just the starting points though.
This is what distinguishes an open-source technology from a proprietary one. With an open-source
technology actively developed by a large online community, as is the case for R, the official dis-
tribution provides the basic functionality and, on top of that, layers of additional, advanced, or
specialistic features could be stacked, all of them developed by the open-source community. There-
fore, it is a constantly evolving environment, not a commercial product subject to the typical life
cycle mostly mandated by corporate marketing. What is better, an open-source or a proprietary
tool? This is an ill-posed question, mostly irrelevant in generic terms because the only reasonable
answer is, “It depends.” The point is that they are different in a number of fundamental ways.

With R, we will use many features provided by additional packages to be installed on top of the
base distribution. This is the normal course of action and is exactly what everybody using this
technology is supposed to do in order to support the goal of a certain data analysis or data science
project. Clearly, the additional features employed in the examples of this book are not all those avail-
able, and neither are all those somehow important, that would be simply impossible to cover. New
features come out continuously, so in learning the fundamentals, it is important to practice with
the approach, familiarize yourself with the environment, and exercise with the most fundamental
tools, so as to be perfectly able to explore the new features and tools that become available.

Just keep in mind that these are professional-grade tools, not merely didactic ones to be aban-
doned after the training period. Thousands of experienced data scientists use these tools in their
daily jobs and for top-level data science projects, so the instruments you start knowing and handling
are powerful.

Data Science Fundamentals with R, Python, and Open Data, First Edition. Marco Cremonini.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/DSFRPythonOpenData

http://www.posit.com
http://www.wiley.com/go/DSFRPythonOpenData


�

� �

�

2 1 Open-Source Tools for Data Science

1.1.1 R Language

CRAN (the Comprehensive R Archive Network, https://cloud.r-project.org/) is the official online
archive for all R versions and software packages available to install. CRAN is mirrored on a number
of servers worldwide, so, in practice, it is always available.

The R base package is basically compliant with all desktop platforms: Windows, MacOS, and
Linux. The installation is guided through a standard wizard and is effortless. Mobile platforms
such as iOS and Android, as well as hybrid products, like the Chromebook, are not supported. For
old operating system versions, the currently available version of R might not be compatible. In that
case, under R Binaries, all previous versions of R are accessible, the most recent compatible one
can be installed with confidence, and all the important features will be available.

At the end of the installation, a link to an R execution file will be created in the programs or
applications menu/folder. That is not the R language, but an old-fashioned IDE that comes with
the language. You do not need that if you use RStudio, as is recommended. You just need to install
the R language, that is all.

1.1.2 RStudio Desktop

The RStudio Desktop is an integrated development environment (IDE) for R programming, recently
enhanced with features to interpret Python scripts too (https://posit.co/download/rstudio-
desktop/). In short, this means that it is a tool offering a graphical interface that accommodates
most of the necessary functionalities for developing projects using R, which is a separate compo-
nent, as we have seen in the previous section. The RStudio IDE is unanimously considered one of
the best available IDEs, being complete, robust, and consistent throughout the versions. For this
reason, there is not much competition in that market, at least until now. It is simply the safest and
best choice. Icons of R and of RStudio might be confusing at first, but they both show a big R.

It is important to familiarize yourself with RStudio’s layout because of the many functionalities
available and useful in data science projects. The layout is divided into four main quadrants, as
shown in Figure 1.1, with quadrant Q1 that appears only when an R Script is created from the
drop-down menu of the top-left icon.

● Q1: The quadrant for editing the R code, with different scripts is shown in separate tabs on top.
● Q2: The main feature is the R Console, where single command line instructions can be executed

and the output of the execution of an R script appears.
● Q3: Information about the environment is provided through this quadrant, such as R objects

(variables) created in memory during the execution of code; Python objects too could be shown
if software allowing for integration between the two languages is used.

● Q4: A multifunction quadrant allowing for exploring the local file system (tab Files), visualizing
graphics (tab Plots), the R package manager (tab Packages), and online documentation (tab Help).

1.1.3 Package Manager

The package manager is a key component of open-source environments, frequently used for updat-
ing a configuration, adding new functionalities, duplicating a configuration for testing purposes,
and so forth. Installing new components is a common and recurrent activity in environments like
R and Python, so it has to be simple and efficient. This is the crucial role of a package manager.

A package manager is typically a piece of software with few functionalities that basically
revolve around listing the installed packages, updating them, searching for new ones, installing
them, and removing useless packages. Everything else is basically accessory features that are not

https://cloud.r-project.org/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/


�

� �

�

1.1 R Language and RStudio 3

Figure 1.1 RStudio Desktop’s standard layout

strictly necessary. Given the few specialized features a package manager must have, it should come
without any surprise that modern package managers have their origins in classical command line
tools. Actually, they still exist and thrive; they are often used as command line tools both in R and
Python environments, just because they are simple to use and have limited options.

At any rate, a graphical interface exists, and RStudio offers it with the tab Packages in the Q4
quadrant. It is simple, just a list of installed packages and a selection box indicating if a package is
also loaded or not. Installing and loading a package are two distinct operations. Installing means
retrieving the executable code, for example, by downloading it from CRAN and configuring it in the
local system. Loading a package means making its functionalities available for a certain script, which
translates into the fundamental function library(<name of the package to load>).
Ticking the box beside a package in the RStudio package manager will execute on the R Console
(quadrant Q2) the corresponding library() instruction. Therefore, using the console or ticking
the box for loading a package is exactly the same.

However, neither of them is a good way to proceed, when we are writing R scripts, because a
script should be reproducible, or at least understandable by others, at a later time, possibly a long
time later. This means that all information necessary for reproducing it should be explicit, and if the
list of packages to be loaded is defined externally by ticking selection boxes or running commands
on the console, that knowledge is hidden, and it will be more difficult to understand exactly all the
features of the script. So the correct way to proceed is to explicitly write all necessary library()
instructions in the script, loading all required packages.

The opposite operation of loading a package is unloading it, which is certainly less frequent;
normally, it is not needed in scripts. From the RStudio interface, it could be executed by unticking
a package or by executing the corresponding instruction detach("package:<name of the
package>", unload=TRUE).

A reasonable doubt may arise about the reason why installed packages are not just all loaded
by default. Why bother with this case-by-case procedure? The reason is memory, the RAM, in



�

� �

�

4 1 Open-Source Tools for Data Science

particular, that is not only finite and shared by all processes executed on the computer, but is often
a scarce resource that should be used efficiently. Loading all installed packages, which could be
dozens or even hundreds, when normally just a few are needed by the script in execution, is clearly
a very inefficient way of using the RAM. In short, we bother with the manual loading of packages
to save memory space, which is good when we have to execute computations on data.

Installing R packages is straightforward. The interactive button Install in tab Packages is handy
and provides all the functionalities we need. From the window that opens, the following choices
should be made:

● Install from: From which repository should the package be downloaded? Options are: CRAN,
the official online repository, this is the default and the normal case. Package Archive File is
only useful if the package to install has been saved locally, which may happen for experimental
packages not available from GitHub, which is a rare combination. Packages available from
GitHub could be retrieved and installed with a specialized command (githubinstall
("PackageName")).

● Packages: The name of the package(s) to install; the autocomplete feature looks up names from
CRAN.

● Install to library: The installation path on the local system depends on the R version currently
installed.

● Install dependencies: Dependencies are logical relationships between different packages. It is
customary for new to packages exploit features of previous packages for many reasons, either
because they are core or ancillary functionalities with respect to the features provided by the
package. In this case, those functionalities are not reimplemented, but the package providing
them is logically linked to the new one. This, in short, is the meaning of dependencies. It means
that when a package is installed if it has dependencies, those should be installed too (with the
required version). This option, when selected, automatically takes care of all dependencies,
downloading and installing them, if not present. The alternative is to manually download and
install the packages required as dependencies by a certain package. The automatic choice is
usually the most convenient. Errors may arise because of dependencies, for example, when for
any reason, the downloading of a package fails, or the version installed is not compatible. In
those cases, the problem should be fixed manually, either by installing the missing dependencies
or the one with the correct version.

1.1.4 Package Tidyverse

The main package we use in this book is called tidyverse (https://www.tidyverse.org/). It is a
particular package because it does not directly provide new features, but rather groups a bunch of
other packages, which are then installed all at once, and these provide the additional features. In
a way, tidyverse is a shortcut created to simplify the life of people approaching data science with R,
instead of installing a certain number of packages individually, common to the majority of projects,
they have been encapsulated in just one package that does the whole job.

There are criticisms of this way of doing things based on the assumption that only necessary
packages should be installed and, most of all, loaded. This principle is correct and should be
followed as a general rule. However, a trade-off is also reasonable in most cases. Therefore, you
may install tidyverse and then load only specific packages in a script, or just load the whole
lot contained in tidyverse. Usually, it does not make much difference; you can choose without
worrying too much about this.

https://www.tidyverse.org/


�

� �

�

1.2 Python Language and Tools 5

In any case, tidyverse is widely used, and for this, it is useful to spend some time reading the
description of the packages included in it because this provides a glimpse into what most data
science projects use, the types of operations and more general features. In our examples, most of
the functions we will use are defined in one of the tidyverse packages, with some exceptions that
will be introduced.

The installation of tidyverse is the standard one, through the RStudio package manager, or the
console with command install.packages("tidyverse"). Loading it in a script is done
with library(tidyverse) for a whole lot of packages, or alternatively, for single packages
such as library(readr), where readr is the name of a package contained in tidyverse. In all
cases, after the execution of a library instruction, the console shows if and what packages have
been loaded.

In all our examples, it should be assumed that the first instruction to be executed is
library(tidyverse), even when not explicitly specified.

1.2 Python Language and Tools

Python’s environment is more heterogeneous than R’s, mostly because of the different scope of the
language – Python is a general-purpose language mostly used for web and mobile applications, and
in a myriad of other cases, data science is among them – which implies that several options are avail-
able as a convenient setup for data science projects. Here, one of the most popular is considered,
but there are good reasons to make different choices.

The first issue to deal with is that, until now, there is not a data science Python IDE comparable
to RStudio for R, which is the de facto standard and offers almost everything that is needed. In
Python, you have to choose if you want to go with a classical IDE for coding; there are many, which
is fine, but they are not much tailored for data science wrangling operations; or if you want to go
with an IDE based on the computational notebook format (just notebook for short). The notebook
format is a hybrid document that combines formatted text, usually based on a Markdown syntax
and blocks of executable code. For several reasons, mostly related to utility in many contexts to
have both formatted text and executable code, and the ease of use of these tools, IDEs based on the
notebook format have become popular for Python data science and data analysis. The code in the
examples of the following chapters has been produced and tested using the main one of these IDEs,
JupyterLab (https://jupyterlab.readthedocs.io/en/latest/). It is widely adopted, well-documented,
easy to install, and free to use. If you are going to write short blocks of Python code with associated
descriptions, a typical situation in data science, it is a good choice. If you have to write a massive
amount of code, then a classical IDE is definitely better. Jupyter notebooks are textual files with
canonical extension .ipynb and an internal structure close to JSON specifications.

So, the environment we need has the Python base distribution, a package manager, for the same
reasons we need it with R, the two packages specifically developed for data science functionali-
ties called NumPy and pandas, and the notebook-based IDE JupyterLab. These are the pieces. In
order to have them installed and set up, there are two ways of proceeding: one is easy but ineffi-
cient, and the other is a little less easy but more efficient. Below, with A and B, the two options are
summarized.

A. A single installer package, equipped with a graphical wizard, installs and sets up everything
that is needed, but also much more than you will likely ever use, for a total required memory
space of approximately 5 GB on your hard disk or SSD memory.

https://jupyterlab.readthedocs.io/en/latest/


�

� �

�

6 1 Open-Source Tools for Data Science

B. A manual procedure individually installs the required components: first Python and the pack-
age manager, then the data science libraries NumPy and pandas, and finally the JupyterLab IDE.
This requires using the command line shell (or terminal) to run the few installation instructions
for the package manager, but the occupied memory space is just approximately 400 MB.

Both ways, the result is the Python setup for learning the fundamentals of data science, get-
ting ready, and working. The little difficulty of the B option, i.e. using the command line to install
components, is truly minimal and, in any case, the whole program described in this book is about
familiarizing with command line tools for writing R or Python scripts, so nobody should be worried
for a few almost identical commands to run with the package manager.

So, the personal suggestion is to try the B option, as described in the following, operationally
better and able to teach some useful skills. At worst, it is always possible to backtrack and go with
the easier A option on a second try.

1.2.1 Option A: Anaconda Distribution

Option A is easy to explain. There is a tool called Anaconda Distribution (https://www.anaconda
.com/products/distribution) that provides everything needed for an initial Python data science
environment. It contains all the components we have listed as well as tons of other tools and
libraries. In addition, it offers a desktop application called Anaconda Navigator, which is basically
a graphical interface to the package manager conda. Unfortunately, this interface is quite bulky.
From this interface, it is also possible to launch the JupyterLab IDE.

1.2.2 Option B: Manual Installation

Option B requires a few steps:

Step 1: Python and package manager installation.
From the official repository of Python distribution (https://www.python.org/downloads/), the
installer for the latest (or previous) distribution could be downloaded and launched. A graphi-
cal wizard guides the process. In the end, the Python language with its basic libraries and two
package managers will be installed: pip, the standard Python package manager, and conda,
the Anaconda’s one. The differences between the two are minimal, and for all our concerns,
they are equivalent. Even the syntax of the commands is basically the same. The only recom-
mendation is to choose one and continue using that one for package management; this avoids
some possible problems with dependencies. We show the examples using pip, but conda is fine
as well.

Step 2: Installing data science packages NumPy, pandas, and JupyterLab IDE.
From a shell (e.g. Terminal on MacOS, Powershell on Windows), to run the package manager, it
suffices to digit pip (or conda, for the other one) and return.

This way, a list of the options is shown. The most useful are:

● pip list: list all installed packages with the version.
● pip install <package_name>: install a package.
● pip uninstall <package_name>: uninstall a package.

When a package is installed or uninstalled, on the command line appears a request to confirm
the operation; the syntax is [n/Y], with n for No and Y for Yes.

https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
https://www.python.org/downloads/

