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Preface 

Over the past four years, the conferences in the BIOMAT international series 
have had to adapt to the restrictions imposed on international conferences in an 
online format. Restrictions that proved even more severe for fully interdisciplinary 
conferences, such as our international symposia. 

We often saw the participation of researchers and their students split into groups 
due to the existence of time zones. Were it not for the professionalism of the 
colleagues we know so well, it would have been even more difficult, sometimes 
impossible, to count on the participation of the vast majority, a fundamental 
condition for maintaining the top level of an interdisciplinary and multidisciplinary 
conference. 

Very scarce financial resources made it impossible to organise hybrid sessions, 
with some support for PhD students and recent PhDs from developing countries. At 
all the conferences over the last four years, we have communicated to colleagues 
during the annual general meetings of our scientific association the decision to 
continue the mission of jointly organising this series of symposia. We are extremely 
grateful to all our colleagues. So many years of collaboration have created bonds of 
admiration and respect between us all. 

This year, 2024, we hope to be able to organise our BIOMAT Symposium in 
person. Negotiations are underway to this end with the directors of the proposing 
institution. We will keep everyone informed and hope to continue counting on the 
support that the BIOMAT Consortium has always received. 

The BIOMAT 2023 Symposium was held from November 6–9, 2023, and once 
again we had the support of the RNP/Brazil network and the cooperation of Dr. 
Beatriz Zoss, to whom we are once again very grateful on behalf of the BIOMAT 
Consortium. Our collaborators at the organisation’s headquarters in Rio de Janeiro, 
Simão C. de Albuquerque Neto and Carmem Lucia S.C. Mondaini, provided 
invaluable help. 

Rio de Janeiro, Brazil Rubem P. Mondaini 
November 10, 2023 
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Mathematical Modeling of the 
Vaporization of Encapsulated 
Perfluorocarbon Nanodroplets Using 
Chirp Ultrasound: A Review 

Kaiwen Jiang, Maryam Ghasemi, and Sivabal Sivaloganathan 

Abstract This paper explores the transformative potential of acoustic droplet 
vaporization (ADV) in biomedical imaging. Emphasizing simulation results from 
a mathematical model, we investigate the ADV of nanodroplets encapsulated in 
hyperelastic shells under frequency-modulated ultrasound. Our focus lies on the 
stability of these phase-change contrast agents (PCCAs) in the bloodstream and the 
heightened axial resolution achieved with frequency-modulated ultrasound. 

Detailing the principles of ultrasound, we underscore its significance in medical 
imaging and its ability to penetrate soft tissue for comprehensive organ and blood 
flow analysis. Recognizing challenges in visualizing tissue microvasculature, we 
highlight limitations of current contrast agents and position ADV as a groundbreak-
ing approach. As a phase-change contrast agent, ADV employs liquid nanodroplets 
with a carefully chosen boiling point, promising both stability in circulation and 
enhanced contrast at the imaging site. 

This review consolidates insights into the advancements and potential optimiza-
tions of ADV under frequency-modulated ultrasound, presenting it as a pivotal 
development for contrast-enhanced ultrasound imaging. Through a synthesis of 
preclinical studies, we emphasize the comparable contrast enhancement properties 
of vaporized nanodroplets to traditional microbubble agents. In summary, this paper 
offers a comprehensive review of the current state and future prospects of ADV, 
showcasing its role in advancing contrast-enhanced ultrasound imaging. 

K. Jiang · M. Ghasemi 
University of Waterloo, Waterloo, ON, Canada 
e-mail: k27jiang@uwaterloo.ca; m23ghasemi@uwaterloo.ca 
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1 Introduction 

Acoustic droplet vaporization (ADV) is the use of ultrasound waves to induce the 
vaporization of nanometer-scale droplets through the negative pressure during the 
rarefaction parts of the ultrasound wave. This can be exploited for biomedical 
applications such as contrast-enhanced ultrasound imaging, targeted drug deliv-
ery, and embolotherapy. In this paper, we present the simulation results of a 
mathematical model of the ADV of a nanodroplet encapsulated in a hyperelastic 
shell under frequency-modulated ultrasound—a process that explores the potential 
of nanodroplets as phase-change contrast agents for ultrasound imaging with 
improved stability in the bloodstream, together with the enhanced axial resolution 
of frequency-modulated ultrasound. 

1.1 Ultrasound Imaging 

Ultrasound is defined as a mechanical sound wave at a frequency beyond the 
human audible frequency range (. >20 kHz). It is generated through the excitation 
of an ultrasonic transducer (usually based on a piezoelectric or an electromagnetic 
transducer) [38, 43]. This excitation causes the propagation of longitudinal waves 
through the imaging medium. When an ultrasound wave encounters materials 
with differing resistances to ultrasound wave propagation (known as acoustic 
impedance), the difference in acoustic impedance causes a portion of the incident 
wave energy to be reflected back toward the transducer. The ultrasound wave can 
also undergo refraction at the interface between two materials with differing speeds 
of sound. It may also scatter off very small objects in its path, resulting in small 
amounts of wave energy being distributed in all directions. Reflected or scattered 
waves may eventually return to the transducer where they are then detected. The 
time of flight of the signal from origination to detection, together with the strength 
of the received signal, can be used to construct an ultrasound image. 

For most imaging applications, instead of a continuous signal, pulses of ultra-
sound consisting of a few wave cycles are emitted which are separated by a specified 
pulse repetition interval. This allows for reflected or backscattered waves returning 
to the transducer to be detected as transducers are unable to transmit and receive at 
the same time. 

Ultrasound waves can penetrate soft tissue at depths above 10 cm [33] and can be 
used to noninvasively provide information on the anatomy and function of internal 
organs or on blood flow. It has become one of the most commonly performed 
diagnostic tests today [18].
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1.2 Contrast-Enhanced Ultrasound Imaging 

Conventional ultrasound imaging techniques encounter difficulty when imaging 
tissue microvasculature due to the small size of the microvessels and the poor 
resolution of signal between the blood and the surrounding tissue [6]. This can be 
improved with the use of contrast agents administered as part of the imaging process 
that can provide better contrast. As of 2017, three ultrasound contrast agents have 
been approved by the FDA for clinical applications, all of which come in the form of 
micrometer-scale bubbles of an inert gas encapsulated by a shell. Lumason. ® utilizes 
a phospholipid shell with a sulfur hexafluoride core, Luminity. ® uses a phospholipid 
shell with an octafluoropropane core, and Optison. ® uses an albumin shell with an 
octafluoropropane core [3]. 

Alternative contrast agents based on inert liquid perfluorocarbon cores have also 
been investigated. While their higher molecular weight confers them an increased 
stability in circulation compared to microbubble-based contrast agents [19, 22], 
their contrast enhancement effect is less pronounced than their gaseous counterparts 
[11, 29]. Acoustic droplet vaporization provides a possible best of both worlds 
solution in the form of phase-change contrast agents (PCCAs). These are liquid 
nanodroplets with a liquid core specifically chosen to have a boiling point close 
to human body temperature such that they remain in liquid form in the circulation 
but are able to vaporize to form microbubbles under the action of ultrasound at the 
imaging site. Thus, this could provide both the high echogenicity of microbubble 
contrast agents and the increased stability of inert liquid emulsions. Preclinical 
studies have suggested that once vaporized, their contrast enhancement properties 
are comparable to those of microbubble contrast agents [14, 34–36, 42]. 

1.3 Coded Excitation 

The axial resolution of ultrasound imaging is dependent on its spatial pulse length— 
a product of the number of cycles per pulse and the ultrasound wavelength [9]. 
Tissue boundaries at distances smaller than half the spatial pulse length cannot be 
resolved since their reflected signals will overlap. 

Reducing the number of cycles in each pulse lowers the total power transmitted 
and results in a reduced signal-to-noise ratio of the returning signal. Increasing 
the ultrasound frequency reduces the penetrative depth of ultrasound, since higher-
frequency ultrasound undergoes higher attenuation—the absorption of ultrasound 
into tissues where it is converted into heat and dissipated, together with scattering 
or internal reflections [27]. At higher frequencies, tissues are unable to keep up with 
the rapid fluctuations in pressure and are thus unable to transmit as much of the 
incident wave energy [13], resulting in higher attenuation. 

Coded excitation through frequency or phase modulation of the ultrasound 
waveform can be used to increase axial resolution without sacrificing transmitted
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power and penetration depth. An example of a simple coding scheme is a linear 
chirp (Compressed High-Resolution Pulse) where the frequency of the ultrasound 
signal increases linearly from the beginning to the end of the pulse. Other coding 
schemes such as nonlinear chirps or binary codes also exist [5]. Since the form of 
the transmitted signal .s(t) is known, the received signal can be passed through a 
matched filter (the time-reversed version of the transmitted signal .s(−t)) to extract 
the spatial scattering information within without suffering a loss of resolution arising 
from using a longer pulse [5]. 

The first proposed application of coded excitation in medical ultrasound was 
by Takeuchi in 1979 using phase modulation and Golay codes [40]. Chirp-coded 
excitation was used for the first time by O’Donnell [24] in B-mode ultrasound 
imaging to demonstrate the enhanced penetrating power of coded excitation signals. 
This study also contained a theoretical analysis concluding that a theoretical 15–20 
decibel improvement in signal-to-noise ratio over conventional pulsed ultrasound 
can be obtained using coded excitation. Pedersen et al. modified a commercial 
ultrasound scanner and used it to demonstrate that chirp-coded ultrasound yielded 
significantly increased penetration depths and image quality in vivo [28]. 

2 Mathematical Modeling 

An early model of the behavior of encapsulated bubbles was proposed by de 
Jong et al. where the encapsulating albumin shell contributed an additional loss 
term due to internal friction within the shell and an additional restoring force due 
to its stiffness [7]. Guédra and Coulouvrat modeled the encapsulating shell as a 
viscoelastic Kelvin-Voigt material and found that the acoustic droplet vaporization 
threshold increases with shell rigidity [10]. The linear elasticity of the Kelvin-
Voigt model was limited in its ability to model large shell deformations, which 
typically resulted in a fivefold increase in the radius of the vapor-droplet system 
[41]; hence, a modification was made by Lacour using a hyperelastic Mooney-
Rivlin shell model instead [16]. Ghasemi et al. later introduced real gas behavior 
to the perfluoropentane (PFP) vapor within the bubble, where the previous above-
described models assumed ideal gas behavior [8]. 

We present here the results obtained from simulations of encapsulated system 
devised by Guédra, Coulouvrat, and Lacour, with the real gas behavior incorporated 
by Ghasemi, under the influence of chirp ultrasound. Particular attention is paid to 
the derivation of the hyperelastic shell response, as details are scant in the literature. 

2.1 Evolution of Bubble Radius over Time 

As shown in the schematic in Fig. 1, the model represents the radius of the vapor 
bubble, the inner and outer radius of the shell as three concentric spheres with radii
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Fig. 1 Bubble schematic 

.R(t), a(t), b(t), respectively. It is assumed that the space within the inner vapor 
bubble, between the vapor bubble and the shell, and outside of the shell contains 
PFP vapor, liquid PFP, and water, respectively. To model the evolution of these 
values over time, the following dynamics were taken into account: 

• Vapor behavior within the bubble 
• Mass flux and heat transfer across the bubble surface 
• Heat transfer across the three mediums within the system (inner fluid, shell, 

external fluid) 
• Elastic response of the shell 
• Viscous fluid flow within the inner and external fluids and the viscous response 

of the shell 

The evolution of the bubble radius over time is described by the generalized 
Rayleigh-Plesset equation [16] which is obtained as follows. Its derivation begins 
with the momentum equation of an incompressible continuum with radial symmetry 
[17, 31].1 For .r ∈ (R,∞), 

.ρ

(
∂u

∂t
+ u

∂u

∂r

)
= 1

r2

∂

∂r
(r2Trr ) − Tθθ + Tφφ

r
, (1) 

where . ρ is the density, .u := u(r, t) is the radial velocity at radial distance r from the 
bubble center at time t , and . T is the Cauchy stress tensor with .Trr , Tθθ , Tφφ being 
its components in each direction. By the conservation of mass, for .r ∈ (R,∞), the  
radial velocity u must satisfy

1 Note that [31] uses a different convention where the trace of the stress tensor is separated out as 
.− ∂p

∂r
. 
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.u(r, t) =
(

R

r

)2

U(t), (2) 

where .U(t) := lim
r→R+ u(r, t) is the velocity of the inner liquid right at the surface 

of the bubble. We additionally introduce the hydrostatic pressure . p :− − 1
3 tr(T) =

−Trr+Tφφ+Tθθ

3 which is associated with volume change. 
From here onward, the subscripts .V,L, S,E will be used to denote properties 

corresponding to the vapor within the bubble, inner liquid, shell, and external liquid, 
respectively. The continuity of normal stress across each interface (bubble surface, 
shell inner surface, shell outer surface) gives the following [4, 10, 30]: 

.

p(R+) = p(R−) − 4ηL

U

R
− 2

σ

R
+ J 2(ρ−1

V − ρ−1
L ),

p(a−) = p(a+) − T e
rr,S(a) + 4(ηS − ηL)

(
R2U

a3

)
+ 2

σ1

a
,

p(b+) = p(b−) − T e
rr,S(b) + 4(ηS − ηE)

(
R2U

b3

)
− 2

σ2

b
,

(3) 

where J is the mass flux across the bubble surface, .UV := lim
r→R− u(r, t) is the gas 

velocity at the inner surface of the bubble, . η is the dynamic viscosity of the medium 
denoted by its subscript, and .σ, σ1, σ2 are the surface tensions corresponding to the 
bubble surface, shell inner surface, and shell outer surface, respectively. 

We introduce the following notation: 

.

𝚪i = ρL + (ρS − ρL)

(
R

a

)i

+ (ρE − ρS)

(
R

b

)i

,

σ̄ = σ + σ1

(
R

a

)
+ σ2

(
R

b

)
,

η̄ = ηL + (ηS − ηL)

(
R

a

)3

+ (ηE − ηS)

(
R

b

)3

,

pV := p(R−),

Ф := J 2(ρ−1
V − ρ−1

L ),

S :=
b∫

a

3
T e

rr,S + p

r
dr,

ξ = U

Ṙ
.

(4)
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Integrating Equation 1 from R to . ∞ and applying the continuity of normal 
stress conditions listed above thus results in the general Rayleigh-Plesset equation 
as stated in [16]: 

.RU̇ + 4ξ − 𝚪4
𝚪1

ξ2

2
Ṙ2 = pV − 2σ̄+4η̄U

R
+ Ф + S− p∞
𝚪1

. (5) 

In the case of a regular sinusoidal ultrasound pulse, . p∞, the pressure at infinity 
arising from a constant frequency ultrasound wave is given as follows: 

.p∞(t) = p0 − pa sin(2πf0t), (6) 

where . p0 is the ambient pressure, . pa is the amplitude of the acoustic wave, and . f0
is the acoustic frequency. For a linear chirp signal, the frequency term increases or 
decreases linearly between an initial frequency . f0 and a final frequency . f1 over the 
duration of the pulse T , resulting in 

.p∞(t) = p0 − pa sin (2π (f0 + ct) t) , (7) 

where 

.c = f1 − f0

T
. (8) 

The differential equations describing the evolution of .R, a, b over time are as 
follows: 

.Ṙ = U − J

ρL

, (9) 

.ȧ = R2

a2
U, (10) 

.ḃ = R2

b2
U. (11) 

The vapor pressure within the bubble . pV , mass flux . Ф, and elastic response of 
the shell . S will be explained in the subsequent sections. 

2.2 Vapor Pressure Within the Bubble 

On the right-hand side of Equation 5, the vapor pressure within the bubble . pV is 
obtained using the van der Waals equation [39]:
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.

pV = ρV RgTb

1 − bρV

− aρ2
V ,

a = 27

64

R2
gT

2
c

ρc

,

b = RgTc

8pc

.

(12) 

where . Rg is the specific gas constant of PFP which is in turn the ratio between the 
ideal gas constant and the molar mass of PFP, .Tb = Tb(t) is the bubble surface 
temperature, and .(Tc, pc) is the critical point of PFP, which is a pair of temperature 
and pressure values beyond which superfluidity is observed. The constants a and b 
correct for the intermolecular forces of attraction and the volume occupied by the 
gas molecules, both of which are not taken into account in the ideal gas model [39]. 

Beyond the critical point, superfluidity is observed, in which case the pressure is 
given by [23] 

.

pV = pc

(
Tb

Tc

) γPT
γPT −1

,

γPT =
(
1 − γ − 1

γ

RgTb − aρV (1 − ρV )

RgTb − 2aρV (1 − ρV )2

)−1

,

(13) 

where .γ = Cp

Cv
is the ratio of the specific heat at constant pressure to the specific 

heat at constant volume of PFP. 

2.3 Mass Flux and Temperature 

In order to determine the pressure contribution due to mass flux . Ф as given 
in Equation 4, the mass flux J is required. It can be obtained by invoking the 
conservation of energy at the bubble interface [12]: 

.KL

∂T

∂r

∣∣∣∣
r→R+

− KV

∂T

∂r

∣∣∣∣
r→R−

= LJ, (14) 

where .T = T (r, t) is the temperature field; .KL and .KV are the thermal conduc-
tivities of the liquid PFP and PFP vapor, respectively; and L is the latent heat of 
vaporization of PFP. The heat conduction within the bubble can be neglected due to 
the large difference between the thermal conductivity and diffusivity coefficients of 
the liquid and vapor phases, allowing us to assume that the temperature distribution 
is uniform within the bubble [10, 12]. Therefore, . ∂T

∂r

∣∣
r→R− = 0 and
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.J = KL

L

∂T

∂r

∣∣∣∣
r→R+

. (15) 

Note that J in the above equation is the negative of what was given in 
Equation (12) in [10] where they assumed the opposite convention that a positive J 
corresponds to the mass leaving the bubble into the surrounding liquid PFP droplet. 
In order to obtain J from the above equation, the temperature profile within the 
liquid PFP droplet near the bubble surface is required, which entails modeling both 
the bubble surface temperature .Tb(t) and the entire temperature profile .T (r, t) over 
time. 

2.4 Bubble Surface Temperature 

The modeling of the bubble surface temperature requires the determination of the 
gas velocity field within the bubble. The enthalpy equation is as follows [32]: 

.ρV Cp

∂T

∂t
− ∂p

∂t
= ∇ · (KV ∇T ). (16) 

The gas velocity field within the bubble . v is introduced through the continuity 
equation: 

.
∂ρV

∂t
+ ρV ∇ · v + ∇ρV · v = 0. (17) 

The following property is also used: 

.CpρV T = γp

γ − 1
. (18) 

The Clausius-Clapeyron relation stated below relates the vapor pressure with the 
temperature: 

.pV (T ) = pref exp

[
L

Rg

(
1

Tref
− 1

T

)]
, (19) 

where .pref and .Tref are known values along the vapor pressure-temperature curve. 
This can be differentiated to obtain the rate of change of pressure over time in terms 
of the rate of temperature change over time. 

Combining Equations 16, 17, and 18 and applying the assumption of radial 
symmetry, the following is obtained:
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.
∂(r2v)

∂r
= r2

γp

[
γ − 1

r2
KV

∂

∂r

(
r2

∂T

∂r

)
− ṗ

]
, (20) 

where v is the radial velocity of the gas within the bubble. This is integrated to obtain 
the vapor velocity field. After applying the assumption that the temperature field 
within the bubble is spatially uniform [10] and combining with the conservation 
of mass and the Clausius-Clapeyron relation, we can obtain the final differential 
equation governing the evolution of bubble surface temperature over time: 

.
L

RgT
2
b

dTb

dt
= 3γ

R

(
KL

ρV L

∂T

∂r

∣∣∣
r→R+ − Ṙ

)
. (21) 

The evolution of the gas density . ρV over time can be obtained by invoking the 
conservation of mass to be as follows: 

.
dρV

dt
= 3

R
(J − ρV Ṙ). (22) 

2.5 Temperature Within the Inner and Outer Liquids 

The temperature profiles within the inner and outer liquids are given by the energy 
equations [10, 17]: 

.
∂T

∂t
+ u(r, t)

∂T

∂r
= Km

ρmcm

1

r2

∂

∂r

(
r2

∂T

∂r

)
+ 12ηm

ρmcm

(
u(r, t)

r

)2

, (23) 

where .m ∈ {L,E} represents the medium for which the temperature profile is being 
evaluated. The heat flux is assumed to be continuous across the shell: 

.KL

∂T

∂r

∣∣∣
r→a− = KE

∂T

∂r

∣∣∣
r→b+ . (24) 

And the other boundary conditions are given by the temperature of the bubble 
surface and the temperature at infinity, which is held constant: 

. lim
r→R+ T (r, t) = Tb(t), (25) 

. lim
r→∞ T (r, t) = T∞. (26)
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2.6 Shell Elastic Response 

The elastic response of the shell S is given as follows [16]: 

.S = 3

b∫
a

T e
rr,S + p

r
dr , (27) 

within which the elastic stress of the shell can be obtained through first character-
izing its deformation and subsequently relating it to the stress through constitutive 
relations. 

2.6.1 Deformation Gradient 

Let .P ∈ R
3 be a point with curvilinear coordinates .(q1, q2, q3) and position vector 

. r from the origin. A set of natural basis vectors .{vi | i = 1, 2, 3} arise which can be 
obtained through differentiating the position vector with respect to each coordinate 
[37]: 

.vi = ∂r
∂qi

; i = 1, 2, 3. , (28) 

The characterization of an object’s deformation requires the specification of two 
states—the set of points occupied by the object at a selected reference time point 
(which we can define to be .t = 0), which will be referred to as the reference 
configuration, and the set of points currently occupied by the object, which will be 
referred to as the current configuration. 

The reference configuration is denoted by . R0, and a point P within it with 
coordinates .(Q1,Q2,Q3) can be represented by a position vector in tensor notation 
.X = XiGi (X), where .{Gi (X) | i = 1, 2, 3} is the set of natural basis vectors in the 
reference configuration at position . X. 

The motion and deformation of the object causes the point . X to move along 
a path over time, denoted .χ t (X), eventually arriving at a point within the current 
configuration . Rt . This is denoted by p with coordinates .(q1, q2, q3) and can be 
represented by a coordinate vector .x = xigi (x), where .{gi (x) | i = 1, 2, 3} is the set 
of basis vectors used to describe the current configuration at . x. Note that we use the 
convention that points, coordinates, and vectors in the reference configuration are 
denoted using capital letters, while their counterparts in the current configuration 
are denoted using small letters. The dependence of the basis vectors . Gi and . gi on . X
and . x will be omitted in the following text for clarity: 

.χ t (X) = x. , (29)
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The different sets of basis vectors used in the reference and current configurations 
provide the generality necessary to describe the problem using curvilinear coordi-
nate systems (e.g., spherical polar coordinates, as is the case here) which vary in 
space (and thus time as each point moves due to the deformation of the object). 

Problems within continuum mechanics can often be solved by relating the 
current configuration of the object in question back to its reference configuration. 
This is done by examining the deformation gradient (denoted . F) which uses the 
gradient of .χt (X) = x with respect to . X to describe how points within the current 
configuration change with respect to points within the reference configuration. Its 
definition and derivation according to [20] is presented as follows: 

.Grad x := ∂x
∂Qi

⊗ Gi , (30) 

where .{Gi | i = 1, 2, 3} is the dual basis of .{Gi} defined through the following 
relation: 

.Gi · Gj = δi
j . (31) 

The deformation gradient is known as a two-point tensor since it has one leg in 
the reference configuration and another in the current configuration. Expressing . x as 
a linear combination of the basis vectors, Equation 30 can be expanded as follows: 

.

∂x
∂Qi

⊗ Gi = ∂(xjgj )

∂Qi
⊗ Gi

= ∂xj

∂Qi
gj ⊗ Gi + xj ∂gj

∂Qi
⊗ Gi

= ∂xj

∂Qi
gj ⊗ Gi + xj ∂gj

∂qm

∂qm

∂Qi
⊗ Gi

= ∂xj

∂Qi
gj ⊗ Gi + xj𝚪k

jmgk

∂qm

∂Qi
⊗ Gi

=
(

∂xj

∂Qi
+ xk𝚪

j
km

∂qm

∂Qi

)
gj ⊗ Gi ,

(32) 

where .𝚪j
km are Christoffel symbols that are defined by the following relation for a 

set of basis vectors . {gi}: 

.𝚪
j
km = gj ∂gk

∂xm
. (33)
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We can represent points in the reference and current configurations using spher-
ical coordinates and denote them as .(Q1,Q2,Q3) = (R,Ф,Θ) and . (q1, q2, q3) =
(r, φ, θ), respectively. Given a point P in the reference configuration with positional 

vector .X =
⎡
⎣R sinΘ cosФ

R sinΘ sinФ

R cosΘ

⎤
⎦, it can be differentiated with respect to each of the 

coordinate variables to obtain the natural basis, and Equation 31 can be used to 
obtain the dual set: 

.

G1(X) =
⎡
⎣sinΘ cosФ

sinΘ sinФ

cosΘ

⎤
⎦ ,

G2(X) =
⎡
⎣− 1

R sinΘ
sinФ

1
R sinΘ

cosФ

0

⎤
⎦ ,

G3(X) =
⎡
⎣

1
R
cosΘ cosФ

1
R
cosΘ sinФ

− 1
R
sinΘ

⎤
⎦ .

(34) 

Similarly, a point p in the current configuration with positional vector . x =⎡
⎣r sin θ cosφ

r sin θ sinφ

r cos θ

⎤
⎦ admits the following natural basis: 

.

g1(x) =
⎡
⎣sin θ cosφ

sin θ sinφ

cos θ

⎤
⎦ ,

g2(x) =
⎡
⎣−r sin θ sinφ

r sin θ cosφ

0

⎤
⎦ ,

g3(x) =
⎡
⎣r cos θ cosφ

r cos θ sinφ

−r sin θ

⎤
⎦ .

(35) 

We note that these basis vectors are not normal and can be expressed as a product 
of their lengths and the corresponding normalized basis vectors .{ER,EФ,EΘ}, 
.{er , eφ, eθ }:
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.

G1(X) = ER,

G2(X) = 1

R sinΘ
EФ,

G3(X) = 1

R
EΘ,

g1(x) = er ,

g2(x) = r sin θeφ,

g3(x) = reθ .

(36) 

The Christoffel symbols can then be obtained by differentiating the basis vectors 
.{g1, g2, g3} with respect to the coordinates and expressing the results as linear 
combinations of themselves: 

.

𝚪2
12 = 𝚪3

13 = 1

r
,

𝚪1
22 = −r sin2 θ,

𝚪3
22 = − sin θ cos θ,

𝚪2
23 = cot θ,

𝚪1
33 = −r.

(37) 

For a shell whose points in the reference configuration are given by . {X = r0ER |
r0 ∈ [a0, b0]} that undergoes the motion and deformation represented by . χ to arrive 
at its current configuration .{x = r(r0, t)er | r ∈ [a(t), b(t)]}, its deformation 
gradient can be obtained by plugging Equations 36 and 37 into Equation 32 to obtain 

.F =
⎡
⎢⎣

∂r
∂r0

0 0

0 r
r0

0

0 0 r
r0

⎤
⎥⎦ . (38) 

To illustrate how the deformation gradient is useful in the characterization of 
deformations, we shall examine how the deformation affects line and volume 
elements. Let .dX be an infinitesimal line segment in the direction of . X in the 
reference configuration. If we denote its length as .dS := ‖dX‖, then it can be 
expressed as 

.dX = MdS. (39) 

where . M is the unit vector in the direction of . X. The deformation will cause the 
infinitesimal line element to transform into . dx, with length .ds := ‖dx‖. Let  . m be 
the unit vector in its direction:
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.dx = mds. (40) 

Now, 

.m = F(MdS) = FdX. (41) 

Now consider a volume element with sides .dX1, dX2, dX3 in the reference 
configuration. This has volume 

.dV = dX3 · (dX1 × dX2). (42) 

Similarly, the post-deformation volume element with sides .dx1, dx2, dx3 in the 
current configuration will have a volume of 

.dv = dx3 · (dx1 × dx2). (43) 

Taking the ratio, and applying Equation 41 to each of the sides, 

.

dv

dV
= dX3 · (dX1 × dX2)

dx3 · (dx1 × dx2)

= detF.

(44) 

If an object is incompressible, the volume of any portion of itself must be 
preserved under deformation, and hence it must satisfy .detF = 1, and applying 
this restriction to Equation 38 results in 

.
∂r

∂r0
=

( r0

r

)2
. (45) 

The deformation gradient can thus be expressed in terms of the principal stretch 
.λ := r

r0
to obtain .F = diag(λ−2, λ, λ). A well-known result in continuum 

mechanics is that the deformation gradient can be decomposed into a product of 
an orthogonal tensor . R and a symmetric tensor [1]. This is valuable because the 
orthogonal tensor corresponds to rigid body rotation and hence does not contribute 
to stress. The decomposition can be carried out in either direction: 

.

RCU = F = VRB,

V = RCURT
B.

(46) 

where .RC and .RB represent the orthogonal tensor obtained through each of the 
above decompositions and . U and . V represent the corresponding symmetric tensors. 
This leads to two rotation-independent descriptions of the deformation known as the 
left and right Cauchy-Green deformation tensors, respectively, and given as follows:
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.

B := FFT = V2,

C := FT F = U2.
(47) 

2.6.2 Stress-Strain Constitutive Relation for a Spherical, Isotropic, 
Incompressible, Hyperelastic Shell 

In this section, we follow the approach outlined in [1] to obtain the dependence 
between the Cauchy stress tensor and the strain energy density function for a 
hyperelastic material. 

Ignoring thermal effects for simplicity, the mechanical energy principle requires 
that the time rate of change of the total mechanical energy for a portion . P of a body 
. B be equal to the rate of work done by the surface forces (represented by a traction 
vector . tn) and body forces (represented by a vector . b) acting on it [1]. The total 
mechanical energy of . P consists of its kinetic energy and elastic potential energy 
which is represented by an energy density function .Ψ(X, t) per unit volume in the 
reference configuration of . P, denoted . P0. The mechanical energy principle can thus 
be stated mathematically as follows [1]: 

.
d

dt

⎡
⎢⎣

∫
P

ρ

2
v · vdv +

∫
P0

ΨdV

⎤
⎥⎦ =

∫
∂P

tn · vda +
∫
P

b · vdv, (48) 

where . v is the velocity and . ρ the density. Since . P is not guaranteed to be constant 
over time, the time derivative cannot immediately be brought into the integral. 
Instead, a conversion from the current configuration to the reference configuration 
must be carried out using Equation 44. Denoting .J := detF , the left-hand side of 
the above equation becomes 

.
d

dt

⎡
⎢⎣

∫
P0

ρJ

2
v · vdV +

∫
P0

ΨdV

⎤
⎥⎦ =

∫
P0

(ρJ )a · vdV +
∫
P0

Ψ̇dV . (49) 

We introduce here several well-known results from continuum mechanics: 
Cauchy’s first and second laws of motion, which are obtained from the conservation 
of linear and angular momentum, respectively, and Cauchy’s stress principle [25]: 

. divT + b = ρa, (50) 

.T = TT , (51) 

.tn = Tn, (52)
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where . T is the stress tensor, . a is the acceleration vector, and . n is the exterior unit 
vector normal to . ∂P. Applying these to the right-hand side of Equation 48 yields 

.

∫
∂P

Tv · nda +
∫
P

b · vdv =
∫
P

div(Tv)dv +
∫
P

b · vdv

=
∫
P

[divT · v + tr(T grad v)]dv +
∫
P

b · vdv

=
∫
P

(ρa) · vdv +
∫
P

tr(T grad v)dv

=
∫
P0

(ρJ )a · vdV +
∫
P0

J tr(T grad v)dV,

(53) 

where .grad v = ∂v
∂x is the velocity gradient tensor. It is usually denoted by . L. We  

note that 

.

Ḟ = ∂v
∂X

= ∂v
∂x

∂x
∂X

= LF,

∴ L = ḞF−1.

(54) 

Plugging the results from Equations 49 and 53 back into Equation 48, noting that 
. P0 was arbitrarily chosen, and that the trace of the product of a symmetric and a 
skew-symmetric matrix is 0 allows us to conclude that 

.

Ψ̇ = J tr(TL)

= J (TikḞkmF−1
mi )

= (JTkiF
−T
im )Ḟkm

= TR,kmḞ T
mk

= tr(TRḞT )

= TR : Ḟ,

(55) 

where .TR := JTF−T is the first Piola-Kirchhoff stress tensor and . : denotes the 
double dot product between two tensors .A : B := tr(ABT ). A hyperelastic solid is 
defined as a material whose elastic potential energy is given by the following strain 
energy density function [1]:
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.Ψ(X, t) = Ψ(F(X, t),X). (56) 

Applying the chain rule to take the time derivative of . Ψ, 

.
dΨ

dt
= ∂Ψ

∂F
: Ḟ. (57) 

Hence, Equation 55 can be re-expressed as 

.

[
TR − ∂Ψ

∂F

]
: Ḟ = 0, (58) 

which must apply for all . ̇F; hence, 

.TR = ∂Ψ

∂F
⇔ T = J−1 ∂Ψ

∂F
FT . (59) 

We require the strain energy . Ψ to satisfy the principle of material frame 
indifference which states that the constitutive laws describing the behavior of a 
material should be indifferent under any change of frame of reference of the 
observer, i.e., for any orthogonal tensor . Q, 

.Ψ(QF) = Ψ(F). (60) 

Recalling the polar decomposition of . F described in Equation 46, we can select 
.Q = RT

C so that 

.Ψ(F) = Ψ(U) = Ψ̃(C). (61) 

An isotropic material satisfies the property that a deformation following any rigid 
body rotation . P results in a similar state of strain, i.e., 

.Ψ(FP) = Ψ(F) ⇒ Ψ̃((FP)T (FP)) = Ψ̃(PT CP) = Ψ̃(C). (62) 

Again, letting .P = RT
C from Equation 46 gives 

.Ψ̃(B) = Ψ̃(C). (63) 

Plugging Equations 61 and 63 into Equation 59 gives 

.

T = J−1 ∂Ψ

∂B
∂B
∂F

FT

= 2J−1 ∂Ψ

∂B
B.

(64)
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In general, . B and . C have distinct values, although they have the same invariants 
(which are by definition scalar-valued functions .f (B) such that for any orthogonal 
. Q, .f (QBQT ) = f (B)). Equations 61 and 63, obtained by combining the principle 
of material frame indifference and isotropic requirements, allow us to conclude that 
the strain energy for a hyperelastic, isotropic material must be dependent only on 
the invariants of the left or right Cauchy-Green deformation tensors (denoted . I1, . I2, 
. I3). Reusing . Ψ to represent the strain energy density function, 

.Ψ = Ψ(I1, I2, I3). (65) 

An example of a set of such invariants is 

.

I1 = tr(B),

I2 = tr(B−1),

I3 = det(F).

(66) 

An object is incompressible if .detF − 1 = 0; this imposes a constraint such that 
the total Cauchy stress tensor can only be determined by . F up to an arbitrary stress 
[1]: 

.T = −P I + TE(F), (67) 

where . I is the identity tensor and . TE is the elastic response of the material which has 
the form given in Equation 64, except that incompressibility implies that . J−1 = 1
and .Ψ = Ψ(I1, I2). Applying the chain rule, 

.

TE(F) = 2
∂Ψ

∂B
B

= 2

(
∂Ψ

∂I1

∂I1

∂B
+ ∂Ψ

∂I2

∂I2

∂B

)
B

= 2

(
∂Ψ

∂I1
B + ∂Ψ

∂I2
B−1

)
.

(68) 

Hence, 

.T = −P I + 2

(
∂Ψ

∂I1
B + ∂Ψ

∂I2
B−1

)
. (69) 

Instead of determining P directly, note that . T can be broken down into hydro-
static stress and deviatoric stresses. Hence, by extracting the hydrostatic portions of 
. B and .B−1 (leaving these terms with only the deviatoric portions) and grouping it
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together with .−P I to form the total hydrostatic stress .−p = tr(T)
3 , and recalling that 

.tr(B) = I1, .tr(B−1) = I2 [15], 

.T = −pI + 2

[
∂Ψ

∂I1

(
B − I1

3

)
+ ∂Ψ

∂I2

(
B−1 − I2

3

)]
. (70) 

For our spherical, isotropic, incompressible, hyperelastic shell, the left Cauchy-
Green deformation tensor (in spherical coordinates) is 

.Be
S =

⎡
⎣λ−4 0 0

0 λ2 0
0 0 λ2

⎤
⎦ . (71) 

which gives 

.

I1 = λ−4 + 2λ2

I2 = λ4 + 2λ−2.
(72) 

Since . I1 and . I2 depend only on the principal stretch . λ, it follows that the strain 
energy density function can be expressed as .Ψ = Ψ(λ), and 

.

dΨ

dλ
= ∂Ψ

∂I1

dI1

dλ
+ ∂Ψ

∂I2

dI2

dλ

⇒ ∂Ψ

∂I1
= λ5

4(λ6 − 1)

dΨ

dλ
− λ2

∂Ψ

∂I2
.

(73) 

Evaluating Equation 70 for the radial term and plugging in Equation 73 gives the 
final form of the radial term of the stress tensor: 

.

T e
rr,S = −p − 4

3

λ6 − 1

λ4

∂Ψ

∂I1
− 4

3

λ6 − 1

λ2

∂Ψ

∂I2

= −p − 4

3

λ6 − 1

λ4

[
λ5

4(λ6 − 1)

dΨ

dλ
− λ2

∂Ψ

∂I2

]
− 4

3

λ6 − 1

λ2

∂Ψ

∂I2

= −p − λ

3

dΨ

dλ
,

(74) 

where the pressure .p = −Te
S

3 arises from the incompressibility constraint. Denoting 
.δ3 = a3 − a30 as the change in volume encompassed by the shell as it changes in 
radius, we note that due to incompressibility and conservation of mass,
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.

r3 − a3 = r30 − a30 ⇒ r3 = r30 + δ3

⇒ r30

r3
= 1 − δ3

r3

⇒ λ =
(
1 − δ3

r3

)− 1
3

⇒ dλ

dr
= λ − λ4

r
.

(75) 

Plugging Equations 74 and 75 into Equation 27 gives 

.S =
∫ b

b0

a
a0

Ψ '(λ)

λ3 − 1
dλ. (76) 

2.6.3 The Mooney-Rivlin Strain Energy Density Function 

The Mooney-Rivlin strain energy density function is used to estimate the strain 
energy and its derivation is presented as follows [21]. Consider a cylindrical element 
of volume with unit height and diameter in a hyperelastic material that is (i) 
homogeneous, (ii) memoryless, (iii) isotropic, and (iv) incompressible, with the 
property that (v) the traction arising from simple shear in any isotropic plane is 
proportional to the shear. It is deformed in two steps, a stretch-squeeze in its length 
dimension of magnitude . λ1 and a shear in the plane normal to the stretch giving rise 
to principal stretches . λ2 and . λ3 (Fig. 2). 

The work done in the first step is thus some function of . λ1: 

.Ψ1 = ψ(λ1). (77) 

Since the volume element after the stretch-squeeze has diameter . 1√
λ1
, to produce 

the final principal stretches will require the second stretch to have magnitudes 
.λ2

√
λ1 and .λ3

√
λ1. Hence, the shear is 

.γ = √
λ1(λ2 − λ3). (78) 

By requirement (v) specified above, the work done per unit volume in the second 
deformation is 

.Ψ2 = λ1(λ2 − λ3)
2φ(λ1). (79) 

Adding the above and keeping in mind the incompressibility requirement 
.λ1λ2λ3 = 1, the total work done can be expressed as


