Fundamentals

A Primer for Java Development and
Programming

Jeff Friesen

Apress:

Learn Java Fundamentals

A Primer for Java Development
and Programming

Jeff Friesen

Apress®

Learn Java Fundamentals: A Primer for Java Development and Programming

Jeff Friesen
Dauphin, MB, Canada

ISBN-13 (pbk): 979-8-8688-0350-5 ISBN-13 (electronic): 979-8-8688-0351-2
https://doi.org/10.1007/979-8-8688-0351-2

Copyright © 2024 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar
Photo by pariwat pannium on Unsplash

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0351-2

To my Lord and Savior, Jesus Christ
and
To the memories of my parents and my older sister
and
To my younger sister and her family.

Table of Contents

About the AUROFcccceemmismsinsnssssss s nnnnnn s xiii
About the Technical REVIEWETcccccusssmsmsssansssssssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssns XV
INtroduction........ccccimiimmmnsmsmmsns s ————— Xvii
Chapter 1: Getting Started with Javaccinsmmmmssmmmmsssnmmssenmsssssmsssssmsssssssssssssssns 1
WRAL IS JAVAY ... 1
Java Is a Programming LANQUAGEccecevrererreriererssnenseressesessessessesssssssessessesssssssessessesssssssesaenes 2

Java Is @ Virtual PIatform..........ccovmnns s s snsnns 3

The Java Development Kitccooeiirirneni v r s s se e s s e s se s sn e sae s sae s 4
“hello, World” — Java StYIE.........ccvcicrrr s 6
Application ArChItECIUE......ccoe e ——————— 10
WREE'S NEXE? ..o e n e p e 12
Chapter 2: Comments, Identifiers, Types, Variables, and Literals..........ccccsssuennrians 13
COMIMENTScvierriesrerese e b e e s e b s e e e e e R e e e R e e e n e e e Re e be e nr e e nnnne e 13
Single-Line COMMENTS ..o e 14
MUItIliNE COMMENTS.......ccoveeerrererese s 14
JavadoC COMMENTS ..o e 15
IABNEITIEIS ..veccce s 18
L] S 20
PrIMITIVE TYPES weevereireriee st s s s e s sa e s s s a e s a e s s e ae e ae s ae e e e e e eneeaenne s 21
USEr-DefiNed TYPES...cceecercee e rerer et r e s s e s r e s s e sa e s s e e sne e ae e s 22

L1 L 10 S 24

I T 26
PUting [t All TOGETNETcveeeeeeree s 28
WRAE'S NEXL? ... ne e nnn s 30

TABLE OF CONTENTS

Chapter 3: EXPreSSIONS.....ccuueesresssssnssssssssnssessssnssssssssnnsssssssnnsssssssnnnsssssnnnnsssssnnnnsssss 31
INtrodUCING EXPIESSIONS.....cceiriiriiircresis st sr e s r s s s p e s s b e e nnas 31
SIMPIE EXPrESSIONS.......ciceririiriere et e b e s e e e p e p e e ne s 31
CoMPOUNG EXPrESSIONS.......ciiiiiiireresississe e sas s saesa s s st e s s b e 33

Operator EXAMPIESccceviiriire st st st st nne s 36
Playing With EXPreSSIONSccvueerreserrsesrssesessasesrssessssesssssssssssesssssssssssssssssssssssesssssssssssssssssssssessnns 54
L L U0 [59

Chapter 4: Statements........ccccivninnnmmee . 01

INtroduCing STALEMENTS......ccccveiriere s e s sr e e s ae e e e naennen 61
Assignment STAteMENES ... —————————— 61
Simple-Assignment Statement...........ccoocicnnc e ————— 61
Compound-Assignment Statement.............ccovevrrrrncnnne s 62
DeciSion STAtEMENTS ... s 62
L] F2 (=] 11T L T 62
If-EISE STAIEMENL.......ceeeeeee e 63
SWILCH STALEMENT ... e 66
LOOP STAtEMENTS ..o ——————————— 68
FOr STAtBMENT ... s 68
While STatEMENLccceeererrer e 70
Do-While STatemMENtcccovecerecerreserese s s 72
Loop-Branching Statements ... s snns 73
Break Statement..........ccoiceicrinese s s 73
Continue STAtEMENT..........ccccviecree s 75
Additional StateMENTS..........cccciirii e ——————— 77
ASSErt STAtBMENT.........cecicccrr e ——————————— 77
Emply STatement ... ————— 78
IMPOrt STAtEMENL........coo e nne s 78
Method-Call StAteMENt ... ——— 78
Package StatemMENtcovvvvririe e e 79
Return Statement ... ——————— 79

TABLE OF CONTENTS

Try STATEMENT ... e 79
Try-with-resources StatemMENt...........ccvcvirevnrnire e nes 79
Playing With STatemMeNnts ..ot 79
WREE'S NBXE? ... e n e e e ne e 84
Chapter 5: Arrays.....cccueemmmmssnsnmmssssssnmmssssnnnsessssnsnmsssssnsnsessssnsnnsssssnnnsssssnnnnessssnnnnsssss 85
LTG0 [T T T A S 85
0Ne-DiMENSIONAI AITAYSc.ccerrvererresersnsessssessssssessssessssessssesessssessssessssesssssssssssssssssssssasssssssssnsenens 85
Creating @ TD AITAYcccccviierrneserese s sr s s e p e s e e p e ne e n s 86
Accessing 1D Array EIBMENTS.........ccccvvverneninenersesrsese s ssssese s ssssessssessssssesssssssssenens 88
Searching and SOITINGcccccvvvrrriere e s sa e e s e s ae e e e e e ne s 89
LiNar SEArCH ..o —————— 90

31T Fo LTS L R 91
BUDDIE SOM.....oviiciicisisisiee e 94
TWO-DIMENSIONAI AITAYSccererieeririerrie s s e e s e sa e s a e s s s e e s ae s s s e e e e s ae s e s g e snesaenaeens 96
Creating @ 2D AITAYccoevrererserieresessersersessessssessessessssessessessessssessessessssessessesssssssessessesssssnsessens 96
Accessing 2D Array EIBMENTS.......cccccvviirinin s 98
RAGUEA AITAYS ..ot re e ss e s sa e s s a e e s s s e e b b e e e e s ae s aenanan 100
Matrix MURIPHCALIONcceieecr e 102
WREE'S NBXE? ... et e e ae e e e e srnnn e 105
Chapter 6: Classes and ObJectScccirusssmmmmmssssnnnsmsssssnnnssssssnnnssssssnnnsssssnnnssssssnnnnss 107
INTrOAUCING CIASSES....ceveerreererisesresesreseresesessese s srs e s e se e e s sn s e s s sa e s e s 107
DECIANNG ClaSSEScvrererreerrrerrssesesresesrssesssesessssessssesessesessssessssesessssessssnsssnsssssesssssssssnsssnnes 107
Describing State via FIelds..........ccocvvrernnenrnnesenesers s sessssesenss 108
Describing Behaviors via Methodsccovererenernsmnnsesessssess s sessssesenses 109
Describing Initialization via CONSTIUCIONScccvcervsrneserese s 114
Putting [t All TOGELNETvceeieceereserese s e 117
INTrOdUCING ODJECTS ...eiveerreerrresire st 119
ConStruCting ODJECES ...cveerriceree e 119
ACCESSING FIEIAS........ccerereerirrecerrese e r e nrn e rnne e 120
Calling METhOUScceeerreerirerire e ne e nr s 120

vii

TABLE OF CONTENTS

Putting It All TOGELNETcoveierer et 122
AdItioNAl TOPICSveeruerrirrriirsere s st r e s r e e e e s pe e e s nne s 123
INformation Hiding.......ccccovcninnisnsn s e s e s 123
Object INMLIAlIZALION ... s 125
ULIlILY ClASSESvrueereecrircrireririe s is st e e se s e be e s et s a e st e b e et nenae e ne s 127
Class INILIANIZALION..........ceeeererereseesese e 130
Field-ACCESS RUIEScooeeerereercser et 132
MEthOd-Call RUIESceeeerereeieecreresiseee e se s se s e nens 133
T LT L 133
Method-Call ChaiNiNgccoveevererereiernererse e se s e sa e se s e ae e see s 135
22T 01] o] S 138
L2 1 SOOI 139
WREE'S NBXE? ... s s e e s ae e r e e s e nnn e 142
Chapter 7: Reusing Classes via Inheritance and Compositionccovvceeeeennnneas 143
Q1] =T S 143
Class EXIENSIONcceeerreererererene s sesse e ses e s e e ses s ssssesss e sessssnssssessssesessssssssssnsnns 144
Method OVEITidiNg.......cccveeernereneneresersse s s nns e nennes 149
The Ultimate ANCEStOr Of All CIASSESccvveerrrsereresesreseressesessessssssessssesesssssssssessssesenssssssenens 154
COMPOSITION ...vuevieceiree e e e a e e e e e e R e e e e r s 187
The Trouble With INNEILANCEc.cceeeecerecrrer s ———— 188

L L U0 [194

Chapter 8: Changing Type via Polymorphism.........c..ccccimnnsnennmmnssssnnssssssssssssssssness 199

Upcasting and Late Bindingc.ccocvveririnninnnnin s ssesses e ssesssssssssessessssssessessenns 197
Abstract Classes and Abstract Methodscccovrencnernnenenesess e 197
Q12T T L 200
Interface DECIAratioNcoeerereerrere e 203
IMplementing INTEITACES........c.voeeereecrrere e 204
EXtENding INTEITACES......coveoeeeeceereer et 212
Downcasting and RTTI ... s se e s sesssnenns 220
Runtime Type 1dentifiCationcoovervcrnnennsse s 222

viil

TABLE OF CONTENTS

X0 o T 10 o VN0 [0S 223
Covariant REIUIN TYPES...covcrrererrrerrere s s see s s s se s s sae s s saesae s s e ssesnesaenessesnees 223
Interface-Based Static Methods..........c.coveicnnnnnsn s 227

WRAE'S NEXE? ...t ne e nnns 229

Chapter 9: Static, Non-static, Local, and Anonymous ClasSesccrrsssssssessssnnnnss 231

STALIC CIASSES ...cvrueereeereeerersere e s e s e e e e e n e e e se e e e e re e e e e 232
A More Practical Static Class EXample........c.ccocevrvnvnininnnnni s sesesns 235

INNEE CIASSES ...veueeeeeerreerresesessesessesesse e ses e e e s ses e e s s e sse e ses e sesse s ssssessesessssnsnssnnssassssnnsnsnns 241
63 1 1 (01 T TS 244
A More Practical Inner Class EXample........cccvvvninnniennninsinsesesss s ssssessesesssssssessesees 246

LOCEI CIASSES ...vcuevrseerreersasessssessssesessesessssessssesessa e ssssesssse e s e e ses e ssssessssesessasessssessnssnsssanessansnsnns 250
A More Practical Local Class EXamPIEccooucevrennnnernsessnessnssessssesesesssssessssesessessssenens 255

ANONYMOUS ClASSES ..c.ververeererseriesesseressessssessessessessssessessessesssssssessesssssssessessessessssessessessssensessens 261
SUMMANIZING ..eoveerierierere e s e s s et s s st e e s s s sae e e e e aesaesaene e e e aesae e e e nannnees 265
A More Practical Anonymous Class EXamPIEcccvvevvrnrnieniennsinsene s sessessesessssessessenes 266

L L U0 [o 270

Chapter 10: PaCKAQeS.....uurruussmnmrsssssnnnmssssssssmsssssnssssssssnssssssssnnsssssssnnssssssnnnssssssnnnnss 271

What Are PACKAGES?couerriiirirere s sine s sse st s st s st s sr st s st s 271

The Package STatemeNt ... e 272

The Import STAtEMENt ... ————————— 273

Playing With PACKAGESccvuererenirrierinessnsesessese s sssse s e e s e s s sssse s e ssssssssssssssssssssssssns 275
Packaging a Logging LiDrarycooccvvcvnennisennse s sssse s ssssesssssssssssessnses 275
Importing Types from the Logging LiDrary.........ccueeevenminsesnesnnse s sesessesessssessnnes 280

AdItIONAI TOPICS vuvrerrerrerrrserrereresesseresessese s s s s e ses e s e s ssese s e saesaesse e s e s aesaeseeensesaessessssensessens 283
STALC IMPOMS ... —————— 283
ProteCted ACCESSciuiiriiiririi e 286
JAR FlBS...oviviiieitsiririsisesese st bbbt 287

L L U0 [T 288

ix

TABLE OF CONTENTS

Chapter 11: Exceptions and Errors......ccuccummmmssssnmsssssssnsssssssssssssssssssssssssssssssssnnnss 289
What Are EXCEpLionS and ErTOrS?........occeerrneesesesess e sesessans 290
Representing Exceptions and Errors in SOurce Code........c.ccuvninvrennnnsnnennsnsessesessssessenaens 291

Error Codes VS. ODJECLSccvcererininiirie et s 291
The Throwable Class HIErarchyccoceorerrnenerenerssesessese s sessesessenens 293
THhrowing EXCEPLIONS......cccvierrrcresese s se s sr s sesnesesnnnens 296
The Throw StatemMeNnt ..o e 296
THE TRIOWS ClAUSEcovveeerrererree s sesse e s s e s sss e sessssessssessssesenssnsssenens 297
The Try STatemMENT ..o e sr e 299
TRE TIY BIOCK ...ttt s 299
CatCN BIOCKSc.ccueerreerisesinessese e sn s s p s 301
The FINAIY BIOCKcccvvveriireierise s s s e sr s snssesessssssanens 303
The Try-with-resources Statement ... —————— 308
L L U0 [o 310

Chapter 12: Math, BigDecimal, and BigInteger.............cousmmssamsssnsssansssassssnsssansssans 311

1 U OSSPSR 311
Math CONSTANTSccvceeecririrscee e p e 312
Trigonometric MEthods........covircrirene s s 313
Random NUmMDbEr GENErationc.ccueeeeererernenesesesesssse s se s sessssesssesens 316

BIgDECIMAL.......eiererericsir et s e e nne 320

21T 0L T S 323

WREAE'S NEXE? ..ot n e ae e s e nnennnne s 324

Chapter 13: String and StringBuffer ... 325

SN 1rtrerere s E R R e e e e R e Re e e e e e Re R e e e e naenan 325
Creating StriNGS......cccvrrirerriere s re s sae e e e e a e e e e e ene e 325
COMPArING SENQSeverireririere s e a e e e e e s a e e e e e e eaees 326
Concatenating StriNQSov v e e 327
Exploring String Methodsccccvivvririeni e 327
Immutability and INTEIMINGccccvvvririer e 331
L L0 o B 0T T o O 333

TABLE OF CONTENTS

L1020 P 335
Creating String BUFFEIS.....ivivvverrrerrere s s se s e ss e sae e s s snesa s e snesne s 335
Exploring StringBuffer MEthodsccvcevievrinienennrersere s s s s saesessessesnes 336
TEXE RBVEISAL ... s e 341

WRAE'S NEXE? ...t ne e nnns 342

Chapter 14: SyStemccccicmrmssnmmsssnmssssnsssssssesssnsesssnsesssnsesssnsesssnsesssnnesssnnsnssnnssssas 343

L4 A 0]) o 343

Current Time and Nan0 TiME.......cccvveerrrrermresernsesesese s sessessssssessssssessssesssssssssssenns 346

Garbage CoOlECHION........ccvceerrcere e 351

LI g LI T0 T 1 1 (] OO 354

STANAANT 1/0 ... 355
STANAArd INPUL.... .o e s a e e s ae e e e e e aenne s 356
Standard QUIPULoccveve e s sa e e sae e e s e aenne s 357
3] 2L T0 2L =] 361

) R oL (0] 01T T 362
THE PropertieS ClaSS.......ccvvererrererserserersssessesessessssessessesssssssessessesssssssessessesssnsssessesssssssessesses 367

Virtual Maching SHULHOWN ..o e 370

WREE'S NBXE? ..o e ne e p e e s nrnnn e 371

Appendix A: Reserved Words Quick Reference..........ccvsusmsesmssssmssssssnsssnsssassssnsnnns 373
Appendix B: Operators Quick Reference.......ccouussssssmsssssnsnssssssnsnssssssnsnssssssnnnssssnnns 375
1T - 379

xi

About the Author

Jeff Friesen is a freelance teacher and software developer
with an emphasis on Java. In addition to authoring several
books on Java and Android for Apress such as Java I/0,
NIO and NIO.2 and Java XML and JSON, Jeff has written
numerous articles on Java and other technologies for
JavaWorld (now known as InfoWorld), InformIT, Java.net,
SitePoint, and other websites.

xiii

About the Technical Reviewer

PR Massimo Nardone is a seasoned cyber, information, and
operational technology (OT) security professional with

28 years of experience working with companies such as

IBM, HP, and Cognizant, with IT, OT, IoT, and IIoT security
roles and responsibilities including CISO, BISO, IT/OT/IoT
Security Architect, Security Assessor/Auditor, PCI QSA, and
ICS/SCADA Expert. He is the founder of Massimo Security
Services, a company providing IT-OT-IoT security consulting
services, and member of ISACA, ISF, Nordic CISO Forum,
and Android Global Forum and owns four international

patents. He is coauthor of five Apress IT books.

Introduction

Java is a popular programming language and environment. Because it is used in the
Information Technology departments of many companies, learning Java is a great way to
boost your career (and earn more money in these difficult financial times).

If you have never worked with Java, this 14-chapter book is for you. Chapter 1 starts
you on a gentle journey to learn Java fundamentals.

Chapters 2 through 11 focus mainly on language syntax, although a few APIs that are
closely related to syntax are also presented.

Chapter 2 focuses on comments, identifiers, types, variables, and literals. These
features are fundamental to many languages, and this chapter also shows you where Java
differs from other languages in their implementation.

Chapter 3 focuses on expressions (and operators), and Chapter 4 focuses on
statements. Again, these features are found in many languages. You will use these
building blocks to construct simple Java programs and will learn where Java’s
implementations of expressions (and operators) and statements diverge from other
languages.

Chapter 5 focuses on arrays. You will use this fundamental data structure to create
programs that work with sequences of data items. For example, you might want to search
a sequence of employee IDs for a specific identifier.

If this was all that Java had to offer, you would be able to create sophisticated
structured programs. In a structured program, data and operations that manipulate the
data are separated. However, Java goes beyond its ability to create structured programs,
as revealed in Chapters 6 through 8.

Chapter 6 introduces you to classes and objects. A class is a template from
which objects are manufactured. It provides an architecture for structuring data and
associating that data with code that manipulates the data. An object is an instance of a
class (kind of like a cookie is an instance of a cookie cutter). It stores data that can be
manipulated by the code that the object receives from its class. (Don’t worry if this seems
complicated. After reading Chapter 6, you'll have a much better understanding.)

Java and other languages that support classes and objects are known as object-
based languages. To go beyond object based and become an object-oriented language,

xvii

INTRODUCTION

a language must also support inheritance. Java supports inheritance, which you'll learn
about in Chapter 7.

Programs can be made more efficient through polymorphism, which is based on
inheritance. The idea behind polymorphism is that a single symbol can represent many
different types (e.g., the + symbol can represent integer addition, floating-point addition,
or string concatenation). You'll learn about polymorphism in Chapter 8.

There are a few more language features that you need to learn about before you can
tour Java’s many APIs. Chapter 9 begins by introducing you to static, non-static, local,
and anonymous classes. These features let you logically organize your code, making it
more readable and maintainable.

Packages let you organize related classes in the equivalent of a file folder. This feature
helps you avoid name conflicts by organizing a library of classes under a single prefix.
Check out Chapter 10 to learn about packages.

Java provides a robust exception-handling mechanism for dealing with flawed
code or unexpected difficulties, such as attempting to open a nonexistent file. This
mechanism is covered in Chapter 11.

The final three chapters tour some fundamental APIs that you'll use in many Java
programs. Chapter 12 focuses on the Math class and related types, Chapter 13 focuses
on String and StringBuffer, and Chapter 14 focuses on System. After you explore
these types, you'll be able to explore additional APIs on your own to increase your Java
knowledge.

Two appendixes round out this book. Appendix A provides a quick reference to
Java’s supported reserved words, and Appendix B provides a quick reference to Java’s
supported operators.

xviii

CHAPTER 1

Getting Started with Java

Welcome to Java. This technology is widely used in the business world, and you
probably want to learn it quickly so you can capture a job in one of these companies
as a Java programmer. Although Java is vast and constantly evolving, there are various
fundamental features that are timeless and easy to understand. After you master these
fundamentals, you will have an easier time writing Java programs.

This chapter launches you on a tour of Java’s fundamental features. You first receive
an answer to the “What is Java?” question. Next, you learn about the Java Development
Kit, which is the necessary software for developing Java programs on your computer.
Moving on, you are introduced to your first Java program, which outputs a simple “hello,
world” message. Finally, you discover application architecture.

Note A programis a sequence of instructions for a computer to execute. An
application is a program with a single entry point of execution. (In contrast, an
applet— an old form of Java program that is no longer widely used — has multiple
entry points.) For example, a Microsoft Windows program that is stored in an

.exe file has a single entry point. When expressed in C language source code
(textual instructions), the entry point is defined by a function (a named sequence of
instructions) with the name main.

What Is Java?

Java is like a two-sided coin. From one side, it’s a computer programming language.
Conversely, it’s a virtual platform (the hardware and software context in which a
program runs) for running programs written in that language.

© Jeff Friesen 2024
J. Friesen, Learn Java Fundamentals, https://doi.org/10.1007/979-8-8688-0351-2_1

https://doi.org/10.1007/979-8-8688-0351-2_1

CHAPTER 1 GETTING STARTED WITH JAVA

Note Java has an interesting history. Check out Wikipedia’s “Java (programming
language)” (http://en.wikipedia.org/wiki/Java_(programming
language)#History) and “Java (software platform)” (http://en.wikipedia.
org/wiki/Java_ (software platform)#History) entries to learn more.

Java Is a Programming Language

Java is a programming language with many features that are identical to those found
in the C and C++ languages. This is no accident. One of Java’s initial goals was to make
it easy for C/C++ programmers to migrate to Java to quickly build up an initial pool of
programmers that would help Java become successful.

You will discover several similarities between these languages:

o The same single-line and multiline comments for documenting
source code are found in Java and C/C++.

e Various identical reserved words are found in Java and C/C++, such
as if, while, for, and switch. Various other reserved words are found in
Java and C++ but not in C, such as try, catch, class, and public.

o Primitive types are shared between the three languages: character
and integer are examples. Furthermore, reserved words for these

types are shared between these languages: char and int are examples.

e Many of the same operators are shared between Java and C/C++.
Arithmetic operators (such as * and +) and relational operators
(such as == and <=) are examples.

o TFinally, Java and C/C++ use brace characters ({ and }) to delimit
blocks of statements.

Java also differs from C/C++ in many ways. Here are a few of the many differences:

e Java supports an additional comment style for documenting source
code. This comment style is known as Javadoc.

e Java provides reserved words that are not found in C/C++. Examples
include strictfp and transient.

http://en.wikipedia.org/wiki/Java_(programming_language)#History
http://en.wikipedia.org/wiki/Java_(programming_language)#History
http://en.wikipedia.org/wiki/Java_ (software_platform)#History
http://en.wikipedia.org/wiki/Java_ (software_platform)#History

CHAPTER 1 GETTING STARTED WITH JAVA

o Java's character type is larger than the character type in C and C++.
In those languages, a character occupies one byte of memory. In
contrast, Java’s character type occupies two bytes.

e Java doesn’t support all of C/C++’s operators. For example, you won't
find the C/C++ sizeof operator in Java. Also, the >>> (unsigned right
shift) operator is exclusive to Java.

e Java provides labeled break and continue statements. These variants
of their C/C++ counterparts, which don’t accept labels, are a safer
alternative to C/C++’s goto statement, which Java doesn’t support.

I discuss comments, reserved words, types, operators, and statements later in
this book.

The Java programming language is rigorously defined by various rules that describe
its syntax (structure) and semantics (meaning). These rules are used by a compiler to
verify correctness when translating a program'’s source code into equivalent bytecode,
which is a portable representation of the program'’s executable code. This bytecode is
stored in one or more class files, which are the Java equivalent of a Windows program’s
executable (.exe) file.

Java Is a Virtual Platform

Java is a virtual platform that executes Java programs. Unlike real platforms that consist
of a microprocessor (such as an Intel or AMD processor) and operating system (such as
Windows 11), the Java platform consists of virtual machine and execution environment
software.

A virtual machine is a software-based processor with its own set of instructions.
The Java Virtual Machine’s (JVM) associated execution environment consists of a huge
library of prebuilt reference types (think Application Program Interfaces [APIs]) that
Java programs can use to perform routine tasks (such as opening a file). The execution
environment also contains “glue” code that connects the JVM to the underlying
operating system via the Java Native Interface. (I don’t discuss the Java Native Interface
in this book because I don’t consider it to be a fundamental feature.)

CHAPTER 1 GETTING STARTED WITH JAVA

Note The combination of bytecode and the virtual machine makes it possible to
achieve portability. the same Java program runs on all platforms that support the
virtual machine. It’s not necessary to recompile the program’s source code for each
platform.

A Java program is run by a special executable, which I call the program launcher.
Because a program consists of one or more class files, the launcher receives the name
of the main class file (the class file where execution begins). After loading the JVM into
memory, it tells the JVM to use its class loader component to load the main class file
into memory. The JVM then verifies that the class file’s bytecode is safe to run (e.g., no

viruses) and runs it.

Note The verifier and a security manager architecture make it possible to
achieve security: a Java application will not be allowed to run when the verifier
detects corrupt bytecode. Furthermore, when a security manager is installed, the
application won’t be able to steal sensitive information, erase files, or otherwise
harm a user’s computer.

During execution, a class file might refer to another class file. When this happens, the
JVM uses the class loader to load the referenced class file into memory and then verifies
and (if okay to run) executes that class file’s bytecode.

The Java Development Kit

The Java Development Kit (JDK) provides the necessary software for creating Java
applications, which are a category of Java programs with a single entry point of
execution. They contrast with Java applets, another category of Java programs that run
embedded in web pages. Applets are rarely used these days.

Follow these steps to download the JDK:

1. Enter www.oracle.com/java/technologies/ in your browser. This
takes you to the main page of Oracle’s Java site.

http://www.oracle.com/java/technologies/

CHAPTER 1 GETTING STARTED WITH JAVA

2. At the time of writing, the newest download is version 21.0.1.
Click on the Java SE 21.0.1 link. (Java SE stands for Java Standard
Edition. This is the foundation on which other editions are based
and is the appropriate edition for this book. Another edition is
Java EE, for Java Enterprise Edition. You would use this edition
when developing complex business solutions involving web
servers, database management systems, and client computers.)

3. IntheJDK Development Kit 21.0.1 downloads section of the
resulting Java Downloads page, you will see Linux, macOS,
and Windows tabs. The JDK is available for all three operating
systems. Choose whichever one is right for you. For example, I
clicked the Windows tab because I was running Windows. I then
had a choice between different kinds of installers. I chose the x64
installer whose file name ends with a . exe file extension. I found
this the easiest way to install the JDK.

Once you download the installer, such as jdk-21_windows-x64_bin.exe, run this
program and follow the onscreen prompts to install the JDK.

The JDK contains various tools for use in application development. Four of these
tools are the Java compiler (javac.exe in the Windows download), the Java program
launcher (java.exe in the Windows download), the Java documentation generator
(javadoc.exe in the Windows download), and the Java archiver (jar.exe in the
Windows download). You will only need to work with these tools in this book.

The JDK'’s compiler, program launcher, documentation generator, archiver, and other
tools are designed to be run from the command line within the context of a console (an
operating system-specific construct consisting of a window for viewing output and a
command line for obtaining command-based input). To obtain a console on Windows
operating systems, perform the following tasks:

1. Go to the Start menu and select Run.

2. Inthe Run dialog box, enter cmd in the text field and click the OK
button. On the Windows operating system, you should observe a
window similar to that shown in Figure 1-1.

CHAPTER 1 GETTING STARTED WITH JAVA

C\Windows\system32\cmd.exe

Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. All rights reserved.

C:\Users\jeffrey>a

Figure 1-1. The upper portion of a console as seen on a Windows 8.1 machine

Figure 1-1 reveals C:\Users\jeffrey>, which is a prompt for entering a command
on my Windows 8.1 machine. The rectangular box to the right of > is the cursor, which
indicates the current position for entering text on the command line.

“hello, world” — Java Style

Let’s create a simple application to get a taste of Java code. Traditionally, the first
application does nothing but output the message hello, world on the console.
Listing 1-1 presents the source code to a HelloWor1ld application that does just that.

Listing 1-1. HelloWorld. java

class HelloWorld

{
public static void main(String[] args)
{
System.out.println("hello, world");
}
}

Listing 1-1 declares a HelloWorld class (I explain classes in Chapter 6) that serves as
a placeholder for the main() method (a named sequence of instructions that executes in
the context of a class).

Note Languages such as C use functions instead of methods. A function is a
named sequence of instructions that executes outside of any context.

CHAPTER 1 GETTING STARTED WITH JAVA

The main() method serves as the entry point to the application. When the

application runs, main()’s code is executed.
The main() method header (public static void main(String[] args)) exhibits

some interesting features:

The method is marked public so that the Java program launcher
can locate it. If public is absent, an error message is output when
attempting to run the application.

The method is marked static so that a HelloWorld object does not
need to be created in order to callmain(). The launcher calls main()
directly. It knows nothing of objects. If static is absent, an error
message is output when attempting to run the application.

The method is declared with a parameter list consisting of String[]
args, which identifies an array of string arguments that are passed
after the application’s name (HelloWorld) on the command line
when the application is run by the launcher. A string is a sequence of
characters placed between double quotes ().

The method is declared with a void return type that signifies the
method returns nothing.

Don’t worry if concepts such as return type and parameter list are confusing. You'll

learn about these concepts later in this book.
The main() method executes System.out.println("hello, world"); to output
hello, world on the console’s window. I explore System.out and its System.err and

System.in counterparts in Chapter 14.

INDENTATION, OPEN BRACE CHARACTER PLACEMENT, AND CODE-SEPARATION STYLES

Programmers often follow one style when indenting source code, another style when
positioning a block’s open brace character, and a third style when using blank lines to separate
segments of source code. (I briefly discuss blocks, which are sequences of code surrounded
by { and } characters, in Chapter 4.)

Listing 1-1 demonstrates the first two style categories. It shows my tendency to indent, by
three spaces, all lines in a block. | find that doing so makes it easier to follow the organization
of my source code when updating it as requirements change.

CHAPTER 1 GETTING STARTED WITH JAVA

Also, Listing 1-1 shows my tendency to align the open ({) and close (}) brace characters, so
I can more easily locate the start and end of a block. Many programmers prefer the following
brace character alignment instead:

class HelloWorld {
public static void main(String[] args) {
System.out.println("hello, world");

}

Another style issue involves inserting blank lines to separate segments of code, where each
segment consists of statements that work collectively on some aspect of the program. Here is
a contrived example, involving a pair of classes, A and B:

class A

{
void method1()

{
for (int i = 0; i < 10; i++)
System.out.println(i);

while (true)

{
// ... do something here
}
}
void method2()
{

for (int i = 0; i < 10; i++)
System.out.println(i);

while (true)
{

// ... do something here

CHAPTER 1 GETTING STARTED WITH JAVA

class B

{
void method1()

{
for (int i = 0; 1 < 10; i++)
System.out.println(i);
while (true)

{

// ... do something here

}
void method2()

{
for (int i = 0; i < 10; i++)
System.out.println(i);
while (true)

{

// ... do something here

}

Each of classes A and B declares two methods: method1 () and method2 (). Furthermore,
each of method1() and method2() declares a for statement followed by a while
statement.

Don’t worry about classes, methods, and statements. | cover classes and methods in
Chapter 6 and cover statements in Chapter 4.

For now, pay attention to the blank line styles in each of A and B. A’s style is to place a blank
line between each method and between each group of related statements. B’s style is to
eliminate the blank line from between the methods and from between the statements.

Form your own styles for indentation, brace character placement, and code separation.
Although these styles don’t impact the generated code, adhering to them religiously sets you
apart from other programmers and can make your source code easier to read and maintain.
[tend to vary my code-separation style, which you’ll discover throughout this book’s code
listings.

CHAPTER 1 GETTING STARTED WITH JAVA

Compile the source code as follows (you must include the . java file extension):
javac HelloWorld.java

If everything goes well, you should observe a HelloWorld.class file in the current
directory.

Now, execute the following command to run HelloWorld. class (you must not
include the .class file extension):

java HelloWorld
If all goes well, you should observe the following output:
hello, world

Congratulations! You've just run your first Java application. You should feel proud.

Application Architecture

An application consists of at least one class, and this class must declare a main() entry-
point method, as you saw in Listing 1-1. However, many applications will consist of
multiple classes. All of these classes might be declared in a single source file, or each
class might be declared in its own source file. Consider Listing 1-2.

Listing 1-2. Classes.java

class A

{

static void a()

{
System.out.println("a() called");

}

class B

{
static void b()

10

CHAPTER 1 GETTING STARTED WITH JAVA

{
System.out.println("b() called");
}
}
class C
{
public static void main(String[] args)
{
A.a();
B.b();
}
}

Listing 1-2 declares three classes (A, B, and C) in the same source file - Classes. java.
Class C is the entry-point class because it declares the main() method.
Compile Classes. java as follows:

javac Classes.java

You should observe A.class, B.class, and C.class class files in the current
directory.
Run this application as follows:

java C
You should observe the following output:

a() called
b() called

If you try to execute A (java A) or B (java B), you'll discover an error message
because neither class declares the main() entry-point method.

This brings up an interesting point. You could declare main() methods in A and B
and run these classes as applications. However, this could get confusing.

You might want to declare a main() method in each of A and B to test these classes,
but there’s probably no other good reason to do so. It’s best to avoid confusion by
declaringmain() in the entry-point class only.

11

CHAPTER 1 GETTING STARTED WITH JAVA

What’s Next?

Now that you've had a taste of Java, it’s time to build on that knowledge by exploring
language features. Chapter 2 begins this process by focusing on the most basic language
features: comments, identifiers (and reserved words), types, variables, and literals.

12

CHAPTER 2

Comments, ldentifiers,
Types, Variables,
and Literals

When learning a new programming language, starting with the most basic of language
features is best. These features are comments, identifiers (with reserved words as a
subset), types, variables, and literals. This chapter introduces you to these features in a

Java context.

Comments

It's important to document your source code so that you and anyone else who might
maintain it in the future can understand the code’s purpose. Our brains tend to forget
things as we age, and we may not understand why we wrote the code the way we did.
Source code should be documented when it is written. This documentation might have
to be modified whenever the code is changed so that it accurately explains the new code.

Java provides comments for documenting source code. Whenever you compile the
source code, the compiler ignores the comments - no bytecode is generated. Single-line,
multiline, and Javadoc (documentation) comments are supported.

13
© Jeff Friesen 2024

J. Friesen, Learn Java Fundamentals, https://doi.org/10.1007/979-8-8688-0351-2_2

https://doi.org/10.1007/979-8-8688-0351-2_2

CHAPTER 2 COMMENTS, IDENTIFIERS, TYPES, VARIABLES, AND LITERALS

Single-Line Comments

A single-line comment appears on one line of source code. It begins with the // character
sequence and continues to the end of the line. The compiler ignores everything on this
line starting with the // characters. The following example demonstrates a single-line
comment:

double degrees = (5.0 / 9.0) * (x - 32.0); // Convert x degrees Fahrenheit
to Celsius.

Single-line comments are useful for specifying short but meaningful information.
They shouldn’t be used to insert unhelpful information, for example, // This is a
comment.

Multiline Comments

A multiline comment typically extends over multiple lines of source code although
it can appear on a single line. This comment begins with /* and ends with */. The
compiler ignores everything in between (including /* and */). The following example

demonstrates a multiline comment:

/* Extract both components of an email address into a two-element array.
email parts[0] stores "xyz" and email parts[1] stores "gmail.com". */
String[] email parts = "xyz@gmail.com".split("@", 2); // extract

You cannot nest a multiline comment inside of another multiline comment. For
example, the compiler generates an error when it encounters the following nested
comments:

/*
/%
Nested multiline comments are illegal.
*/
*/

Caution The compiler reports an error when it encounters nested multiline
comments.

14

CHAPTER 2 COMMENTS, IDENTIFIERS, TYPES, VARIABLES, AND LITERALS

Javadoc Comments

A Javadoc comment is a variation of the multiline comment. It begins with /** (instead
of /*) and (like a multiline comment) ends with */. All characters from /** through */
are ignored by the compiler. The following example presents a Javadoc comment:

%k

* Application entry point
*

* @param args array of command-line arguments passed to this method
*/
public static void main(String[] args)

{
// TODO code application logic here

This example’s Javadoc comment describes an application’s main() method.
Sandwiched between /** and */ is a description of the method and the @param Javadoc
tag (an @-prefixed instruction to the javadoc tool).

Here is a list of some commonly used Javadoc tags (including @param):

e (@author identifies the source code’s author.

o (@deprecated identifies a source code entity (such as a method) that
should no longer be used.

e (@paramidentifies one of a method’s parameters.
e (@see provides a see-also reference.

e @sinceidentifies the software release where the entity first
originated.

e @returnidentifies the kind of value that the method returns.
¢ @throws documents an exception thrown from a method.

Listing 2-1 presents updated source code to Listing 1-1’s Hel1loWorld application.
This source code includes a pair of Javadoc comments that document the HelloWorld
class and its main() entry-point method.

15

