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Preface 

Discrete Mathematics serves as the foundational framework for numerous concepts 
and technologies that drive the digital age, impacting aspects ranging from hardware, 
and algorithm design to the security of digital communication and the analysis of 
extensive datasets. Its principles are deeply woven into the fabric of contemporary 
computer science and technology. 

Within the digital era, Mathematical Modeling has emerged as an essential tool 
cutting across diverse disciplines, transforming the way we comprehend, dissect, 
and resolve intricate problems. In a landscape where copious amounts of data 
are generated, and computational power is increasingly accessible, Mathematical 
Modeling plays a pivotal role in translating real-world phenomena into Mathemat-
ical expressions for simulation, analysis, and prediction. The integration of Discrete 
Mathematics and Mathematical Modeling is fundamental to the digital epoch, 
providing both theoretical underpinnings and practical foundations for a broad spec-
trum of applications in technology and computer science. These disciplines facili-
tate the creation of efficient algorithms, secure communication protocols, network 
designs, and the optimization of digital systems, significantly contributing to the 
evolution of the digital realm. 

The 9th International Conference on Discrete Mathematics and Mathematical 
Modeling in Digital Era (ICDMMMDE-2023) was organized by the Department of 
Mathematics, The Gandhigram Rural Institute-Deemed to be University on March 
23–25, 2023. This conference is intended to provide a common forum for budding 
researchers, scientists, and engineers throughout the world to share their ideas and 
recent developments. Further, the conference plays a vital role as far as the application 
part is concerned and many real-life problems can be solved with proper investiga-
tions of appropriate Mathematical Modeling of realistic situations. The scope of 
ICDMMMDE-2023 is to bring all the modernistic researchers from various fields to 
discuss the latest developments in Mathematics. 

In total, 192 research articles were presented at ICDMMMDE-2023 which were 
reviewed by experts from various fields from both India and abroad. Based on 
the reviewer’s comments 16 research articles were accepted for publication in this 
volume. A total of 77 experts reviewed the presented articles all around the world.
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Salient Features 

1. The primary objective of the conference proceedings is to establish an inclu-
sive platform fostering advancements in Discrete Mathematics and Mathematical 
Modeling in the Digital Era. 

2. Within this compilation of conference proceedings, a diverse array of disciplines 
are explored including the development of efficient algorithms, secure communi-
cation protocols, network designs, and the optimization of digital systems. These 
collective efforts significantly shape the evolution of the digital landscape. 

3. The integration of Discrete Mathematics and Mathematical Modeling holds 
pivotal importance in the digital age, offering both theoretical foundations and 
practical frameworks for a wide range of applications in technology and computer 
science. 

4. The editorial team overseeing these conference proceedings comprises experts 
from various fields, including neurobiology, computer science, engineering, 
networks, and physics. 

5. A rigorous evaluation of original research articles was conducted with a focus 
on their potential lasting value, a criterion that underscores the strength of the 
conference proceedings. 

6. The articles that appeared in this proceedings conform to the latest developments 
in the fields of image processing, controllability, stability, graph theory, topology, 
queuing theory, and analysis.
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Mathematical Modelling



Chapter 1 
On the Approximate Controllability 
of Second-Order Hilfer Fractional 
Integro-Differential Equations 
via Measure of Non-compactness 

B. Ram Kumar , P. Balasubramaniam , and K. Ratnavelu 

Abstract This manuscript investigates the approximate controllability results for 
a class of second-order Hilfer fractional integro-differential equations (HFIDEs). A 
new set of appropriate mild solutions has been derived. Further, the existence of mild 
solutions for the proposed system has been verified using Mönch fixed point theorem 
(MFPT) and derived sufficient condition utilizing the measure of non-compactness 
(MNC). The approximate controllability results of the proposed system have been 
established by presuming that the associated linear system is an approximate control 
system. Finally, for the understanding, a numerical example is included. 

Keywords Approximate controllability · Hilfer fractional derivative · Mönch 
fixed point theorem 

AMS Subject classification 34A08 · 45J05 · 93B05 · 47H08 

1.1 Literature Review 

Fractional calculus and its applicability have attracted the attention of many scientists 
and researchers in subjects like engineering, chemistry, physics, economics, and oth-
ers. It is also considered an excellent tool for describing inherited features of different 
materials and diffusion phenomena. Fractional differential equations (FDEs) are the 
critical tool for modeling and analyzing many physical processes; it is a generalized 
form of integer-order differential equations; see [ 1, 2]. 
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Although numerous fractional derivatives have been published in the literature, 
the Riemann–Liouville derivative (RLD) and Caputo derivative (CD) are preferred 
in applications due to their greater flexibility. Hilfer recently proposed a general-
ized Hilfer fractional derivative (HFD) that interpolates smoothly between RLD and 
CD [ 3, 4]. In recent years, researchers have been interested in Hilfer fractional dif-
ferential equations in both finite- and infinite-dimensional frameworks. 

In 1960, Kalman introduced the concept of controllability; gradually, it was gen-
eralized to infinite-dimensional spaces. It is a key concept in control theory and 
studies the possibilities for steering a system to a specified state using an effective 
control function. Numerous authors investigated the controllability of Hilfer frac-
tional systems in recent years [ 5– 10]. In general, infinite-dimensional systems are 
not controllable in most of the cases. 

For infinite-dimensional spaces, approximate controllability is explicitly investi-
gated to overcome the issue. In the approximate controllability evaluation of a system, 
the system is steered from the initial position to an arbitrarily small neighborhood of 
the final position. As a result, a reduced basic concept of approximative controllabil-
ity has been provided for applications. Many researchers have studied solvability and 
approximate controllability results for Hilfer fractional evolution equations [ 11– 14]. 

Studying second-order HFIDEs is crucial due to their ability to accurately model 
complex phenomena that defy traditional differential equations. These systems find 
applications in diverse fields, including physics, biology, materials science, and engi-
neering. They are essential for describing anomalous diffusion, viscoelastic behavior 
in materials, control theory applications, and signal processing, as well as improv-
ing our understanding of biological systems, geophysical processes, and financial 
modeling. Furthermore, this study fosters innovation and scientific advancements, 
enabling precise modeling and problem-solving in various domains. 

Hilfer fractional differential systems are a powerful mathematical tool to com-
prehend and address real-world process intricacies, ultimately leading to improved 
technologies and scientific insights. To this extent, the approximate controllability 
of second-order HFIDEs has still not been examined. Inspired by this aspect, this 
present work aims to verify the existence and approximate controllability results of 
the stated second-order problem. The significance of the derived key result is stated 
as follows: 

• This study is the first attempt to analyze the solvability of HFIDEs. 
• A new set of mild solutions has been derived for HFIDEs. 
• The continuity and bonding properties of the control function are explicitly exam-
ined. 

• The existence of a mild solution is efficiently proved by utilizing MFPT. 
• The Hausdorff MNC property is used to verify the relatively compact conditions. 
• An example is provided to validate the theoretical result. 

The manuscript is structured as follows. Section 1.2 presents the system description of 
HFIDEs. The essential terminology, function spaces, definitions, and required early 
results are given in Sect. 1.3. In Sect. 1.4, we derive the respective characteristics
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of solution operators and present an appropriate definition of mild solutions to the 
problem. Through Sect. 1.5, we prove the existence results of the mild solutions 
of the problem via MFPT and investigate the approximate controllability of the 
proposed system. Finally, in Sect. 1.6, a numerical example is provided to enhance 
understanding. 

1.2 System Description 

This manuscript aims to extend the study of solvability and approximate controlla-
bility for a class of HFIDEs given by 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

Dα,β 
0+ v(ζ ) = Av(ζ ) + By(ζ ) + f (ζ, v(ζ )) + 

ζ{

0 

a(ζ, ℵ)g(ℵ, v(ℵ))dℵ, ζ  ∈ J1, 

Iκ 
0+ v(ζ )

|
|
ζ =0 = v0, 

d 

dζ 
Iκ 
0+ v(ζ )

|
|
ζ=0 = v1. 

(1.1) 
where .Dα,β

0+ represents the HFD of order .α ∈ (1, 2) and type .β ∈ [0, 1] and . Iκ
0+

represents the conventional fractional integral of order .κ := (1 − β)(2 − α). Let  
. H and . U be real Hilbert spaces. We suppose that .A is the infinitesimal generator 
which generates a strongly continuous uniformly bounded cosine family . {C(ζ )}ζ∈R
in .H; i.e., .∃ M ∈ R

+ ∍: ||C(ζ )||L(H)
≤ M, ζ ∈ R. Let . D(A) =

{
v ∈ H|C(ζ )v ∈

C2(R,H)
}

⊂ H be the domain of. Awith norm. ||v||D(A)
= ||v|| + ||Av||,∀v ∈ D(A).

Clearly, .A is closed and densely-defined in . H.Take .J := [0, b] and . J1 := (0 , b] .
.B ∈ L(U,H) symbolizes a bounded linear operator with .||B||L(U,H)

≤ MB. The con-

trol function .y(ζ ) takes values in .L2(J ,U). The functions . f and g will be defined 
with suitable conditions in the sequel. The integral kernel .a ∈ C(Δ,R+), where 
.Δ = {(ζ,ℵ) : 0 ≤ ℵ ≤ ζ ≤ b} with . ã = sup

ζ∈J

{ ζ

0 ||a(ζ,ℵ)||dℵ.

1.3 Basic Framework 

1.3.1 Weighted Continuous Function Space 

The space .L(a, b) of Lebesgue measurable functions .v(ζ ) on .[a, b] (b > a) of . R is 
defined by 

.L(a, b) =
{

v : ||v(ζ )||L(a,b) =
b{

a

|v(ζ )|dζ < ∞
}

.
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Let .AC[a, b] denotes the space of absolute continuous functions .v(ζ ) on .[a, b]. 
For .n ∈ N, we define the space .ACn[a, b] of absolute continuous functions .v(ζ ) as 
follows, 

. ACn[a, b] =
{

v : [a, b] → R

|
|
|
|
dn−1v

dζ n−1
∈ AC[a, b]

}

.

Let.C(J ,H) denotes the space of all continuous functions from.J to. H satisfying 
.sup
ζ∈J

||v(ζ )|| < ∞. Clearly, .C(J ,H) is a Banach space with norm. ||v|| = sup
ζ∈J

||v(ζ )||.
To establish a suitable definition for the mild solution of problem (1.1), we con-

struct the weighted space given below: 

. Y = C(1−β)(2−α)(J ,H) =
{
v(ζ ) ∈ C(J1,H)

|
|ζ (1−β)(2−α)v(ζ ) ∈ C(J ,H)

}
,

for .α ∈ (1, 2) and .β ∈ [0, 1] with . sup
ζ∈J

||
||ζ (1−β)(2−α)v(ζ )

||
|| < ∞.

Note that. Y is a Banach space with norm.||v||Y = sup
ζ∈J

||
||ζ (1−β)(2−α)v(ζ )

||
||.For some 

.r ∈ R
+, define 

. Nr = {
v ∈ Y : ||v||Y ≤ r

}
.

Clearly, .Nr is closed bounded and convex set in . Y.

1.3.2 Generalized Hilfer Fractional Derivative 

Now, we describe the generalized Hilfer fractional derivatives (GHFDs) and their 
particular versions. The GHFD has the property that it smoothly interpolates between 
the Riemann–Liouville derivative (RLD) and Caputo derivative (CD). 

Definition 1.3.1 The fractional integral of order .α > 0 for a function . v : R+ → H
with right limit zero is depicted as 

.Iα
0+v(ζ ) = 1

┌(α)

ζ{

0

(ζ − ℵ)α−1z(ℵ)dℵ, ζ > 0. (1.2) 

Definition 1.3.2 [ 4] The GHFD of order . α and type . β for a function . v : R+ → H
with right limit zero is depicted as 

. Dα,β

0+ v(ζ ) = Iβ(n−α)

0+
dn

dζ n
I(1−β)(n−α)

0+ v(ζ ), n − 1 ≤ α ≤ n and 0 ≤ β ≤ 1 n ∈ N,

(1.3) 

where .
dn

dζ n
is the classical .nth-order derivative.



1 On the Approximate Controllability of Second-Order Hilfer. . . . 7 

Definition 1.3.3 The RLD of a function.v : R+ → Hwith right limit zero is depicted 
as 

. Dα
0+v(ζ ) = 1

┌(n − α)

dn

dζ n

ζ{

0

v(ℵ)dℵ
(ζ − ℵ)1+α−n

, ζ > 0, α ∈ (n − 1, n), n ∈ N.

(1.4) 

Definition 1.3.4 The CD of a function.v : R+ → H with right limit zero is depicted 
as 

. Dα
0+v(ζ ) = 1

┌(n − α)

ζ{

0

dnv(ℵ)

dℵn

1

(ζ − ℵ)1+α−n
dℵ, ζ > 0, α ∈ (n − 1, n), n ∈ N.

(1.5) 

Remark 1.3.1 • If .β = 0, Definition 1.3.2 corresponds to Definition 1.3.3. 
• If .β = 1, Definition 1.3.2 corresponds to Definition 1.3.4. 

Note 1 Definitions 1.3.1,1.3.2,1.3.3,1.3.4 are valid whenever the right-hand side 
exists. 

1.3.3 Measure of Non-compactness 

Now, we present the basic results of the theory of MNC in Banach spaces. Let us 
begin with the general definition of MNC [ 15]. The most familiar example of MNC 
is the MNC due to Hausdorff. 

Definition 1.3.5 Let . H be a Banach space and .(E,≥) be a partially ordered set. A 
mapping .ν : P(H) → E is called a MNC in . H if .ν(co(D)) = ν(D) for every . D ∈
P(H), where .P(H) is the power set of . H and .co(D) is the convex hull of . D.

Definition 1.3.6 The MNC of Hausdorff .ν(·) is defined for a bounded subset . D of 
. H as, 

. ν(D) = in f {∈ > 0 | D has a finite ∈ − net in H}.
Lemma 1.3.1 [16] The following properties of MNC are very crucial to prove our 
results. 

I. If .D ⊆ C(J ,H) is bounded, then, for given arbitrary . ∈ > 0, ∃ {vn}∞n=1 ⊂ D ∍
ν(D) ≤ 2ν

({vn}∞n=1

) + ∈.

II. Let .D = {
vn : J → H

|
|vn is Bochner integrable for every n ∈ N

}
, then 

a. . D is a countable and bounded. 

b. .ν(D(ζ )) is Lebesgue integrable on .H with .ν

(
{ ζ

0 vn(ℵ)dℵ : n ∈ N

)

.≤
2

{ ζ

0 ν(D(ℵ))dℵ.
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Lemma 1.3.2 [17] Let .Nr ⊂ Y be a bounded convex subset with .0 ∈ Nr . Let 
.F : Nr ⊂ Y → Y be a continuous map .∍ for a countable subset .D ⊂ Nr and 
.D ⊆ co({0} ∪ F(D)) =⇒ D is compact. Then, .F has at least one fixed point in . Y.

1.4 Derivation of Mild Solution 

Definition 1.4.1 [ 18] A one-parameter family of bounded linear operators. {C(ζ )}ζ∈R
mapping . H to . H is called a strongly continuous cosine family if 

i. .C(0) = I , the identity operator in .L(H), 
ii. . C(ℵ + ζ ) − C(ℵ − ζ ) = 2C(ℵ)C(ζ ) ∀ ℵ, ζ ∈ R,

iii. .ζ |−→ C(ζ )v is continuous on . R for any . v ∈ H.

The associated sine family .{S(ζ )}ζ∈R of .{C(ζ )}ζ∈R is defined by 

. S(ζ )v =
ζ{

0

C(ℵ)vdℵ, v ∈ H, ζ ∈ R.

Lemma 1.4.1 If .{C(ζ )}ζ∈R denotes a strongly continuous cosine family in .H. Then, 

i. . ∃ M ≥ 1, ω ≥ 0 ∍: ||C(ζ )||L(H)
≤ Meω|ζ | ∀ ζ ∈ R.

ii. . ||S(ζ ) − S(ℵ)||L(H)
≤ M

|
|
|
|

{ ζ

ℵ eω|τ |dτ

|
|
|
| ∀ ζ,∈ R.

iii. If .v ∈ H, then .
d

dζ
C(ζ )v = AS(ζ )v and . S(ζ )v ∈ D(A).

Remark 1.4.1 The operators .C(ζ ) and .S(ζ ) are compact in the uniform operator 
topology . ∀ ζ ∈ R.

Now, we describe the Mittag–Leffler function.Eq,p(z) and the Mainardi’s Wright-
type function .Mq(z), respectively. For info [ 19, 20]. 

.Eq,p(z) =
∑ ∞

n=0
zn

┌(qn + p)
, p, q > 0, z ∈ C, (1.6) 

.Mq(z) =
∑ ∞

n=0
(−z)n

n!┌(1 − q(n + 1))
, p ∈ (0, 1), z ∈ C. (1.7) 

Lemma 1.4.2 For every .ζ ≥ 0, the Mainardi’s Wright-type function has the follow-
ing properties: 

.Mq(ζ ) ≥ 0,

∞{

0

θδMq(θ)dθ = ┌(1 + δ)

┌(1 + qδ)
for − 1 < δ < ∞
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and for . z ∈ C, q ∈ (0, 1),

. Eq,1(−z) =
∞{

0

Mq(θ)e−zθdθ, Eq,q(−z) =
∞{

0

qθMq(θ)e−zθdθ.

Next, we begin with the linear non-homogeneous fractional evolution system 
given below 

.

⎧
⎪⎨

⎪⎩

Dα,β

0+ v(ζ ) = Av(ζ ) + f (ζ ), ζ ∈ J1, α ∈ (1, 2), β ∈ [0, 1],
Iκ
0+v(ζ )

|
|
|
|
ζ=0

= v0,
d

dζ
Iκ
0+v(ζ )

|
|
|
|
ζ=0

= v1.
(1.8) 

The following lemma is necessary in solving the above initial value problem. 

Lemma 1.4.3 [21] Let . v ∈ L(a, b), n − 1 < α ≤ n, 0 ≤ β ≤ 1, I(1−β)(n−α)

0+ v ∈
ACk

.[a, b], 0 ≤ k ≤ n − 1. Then, the fractional integral .Iα
0+ and the GHFD . Dα,β

0+
are linked by the equation: 

.Iα
0+Dα,β

0+ v(ζ ) = v(ζ ) − vα,β(ζ ), ζ > 0 (1.9) 

where 

. vα,β(ζ ) =
∑

n−1
m=0

ζm−(1−β)(n−α)

┌(m − (1 − β)(n − α) + 1)
lim
t→0+

dm

dζm
I(1−β)(n−α)

0+ v(ζ ).

Theorem 1.4.1 Suppose .v0 ∈ D(A), v1 ∈ H, f ∈ L(J ,H). Let .q = α
2 . If . v(ζ )

denotes a solution of (1.8), then the following integral equation is satisfied: 

. v(ζ ) = Cα,β(ζ )v0 + Kα,β(ζ )v1 +
ζ{

0

Pq(ζ − ℵ) f (ℵ)dℵ,

where 

. Cα,β(ζ ) =I(1−β)(α−2)
0+

∞{

0

Mq(θ)C(ζ qθ)dθ;

Kα,β(ζ ) =
ζ{

0

Cα,β(ℵ)dℵ; Pq(ζ ) = ζ q−1

∞{

0

qθMq(θ)S(ζ qθ)dθ.

For proof of the above result, see Appendix 1.8. 

Remark 1.4.2 Since.C(ζ ) and.S(ζ ) are linear operators for every.ζ ≥ 0, it is obvi-
ous that the operators .Cα,β(ζ ),Kα,β(ζ ),Pq(ζ ) are linear.
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Remark 1.4.3 The result proved in Theorem 1.4.1 is more generalized than the 
result in Zhou et al. [ 22], i.e., if .β = 1, we have the result of Theorem 3.1 in [ 22]. 

The following results are provided without proof as those are easy to do. 

Lemma 1.4.4 The operator .Pq(ζ ) is compact for every . ζ ≥ 0.

Lemma 1.4.5 The following estimates are valid for any .ζ ≥ 0 and any . v ∈ H.

i. . ||Cα,β(ζ )v|| ≤ Mζ (1−β)(α−2)

┌((1 − β)(α − 2) + 1)
||v||.

ii. . ||Kα,β(ζ )v|| ≤ Mζ (1−β)(α−2)+1

┌((1 − β)(α − 2) + 2)
||v||.

iii. . ||Pq(ζ )v|| ≤ Mζ α−1

┌(α)
.

Lemma 1.4.6 The operators .{Cα,β(ζ )}ζ≥0, {Kα,β(ζ )}ζ≥0, {Pq(ζ )}ζ≥0 are strongly 
continuous. 

1.5 Main Results 

The control function is defined in this section, along with its continuity and bounded-
ness properties. The existence theorem will be proven by using suitable assumptions 
via MFPT. Furthermore, the approximate controllability of (1.1) is proven by assum-
ing that the equivalent linear system is approximately controllable. 

Definition 1.5.1 A function .v(ζ ) ∈ Y is said to be a mild solution of (1.1) if  . v0 ∈
D(A), v1 ∈ H and for each .y ∈ L2(J ,U), the integral equation is satisfied. 

. v(ζ ) = Cα,β(ζ )v0 + Kα,β(ζ )v1 +
ζ{

0

Pq(ζ − ℵ)
[By(ℵ) + f (ℵ, v(ℵ))

]
dℵ

+
ζ{

0

Pq(ζ − ℵ)

ℵ{

0

a(ℵ, ς)g(ς, v(ς))dςdℵ.

Note 2 Hereafter, unless specified . D represents a bounded countable set. 

For convention, we present some terminology. 

. c0 = MMB
λ┌(α)

; c1 = Mb(1−β)(2−α)

┌(α)
; c2 = MMBbα

┌(α + 1)
;

. c(α, qi ) =
(
1 − qi
α − qi

)1−qi

, i = 1, 2; M1 = ||vb||Y + M2;

.M2 = M

┌((1 − β)(α − 2) + 1)
||v0|| + Mb

┌((1 − β)(α − 2) + 2)
||v1||;
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. My = c0

(

M1 + c1c(α, q1)bα−q1||ξ f ||
L

1
q1

+ c1
bα

α
ã||ξg||L∞

)

;

. ∏ := c1

(

1 + c0c2

)(

c(α, q1)bα−q1Λ1 + bα

α
ãΛ2

)

.

Now, let us presume the following to prove the upcoming results. 

(Hf) The function . f : J × H → H satisfies, 

(1) . f (ζ, v) is continuous .∀ ζ ∈ J and is strongly measurable . ∀ v ∈ H.

(2) For some .r ∈ R
+, ∃ q1 ∈ (0, α) and a function . ξ f ∈ L

1
q1 (J ,R+) ∍:

. sup
||v||≤r

|| f (ζ, v(ζ ))|| ≤ ξ f (ζ ) for a.e .ζ ∈ J and . lim inf
r→∞

||ξ f ||
L

1
q1

r
Δ= Λ1 < ∞.

(3) For.D ⊂ Y, ∃ q2 ∈ (0, α) and a function. ψ f ∈ L
1
q2 (J ,R+) ∍: ν( f (ζ,D(ζ ))) ≤

ψ f (ζ )ν(D), . ζ ∈ J .

(Hg) The function .g : J × H → H satisfies, 

(1) .g(ζ, v) is continuous .∀ ζ ∈ J and is strongly measurable . ∀ v ∈ H.

(2) For some .r ∈ R
+, ∃ and a function . ξg ∈ L∞(J ,R+) ∍: sup

||v||≤r
||g(ζ, v(ζ ))|| ≤

ξg(ζ ) for a.e .ζ ∈ J and . lim inf
r→∞

||ξg||L∞

r
Δ= Λ2 < ∞.

(3) For.D ⊂ Y, ∃ and a function. ψg ∈ L∞(J ,R+) ∍: ν(g(ζ,D(ζ ))) ≤ ψg(ζ )ν(D),

ζ ∈ J .

(Hm) . ρ := (
1 + 2c0c2

)
{
2Mbα−q2

┌(α)
c(α, q2)||ψ f ||L 1

q2
+ 4Mbα ã

┌(α + 1)
||ψg||L∞

}

< 1.

Definition 1.5.2 For given.λ > 0 and.vb ∈ H, define the control function as follows: 

. y(ζ ) = (b − ζ )1−αB∗P∗
q(b − ζ )R

(
λ,Ψ b

0

)
[

vb − Cα,β(b)v0 − Kα,β(b)v1

+
b{

0

Pq(b − ℵ) f (ℵ, v(ℵ))dℵ +
b{

0

Pq(b − ℵ)

ℵ{

0

a(ℵ, ς)g(ς, v(ς))dςdℵ
]

,

where .R
(
λ,Ψ b

0

)
is the resolvent operator given by . R

(
λ,Ψ b

0

) = (
λI + Ψ b

0

)−1
.

Note 3 .B∗,P∗
q(ζ ), respectively, denotes the adjoint of . B,Pq(ζ ).

Note 4 .Ψ b
0 is the controllability Grammian operator defined by . Ψ b

0 = { b
0 Pq(b −

ℵ)BB∗P∗
q(b − ℵ)dℵ.

Theorem 1.5.1 The control function is bounded and continuous on . Y.

The proof is given in Appendix 1.9.
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Theorem 1.5.2 Suppose that .A generates a strongly continuous cosine family 
.{C(ζ )}ζ∈R in .H. If the assumptions (Hf),(Hg),(Hm), are satisfied. Then, the system 
(1.1) has at least one mild solution provided that .∏ ≤ 1. 

Proof Define an operator .F : Y → Y as follows: 

. (Fv)(ζ ) = Cα,β(ζ )v0 + Kα,β(ζ )v1 +
ζ{

0

Pq(ζ − ℵ)
[By(ℵ) + f (ℵ, v(ℵ))

]
dℵ

+
ζ{

0

Pq(ζ − ℵ)

ℵ{

0

a(ℵ, ς)g(ς, v(ς))dςdℵ.

It is interesting to note that the mild solution of (1.1) is equivalent to the fixed point 
of . F . We exhibit this theorem in the following four phases. 

Step 1. . ∃ r > 0 ∍: F(Nr ) ⊆ Nr .

Suppose the contrary, that implies . ∀r > 0, ∃ v ∈ Nr ∍: ||(Fv)(ζ )||Y > r, ζ ∈ J .

Then, 

. r < sup
ζ∈J

ζ (1−β)(2−α)||(Fv)(ζ )||

≤ M2 + sup
ζ∈J

ζ (1−β)(2−α)

{
MMB
┌(α)

ζ{

0

(ζ − ℵ)α−1||y(ℵ)||dℵ

+ M

┌(α)

ζ{

0

(ζ − ℵ)α−1|| f (ℵ, v(ℵ))||dℵ

+ M

┌(α)

ζ{

0

(ζ − ℵ)α−1dℵ
||
||
||
||

ζ{

0

a(ζ,ℵ)g(ℵ, v(ℵ))dℵ
||
||
||
||

}

≤ M2 + c0c2

(

M1 + c1c(α, q1)b
α−q1||ξ f ||

L
1
q1

+ c1
bα

α
ã||ξg||L∞

)

+ c1c(α, q1)b
α−q1||ξ f ||L 1

q1
+ c1

bα

α
ã||ξg||L∞ .

Dividing by . r and letting .r → ∞, we have 

. 1 ≤ c0c2

(

c1c(α, q1)b
α−q1Λ1 + c1

bα

α
ãΛ2

)

+ c1c(α, q1)b
α−q1Λ1 + c1

bα

α
ãΛ2

which is a contradiction. Hence . F(Nr ) ⊆ Nr .

Step 2. .F : Nr → Nr is continuous .∀ ζ ∈ J .


