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Preface 

This book provides a systematic study of spectral and scattering theory for many-
body Schrödinger operators at two-cluster thresholds. While the two-body problem 
(reduced after separation of the centre of mass motion to a one-body problem at 
zero energy) is a well-studied subject, the literature on many-body threshold prob-
lems is sparse. However, our analysis covers for example the system of three parti-
cles interacting by Coulomb potentials and restricted to a small energy region to 
the right of a fixed nonzero two-body eigenvalue. In general, we address the ques-
tion: How do scattering quantities for the many-body atomic and molecular models 
behave in the limit when the total energy approaches a fixed two-cluster threshold? 
This includes mapping properties and singularities of the limiting scattering matrix, 
asymptotics of the total scattering cross-section and absence of transmission from 
one channel to another in the small inter-cluster kinetic energy region. Our prin-
cipal tools are the Feshbach–Grushin dimension reduction method and spectral anal-
ysis based on a certain Mourre estimate. Additional topics (of independent interest) 
are the limiting absorption principle, microlocal resolvent estimates, Rellich- and 
Sommerfeld-type theorems and asymptotics of the limiting resolvents at thresholds. 
While these features are fairly well-understood for two-body Schrödinger operators, 
they are poorly understood in the many-body case, even for two-cluster thresholds. 
It is the goal of the book to remedy this point. The mathematical physics field under 
study is very rich, and there are many open problems, several of them stated explicitly 
in the book for the interested reader. 

Aarhus, Denmark 
Nantes, France 

Erik Skibsted 
Xue Ping Wang
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Chapter 1 
Introduction 

1.1 Scope and Results 

The spectral and scattering theory for the quantum mechanical one-body problem at 
zero energy is a well-studied subject. The classical theory [ 6, 36, 38, 39, 48] involves  
a real potential.V (x) on.R

n decaying at least like.O(|x |−ρ) for some.ρ > 2, referred to 
throughout this book as a ‘very short-range’ potential. The slowly decaying case for 
which the decay rate .ρ ∈ (0, 2) requires additional conditions, roughly sign condi-
tions [ 15, 16, 21, 47, 72, 73]. The critical case is defined by.V (x) ≈ C |x |−2, possibly 
with angular dependence, and the results depend on the coupling constant [ 62, 70]. 
The obtained results for the above models are highly model and case sensitive, and 
they depend explicitly on the dimension if the potential is very short-range. In gen-
eral, for very short-range or critically decaying potentials, zero-energy resonance 
states may appear. The possible presence of zero-energy resonance and/or bound 
states is the main difficulty for threshold spectral analysis. An interesting issue is the 
zero-energy resolvent asymptotics which leads to various applications in Quantum 
Mechanics, for example the asymptotics of the scattering matrix and phase shifts, cf. 
Levinson’s theorem [ 36, 48]. Resonance states are often called half-bound states in 
the physics literature, for the reason that for very short-range potentials in .R3 they 
contribute by .1/2 in the classical Levinson’s theorem which relates the total varia-
tion of the scattering phase to the number of bound states (plus.1/2 if zero resonance 
is present). More generally, for critically decaying potentials or on asymptotically 
conical Riemannian manifolds of dimension . n, there possibly exist for (arbitrary 
numbers).ν ∈ [0, 1] so-called zero-energy resonance states which slightly abusively 
may also be called .ν-bound states. They are solutions to the stationary Schrödinger 
equation for zero energy behaving like .O(|x |− n−2

2 −ν) as .|x | tends to infinity. The 
.ν-bound states give rise to terms of order .z−ν in a zero-energy resolvent expansion 
(corrected by logarithm terms in . z when.ν = 0, 1) which leads to .t−(1−ν)-behaviour 
of wave functions when.|t | → ∞. Moreover the quantity. ν contributes to the gener-
alized Levinson’s theorem [ 9, 41, 69, 70]. 
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2 1 Introduction

Thresholds of an .N -body Schrödinger operator are eigenvalues of the 
sub-Hamiltonians. There exists much less literature on threshold spectral analysis for 
the.N -body problem. We can only mention the work [ 67] on the resolvent expansion 
in a special case of the lowest threshold which is the bottom of the essential spectrum. 
The goal of the present work is to present a systematic study of spectral and scatter-
ing theory for the quantum mechanical .N -body problem at any negative two-cluster 
threshold . λ0, i.e. .λ0 is an eigenvalue of (possibly several) sub-Hamiltonians associ-
ated with two-cluster decomposition, but not of those with three or more clusters. 
These restrictions on the nature of the considered threshold exclude the presence of 
the Efimov effect there. So for example for the (dynamical nuclei physics) .3-body 
problem, the threshold zero is excluded from our analysis, while all other thresholds 
for this model are negative and of two-cluster type. (We shall later give precise defini-
tions.) Philosophically, the two-cluster threshold problem is amenable to simplifica-
tion in terms of an effective one-body problem by the Feshbach–Grushin dimension 
reduction method. This is indeed realized in [ 67] for very short-range pair potentials 
in dimension three for the case of the lowest threshold .λ0 = Σ2, the bottom of the 
essential spectrum, assumed to be a unique two-cluster threshold (i.e. an eigenvalue 
of exactly one sub-Hamiltonian, this being of two-cluster type). However, in the 
present work we extend the framework considerably, so that it covers the usual atom 
physical models (see Sects. 2.1.1 and 2.2.1) for which the slowly decaying nature 
of the Coulomb pair potentials in dimension three requires refined analysis. Also 
we include the cases where the two-cluster threshold .λ0 > Σ2 as well as multiple 
two-cluster and degenerate eigenvalue cases, which also call for refined analysis, in 
particular microlocal analysis. 

One main ingredient which enables us to attain the goal of spectral analysis at any 
two-cluster threshold is the Mourre’s estimate for the Hamiltonian with one threshold 
removed. For a given two-cluster threshold. λ0, the restriction of the total Hamiltonian 
onto the orthogonal complement of the associated spectral subspace is a non-local 
.N -body Hamiltonian for which .λ0 is no longer a threshold. We essentially prove 
the Mourre’s estimate at .λ0 for this reduced Hamiltonian and deduce the limiting 
absorption principles and microlocal resolvent estimates. The limiting absorption 
principles are used to construct an appropriate Grushin problem such that we can 
reduce the two-cluster problem to an effective one-body problem near an arbitrary 
two-cluster threshold. 

The main example of this book is the dynamical nuclei physical model, . H , 
obtained by removal of mass centre from the total Hamiltonian 

. _H = −
N

Σ

j=1

1

2m j
Δx j +

Σ

1≤i< j≤N

qi q j |xi − x j |−1, x j ∈ R
3, (1.1) 

where . x j , .m j and .q j denote the position, mass and charge of the . j th particle. Let a 
two-cluster decomposition .a = (C1, C2) of .N particles be given (see Sect. 2.1.1 for 
more information on the notation). We then write the full Hamiltonian as
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. H = H C1 ⊗ 1 ⊗ 1 + 1 ⊗ H C2 ⊗ 1 + 1 ⊗ 1 ⊗ p2
a + Ia,

where .H Ck , .k = 1, 2, are cluster-Hamiltonians (defined as for .H with the mass 
centre of cluster .Ck removed), .p2

a is the inter-cluster kinetic energy Hamiltonian 
and .Ia is the inter-cluster potential. Suppose .λa = λ0 is an eigenvalue of the sub-
Hamiltonian .H a = H C1 ⊗ 1 + 1 ⊗ H C2 (.λ0 being of two-cluster type, see (2.20)). 
Picking a corresponding orthonormal basis .ϕa

1, . . . ϕ
a
m ∈ ker(H a − λ0) ⊂ L2(Xa), 

.m = ma , the  effective inter-cluster potential is the.m × m matrix-valued function in 
the relative position variable of the two clusters, viz. .R = R1 − R2, 

.V (R)kl := {ϕa
k , Iaϕ

a
l }L2(Xa) = Q1Q2δkl |R|−1 + Qkl(_R)|R|−2 + O(|R|−3

)

. (1.2) 

Here .Q1 and .Q2 are the total charge of the particles in the clusters .C1 and .C2, 
respectively, and.δkl is the Kronecker symbol. In addition we denote by.Qa the matrix-
valued homogeneous potential .

(

Qkl
)

and._R = R/|R|. (The operator.Qa depends on 
the total charges and dipole moments, cf. (2.8).) Let .Pa denote the orthogonal (rank 
. m) projection onto.ker(H a − λ0) in.L2(Xa). Then obviously.Πa = Pa ⊗ 1 projects 
onto the span of functions of the form.ϕa ⊗ fa , .ϕa ∈ ker(H a − λ0), in .L2(X). 

In terms of (1.2) a relevant classification reads: 

Case 1 (slowly decaying case) .Q1Q2 /= 0. 
Case 2 (critically decaying case) .Q1Q2 = 0 and the function.Qa /= 0. 
Case 3 (very short-range case) .Q1Q2 = 0 and the function.Qa = 0. 

This means that in the simpler case where.λ0 is eigenvalue of exactly one two-cluster 
sub-Hamiltonian, the .N -body Coulomb Hamiltonian may be modelled by a one-
body effective Hamiltonian with a slowly decaying, a critically decaying or a very 
short-range potential according to the indicated properties of the product .Q1Q2 and 
.Qa . 

In general, .λ0 may be a multiple two-cluster threshold. Let . _A be the set of clus-
ter decompositions . a for which .λ0 ∈ σpp(H a). For each .a ∈ _A and .a = (Ca

1 , Ca
2 ), 

denote.Qa
j the total charge in cluster.C

a
j ,. j = 1, 2. The computation of (1.2) naturally 

suggests that we split . _A into . _A = A1 ∪ A2 ∪ A3 specified as follows. 

.A1: the effective inter-cluster interaction is to leading order attractive Coulombic, 
i.e. .Qa

1 Qa
2 < 0. 

.A2: the effective inter-cluster interaction is to leading order repulsive Coulombic, 
i.e. .Qa

1 Qa
2 > 0. 

.A3: the effective inter-cluster interaction is .O(|xa|−2), i.e. .Qa
1 Qa

2 = 0. 

Clearly the elements of .A1 ∪ A2 are classified as Case 1, while the elements of . A3

are classified either as Case 2 or Case 3. This motivates the splitting. A3 = Acd
3 ∪ Avs

3
by specifying 

.Acd
3 = {a ∈ A3| Qa /= 0} and Avs

3 = {a ∈ A3| Qa = 0}
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corresponding to Case 2 and Case 3, respectively. Therefore there are several cases 
to discuss for a general two-cluster threshold. 

Let us now state some main results (here simplified) for the .N -body Coulomb 
Hamiltonian with particles in.R

3 which are in fact special cases of the results proved 
in this work for generalized.N -body Schrödinger operators. For any.a ∈ A3, one will 
see that there are computable numbers .sa ≥ 1 and .da ∈ N0 determined by spectral 
properties of the vector-valued Schrödinger operator on the unit-sphere .S

2 with the 
matrix-valued potential .Qa (see Sect. 5.3). One of the main results concerns the 
expansion of locally.H 1-solutions for.(H − λ0)u = 0 in terms of standard weighted 
.L2-space and weighted Sobolov-space notation (see Sect. 2.4 for a complete list of 
definitions), referring here to our most general result (see Sect. 5.3). 

Theorem 1.1 For any two-cluster threshold . λ0 and . a ∈ _A, let . ma be the dimension 
of .ker(H a − λ0) in .L2(Xa) and .Πa the associated orthogonal projection defined as 
before. Then one has: 

(1) The space of locally .H 1 solutions to .(H − λ0)u = 0 in 

.

Σ

a∈A1

Πa L2
−3/4 +

Σ

a∈A2

Πa L2
(−3/2)+ +

Σ

a∈A3

Πa L2
(−min{3/2, sa})+ + L2

−1/2, (1.3a) 

say denoted by . E , has finite dimension. 
(2) If .A3 = ∅, then .E ⊂ H 1∞. 
(3) The dimension of the space of resonance states 

. nres = dim
(E/ ker(H − λ0)|H 1

) ≤
Σ

a∈A3

da .

(4) The numbers .sa = 3/2 and .da = ma for any .a ∈ Avs
3 . In particular, if .Acd

3 = ∅, 
then (1.3a) simplifies as 

.

Σ

a∈A1

Πa L2
−3/4 +

Σ

a∈A2∪Avs
3

Πa L2
(−3/2)+ + L2

−1/2, (1.3b) 

and 3 reads 
. nres ≤

Σ

a∈Avs
3

ma .

Here we used the notation .L2
s+ = ∪t>s L2

t and .L2
t = L2(X; {x}2t dx) for .s, t ∈ R. 

If . _A = Avs
3 = {a} and.λ0 = Σ2 the lowest threshold, then one has .da = ma = 1, 

(1.3a) reads as.Πa L2
(−3/2)+ + L2−1/2 and the space of resonance states is of dimension 

.nres ≤ 1. This is a natural extension of the results of [JK] on zero resonance and the 
relevant null-space at zero energy for a one-body Hamiltonian with a very short-range 
potential in dimension three. However, Theorem 1.1 is very general and covers a
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variety of situations. One may also view Theorem 1.1 as a version of the well-known 
Rellich theorem for non-threshold energies [ 2, Theorem 1.4] (see also Theorem 
4.12), although the above analogue at a two-cluster threshold is considerably more 
complex. For example, the analogue of (1.3a) and (1.3b) in the continuous spectrum 
away from thresholds reads .L2−1/2, and we note that for almost all (probably valid 
for all) such energies the space of generalized eigenfunctions in .L2−1/2−E (for any 
.E > 0) has infinite dimension [ 59]. In comparison, in the context of Theorem 1.1 
with . _A = A1 = {a} we show that the space of generalized eigenfunctions at .λ0 in 
.Πa L2−3/4−E + L2−1/2−E is infinite-dimensional (see Theorem 7.13 2). 

The proof of Theorem 1.1 is complicated; in fact we give a full proof only under the 
Direct Sum Condition (5.68a) and the Auxiliary Regularity Condition (5.68b), treat-
ing the general case in a somewhat sketchy fashion. Although we shall not elaborate 
on these conditions in this introduction we believe that (5.68a) is always fulfilled 
for the regular many-body Schródinger operator discussed here (see Example 3.6 
for a partial justification). For many-body Schrödinger operators with infinite mass 
nuclei the Direct Sum Condition may not be fulfilled (see Sect. 3.5 for an example). 
The Auxiliary Regularity Condition (5.68b) has a more technical flavour in that it is 
a spectral condition for an auxiliary operator of the Grushin method. As a general 
feature the conditions (5.68a) and (5.68b) simplify proofs, and therefore we prefer 
to (and will) impose them in several contexts. 

One of the threshold phenomena indicated by Theorem 1.1 is the possible exis-
tence of resonance states combined freely with the possible existence of .L2-eigen-
functions at the two-cluster threshold . λ0. This is completely analogous to the situ-
ation for the one-body problem in dimension three for very short-range potentials 
[ 36] (exhibiting a somewhat similar sophisticated Rellich theorem at zero energy). 
Therefore we distinguish as in [ 36] between four cases for . λ0: Regular Case where 
.λ0 is neither an eigenvalue nor a resonance of .H and Exceptional Cases 1, 2 and 
3 according to whether .λ0 is a resonance but not an eigenvalue, an eigenvalue but 
not a resonance or both an eigenvalue and a resonance of . H , respectively (see Sect. 
6.1.1.1). The resolvent asymptotics at zero energy for the one-body problem is deter-
mined by this classification. It is a separate issue for us to obtain similar resolvent 
asymptotics at .λ0 in the present framework. However, our analysis is not complete, 
mainly due to lack of strong decay of Coulomb potentials hampering the analysis. 
Of course the Regular Case is the easiest case and we shall actually treat this with 
. _A = A1 ∪ A2 ∪ Avs

3 (see Theorem 6.44). For the Exceptional Cases 1 and 3 (defined 
by the presence of a resonance) we show the following result. 

Theorem 1.2 (Exceptional point of . 1st or . 3rd kind) Let . λ0 be any two-cluster 
threshold for which .nres ≥ 1, i.e. . λ0 is a resonance of . H. Suppose the conditions 
(5.68a) and (5.68b) (referred to above), 

. ranΠH ⊂ L2
t for some t > 3/2, (1.4) 

where .ΠH is the orthogonal projection onto .ker(H − λ0) (i.e. the eigenprojection if 
. λ0 is an eigenvalue of . H and zero otherwise), and suppose
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. _A = A2 ∪ Avs
3 . (1.5) 

Then the following asymptotics hold for.R(λ0 + z) = (H − λ0 − z)−1 as an oper-
ator from .H−1

s to .H 1−s , . s > 1, for .z → 0 in .Z± = {Re z ≥ 0, ± Im z > 0} and for 
some .E = E(s) > 0: 

.R(λ0 + z) = −z−1ΠH + i√
z

nres
Σ

j=1

{u j , ·}u j + O(|z|− 1
2 +E). (1.6) 

Here.{u1, . . . , unres} ⊂ H 1
(−1/2)− is a basis of resonance states of. H being independent 

of the choice of the sign of . Z±. 

Among the above conditions (1.4) is the ‘unpleasant one’. It is an implicit (possibly 
redundant) condition appearing as an artifact of our methods. If .λ0 is exceptional 
point of . 1st kind, (1.4) is obviously fulfilled since then .ΠH = 0. Our Theorem 6.44 
as well as Theorem 1.2 above require explicitly .Acd

3 = ∅. For generalized .N -body 
Schrödinger operators, similar resolvent expansions are obtained without condition 
(1.4), but with faster decay assumption on the intercluster potential. In this case, the 
.z− 1

2 -term of (1.6) contains some additional terms resulting from interactions between 
resonance states and threshold energy .L2-eigenfunctions and these terms disappear 
once (1.4) is satisfied. 

Under a spectral condition for certain elements of .Acd
3 (those for which (1.10) 

is violated) oscillatory behaviour of the resolvent near the two-cluster threshold is 
expected. This is thanks to arguments of [ 62]. 

Let us now briefly outline our main applications in .N -body threshold scattering. 
One of our results concerns the following generalization of a result from [ 15, 16]. 

Theorem 1.3 Suppose that .λ0 = Σ2 is a two-cluster threshold and the conditions 
(5.68a) and (5.68b). Suppose 

. _A = A1, (1.7) 

and that . λ0 is not an eigenvalue of . H (i.e. assume the Regular Case). Let . C denote 
the set of scattering channels .α = (a,λ0,ϕα) with .a ∈ _A (note that . λ0 is a simple 
eigenvalue of . H a). Then for any .α,β ∈ C: 

(1) The element of the scattering matrix .Sβα(λ) (modelled after [ 15, 16]) is well-
defined for . λ slightly above . λ0 and possesses a strong limit as .λ → (λ0)+. 

(2) The singular support of the limiting element .Sβα(λ0) (which is, by definition, the 
complement of the largest open set in which the distributional kernel of . Sβα(λ0)

is smooth) fulfils 

.sing supp Sβα(λ0)

{

⊂ {(ω,ω,) | ω · ω, = −1} for β = α,

= ∅ for β /= α.
(1.8)
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Condition (1.7) means that for any two-cluster decomposition .a ∈ _A the charges 
of the clusters of . a have opposite sign, hence the effective inter-cluster potential is 
to leading order attractive Coulombic. It is a remarkable consequence of (1.8) that 
the distributional kernel of .Sβα(λ0), .β = α, is smooth at the forward direction of 
scattering.{ω · ω, = 1}. The proof of Theorem 1.3 may be considered as an extension 
of the one used in [ 15, 16] to obtain a similar ‘semi-classical’ result on the scattering 
matrix .Scou(E) for the one-body problem with an attractive Coulomb potential. See 
[ 11, 12, 64, 65] for some refined studies of .N -body scattering matrices in the short-
range case. 

Another result under (1.7) concerns the difference 

. Sαα(λ) − Scou(λ − λ0); α ∈ C and λ ∈ [λ0,λ0 + δ].

Under conditions, in particular including the non-multiple property .# _A = 1 (pri-
marily used to simplify the presentation) covering the case where the two-cluster 
threshold .λ0 > Σ2, we show that this difference is a ‘partial smoothing operator’ 
(see Theorem 7.10 and Remark 7.11 3). Yet another result is a characterization of 
the limiting element .Sαα(λ0) given by asymptotics in terms of appropriate ‘channel 
quasi-modes’ (see Theorem 7.13 2). 

This leads to another subject of interest, more precisely non-transmission at . λ0. 
This is a geometric concept amounting to the mathematically precise feature 

.||1 − Sαα(λ)∗Sαα(λ)|| −→ 0 for λ −→ (λ0)+. (1.9) 

Note that non-transmission has the clean physics interpretation that asymptotically 
(as .λ → (λ0)+) only elastic scattering occurs for the incoming channel . α, hence 
‘rearrangement’ or ‘breakup’ are asymptotically excluded phenomena of the scatter-
ing process. We derive a formula under (1.7) (see Corollary 7.15) indicating that on 
the contrary transmission does occur in this case if .λ0 > Σ2 (see also Remarks 7.16 
and 8.2 4). 

In contrast to the attractive slowly decaying case we do prove non-transmission in 
the following three cases (assuming as above in all cases the non-multiple property 
.# _A = 1): 

.(I) Effective repulsive Coulombic case, i.e. . _A = A2. 
.(II) .Ia(xa = 0) = 0, ‘above the Hardy limit’ case and .λ0 is regular. 

.(III) .Ia(xa = 0) = 0 and very short-range case, i.e. . _A = Avs
3 , and.λ0 is ‘maximally 

exceptional of . 1st kind’. 

A special case of (II) is that. _A = Avs
3 and.λ0 is neither an eigenvalue nor a resonance. 

The notions in (II) and (III) are in general given as follows (see also Sect. 8). The 
phrase ‘above the Hardy limit’ refers to a spectral property of the vector-valued 
Schrödinger operator on the unit-sphere .S2 with the matrix-valued potential . Qa

(writing . _A = {a}), more precisely 

. inf σ
( − Δθ + Qa(θ)

)

> −1/4. (1.10)
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Here .θ ∈ S
2 and .−Δθ is the Laplacian on . S2. For III) the potential .Qa = 0 and 

‘maximally exceptional of . 1st kind’ refers to Exceptional Case 1 and the condition 
.nres = ma = dim ker(H a − λ0). We note for comparison that if .ma > 1 and . nres =
{1, . . . , ma − 1} then indeed transmission can occur if .λ0 is exceptional of . 1st kind 
(see Sect. 8.5). 

The last subject of interest concerns total cross-sections for atom–ion scattering 
(see Sect. 9). It is an observed physical phenomenon at the very beginning of the era 
of Quantum Mechanics that when there is no dipole moment for the atom, the total 
cross-sections are finite. A mathematical proof for this physics folklore is subtle and 
is given in [ 34]. The operator under consideration is a special case of the dynamical 
nuclei physical model from Sect. 2.1.1 with the particle dimension.n = 3. We assume 
.λ0 = Σ2 is a two-cluster threshold, the conditions (5.68a) and (5.68b), (1.4) and 
. _A = Avs

3 . It is known  from [  34] that for any channel .α = (a,λ0,ϕα), .a ∈ _A, and 
any incident direction .ω ∈ S

2, 

. the total cross-sectionσα(λ,ω)is finite

for non-threshold . λ’s above . λ0. In the present work we derive bounds and asymp-
totics of this quantity as .λ → (λ0)+. The result depends on whether .λ0 is regular or 
exceptional of . 2nd kind (yielding bounded asymptotics, see Theorem 9.6) or if .λ0 is 
exceptional of. 1st or. 3rd kind (yielding.(λ − λ0)

−1 type unbounded asymptotics, see 
Theorem 9.7). In the case where.λ0 = Σ2 is exceptional of 1st kind (a resonance but 
not an eigenvalue), the atom–ion total cross-section exhibits the (partially universal) 
behaviour given by 

. σα(λ,ω) = 1

λ − λ0
(4πc + o(1)), as λ −→ (λ0)+.

Here .c ≤ 1, and .c = 1 in the maximally exceptional case (in particular in the non-
multiple case .# _A = 1). Our proof relies on the derivation of Theorem 1.2. 

1.2 Prerequisites and Organization of the Book 

This book is a research monograph on two-cluster threshold scattering in the.N -body 
problem with most of the results appearing for the first time. A general framework of 
reduction at an arbitrary two-cluster threshold is presented and several applications 
are given. Still many questions remain open in two-cluster threshold scattering, we 
believe that the presented methods may be useful for those who want to solve some 
of them. 

We hope that this book can be useful not only to experts, but also to young 
researchers and PhD students who are interested in mathematical problems arising 
from quantum physics. The background requirement is knowledge on functional 
analysis, spectral theory and pseudodifferential operators. The reader can find these
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materials in the textbooks [ 51], the monograph [ 74] on abstract quantum scattering 
and [ 25, Chap. XVIII] on PsDOs. The books [ 14, 30] furnish panoramic accounts 
on.N -body scattering and also contain necessary prerequisites for the present mono-
graph. In particular [ 30, Sects. 3.1–3.3] provides a thorough introduction to cluster 
decompositions, Jacobi-coordinates, .N -body Hamiltonians, etc. Chapter 2 of the 
present book also gives some preliminaries of this sort, although it is not a complete 
exposition. 

On the other hand, Chap. 3 is written in a self-contained way and sets forward a 
general framework for reduction of the.N -body problem near a two-cluster threshold 
to the study of an effective Schrödinger operator with a non-local matrix-valued 
potential. Chapters 2 and 3 are helpful for understanding the philosophy of dimension 
reduction in two-cluster scattering, and in addition the developed Grushin reduction 
method is vital for all later analysis in the book. The subsequent chapters are all rather 
technical and need more advanced tools which are mentioned and developed in the 
context. Chapter 4 is devoted to spectral theory of an auxiliary.N -body Hamiltonian 
with a non-local potential appearing in the Grushin method, while Chaps. 5 and 6 are 
devoted to Rellich-type theorems (including Theorem 1.1) and resolvent expansions 
(including Theorem 1.2), respectively. Finally in Chaps. 7–9 we study applications 
to .N -body threshold scattering. Almost all of Chap. 7 is devoted to the study of 
elastic scattering in the presence of a attractive slowly decaying effective potential 
(for the physical models corresponding to the condition. _A = A1). In general, elastic 
scattering might not be the only occurring scattering process in this case. This is in 
contrast to the issue of Chap. 8 where we indeed provide criteria for elastic scattering 
asymptotically being the only occurring scattering process, slightly above a given 
two-cluster threshold .λ0 (for example the criterion . _A = A2 mentioned above). Our 
concept of non-transmission is related, although in a disguised form, to the issue of 
Chap. 9, where we derive asymptotics of the total cross-sections for an atom–ion 
(with the conditions .λ0 = Σ2 and . _A = Avs

3 ).



Chapter 2 
Many-Body Schrödinger Operators, 
Conditions and Notation 

There are several classes of many-body Schrödinger operators. All of them may be 
put into the form of generalized .N -body Schrödinger operators introduced in [ 14]. 

2.1 Regular .N-Body Schrödinger Operators 

Regular .N -body Schrödinger operator .H is the many-body Schrödinger operator 
obtained by the removal of the centre of mass from the total Hamiltonian 

. _H = −
N

Σ

j=1

1

2m j
Δx j +

Σ

1≤i< j≤N

Vi j (xi − x j ), x j ∈ R
n, (2.1) 

where .N is the number of particles, .x j and .m j denote the position and mass of the 
. j th particle. The pair potentials .Vi j are assumed to be real and relatively compact 
with respect to .−Δ in .L2(Rn), and they satisfy for some .ρ > 0 the condition 

. |Vi j (y)| ≤ Ci j |y|−ρ for y ∈ R
n with |y| > R,

for some .R > 0. However, we shall need some extra regularity. It is convenient to 
use the following condition. 

Condition 2.1 There exists .ρ > 0 such that for all pair potentials .Vi j there is a 
splitting .Vi j = V (1)

i j + V (2)
i j , where 

(1) .V (1)
i j is smooth and 

.∂α
y V (1)

i j (y) = O
)|y|−ρ−|α|). (2.2) 
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(2) .V (2)
i j is compactly supported and 

.V (2)
i j (−Δ + 1)−1 is compact on L2(Rn

y). (2.3) 

The Hamiltonian.H is regarded as a self-adjoint operator on.L2(X), where. X is the 
.n(N − 1)-dimensional real vector space.X := {ΣN

j=1 m j x j = 0}. For.1 ≤ k ≤ N , a  
.k-cluster decomposition of the.N -particle system labelled by.{1, . . . , N } is a partition 

. a = (C1, . . . , Ck) with ∪k
j=1 C j = {1, . . . , N }, Ci ∩ C j = ∅ if i /= j.

Let .A denote the set of all cluster decompositions of the .N -particle system. The 
notation .amax and.amin refers to the .1-cluster and .N -cluster decompositions, respec-
tively. Let for .a ∈ A the notation .#a denote the number of clusters in . a. For  
.i, j ∈ {1, . . . , N },.i < j , we denote by.(i j) the.(N − 1)-cluster decomposition given 
by letting.C = {i, j} form a cluster and all other particles.l /∈ C form.1-particle clus-
ters. We write .(i j) ⊂ a if . i and . j belong to the same cluster in . a. More general, 
we write .b ⊂ a if each cluster of . b is a subset of a cluster of . a. If  . a is a .k-cluster 
decomposition, .a = (C1, . . . , Ck), we let  

. Xa = {x ∈ X |
Σ

l∈C j

ml xl = 0, j = 1, . . . , k} = XC1 ⊕ · · · ⊕ XCk ,

and 
. Xa = {x ∈ X | xi = x j if i, j ∈ Cm for some m ∈ {1, . . . , k}}.

Note that.a ⊂ b ⇔ Xa ⊂ Xb. Moreover.Xa and.Xa give an orthogonal decomposition 
for . X equipped with the quadratic form 

. q(x) =
Σ

j

2m j |x j |2, x ∈ X.

For.x ∈ X, we have the corresponding orthogonal decomposition:.x = xa + xa with 
.xa = πa x ∈ Xa and .xa = πa x ∈ Xa . 

With this notation, the .N -body Schrödinger operator .H introduced above can be 
written in the form 

. H = H0 + V,

where .H0 = p2 is (minus) the Laplace–Beltrami operator on the Euclidean space 
.(X, q) and.V = V (x) = Σ

a=(i j)∈A Va(xa)with.Va(xa) = Vi j (xi − x j ) for the.(N −
1)-cluster decomposition .a = (i j). More precisely, for example, 

.x (12) = ) m2
m1+m2

(x1 − x2),− m1
m1+m2

(x1 − x2), 0, . . . , 0
)

.



2.1 Regular N -Body Schrödinger Operators 13

We note the following geometric properties for .N ≥ 3: For all .a, b ∈ A with 
.#a = 2, .#b = N − 1 and . b /⊂ a

. ran
)

πbπa
) = ran πb, (2.4a) 

.πb : Xa −→ Xb is bijective. (2.4b) 

Remark 2.2 Let us recall that there exist several coordinate systems such as Jacobi 
coordinates, atomic coordinates, clustered Jacobi coordinates. See [ 51, XI.5,  Vol.  
III] or [ 30, Sect. 3.3]. For example, the Jacobi coordinates measure the . j th particle 
from the mass centre of particles .{1, . . . , j − 1}, . j = 2, . . . , N . Concretely, set 

.y j = x j+1 − 1
Σ j

k=1 mk

j
Σ

k=1

mk xk, j = 1, . . . , N − 1. (2.5) 

Then in coordinates .y = (y1, . . . , yN−1) ∈ R
n(N−1), the regular .N -body operator . H

can be written as .H = H0 + Σ

1≤i< j≤ Vi j (xi j ) where 

. H0 =
N−1
Σ

j=1

− 1

2μ j
Δy j , μ−1

j = m−1
j+1 + (

j
Σ

k=1

mk)
−1

and.xi j = xi − x j expressed in . y variables. In .N -body scattering theory, for a given 
cluster decomposition.a = (C1, . . . , Ck), it is convenient to use the clustered Jacobi 
coordinates [ 51, XI.5, Vol. III] which consists in taking Jacobi coordinates for each 
subsystem .C j to form an intra-cluster coordinates system .xa and the Jacobi coor-
dinates for the cluster mass centres to form an inter-cluster variables . xa . However, 
such explicit computation in coordinates is often not necessary. In this work we use 
mostly geometric properties of an abstract.N -body configuration (cf. Sect. 2.3) rather 
than concrete coordinates systems, except though for the last chapter on atom–ion 
scattering, where clustered atomic coordinates are used. See also Example 3.6. 

2.1.1 Principal Example, Dynamical Nuclei 

Consider a system of .N particles interacting by Coulomb forces. The Hamiltonian 
then reads 

.H = −
N

Σ

j=1

1

2m j
Δx j +

Σ

1≤i< j≤N

qi q j |xi − x j |−1, x j ∈ R
n, n ≥ 3, (2.6) 

where. x j ,.m j and.q j denote the position, mass and charge of the. j th particle, respec-
tively..H is regarded as a self-adjoint operator in.L2(X) (with mass centre removed).
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Let us consider a two-cluster decomposition .a = (C1, C2). For convenience 
assume.C1 = {1, . . . , J } and .C2 = {J + 1, . . . , N }. We can write 

. H = H 1 ⊗ 1 ⊗ 1 + 1 ⊗ H 2 ⊗ 1 + 1 ⊗ 1 ⊗ p2
a + Ia,

where .H k , .k = 1, 2, are cluster-Hamiltonians (defined similarly in their centre of 
mass frames) and 

. Ia =
Σ

i∈C1, j∈C2

qi q j |xi − x j |−1.

To expand .Ia we let for . k = 1, 2

. Qk =
Σ

j∈Ck

q j , Mk =
Σ

j∈Ck

m j ,

Rk = Rk(x) =
Σ

j∈Ck

m j

Mk
x j , _Qk = _Qk(xCk ) =

Σ

j∈Ck

q j (x j − Rk),

M = M1 + M2, R = R1 − R2,

and we decompose for all . x ∈ X

. x = xC1 + xC2 + xa,

xC1 = (x1 − R1, . . . , xJ − R1, 0, . . . , 0) ∈ XC1 ,

xC2 = (0, . . . , 0, xJ+1 − R2, . . . , xN − R2) ∈ XC2 ,

xa = ) M2
M R, . . . , M2

M R,− M1
M R, . . . ,− M1

M R
) ∈ Xa .

Note that indeed the centre of charge ._Qk is a function of .xCk . 
Consequently we can expand for .i ∈ C1 and . j ∈ C2

. |xi − x j |−1 = |R|−1 − R
|R|3 · )

(xi − R1) − (x j − R2)
) + O

)|R|−3
)|xa|2.

This is in the regime .|R| → ∞ and .|xi − R1| + |x j − R2| ≤ 1
2 |R|. 

Hence in turn we obtain for . |R| → ∞

.Ia = Q1Q2|R|−1 + R
|R|3 · )

Q1 _Q2(xC2) − Q2 _Q1(xC1)
) + O

)|R|−3)|xa|2, (2.7) 

which leads to various cases. We use the notation .ϕk , .k = 1, 2, to denote a cluster 
bound state (for the cluster Hamiltonian .H k) and .(·, ·)k to denote the corresponding 
cluster inner product. The effective potential 

.V (R) := (ϕ1 ⊗ ϕ2, Iaϕ
1 ⊗ ϕ2)L2(Xa).



2.1 Regular N -Body Schrödinger Operators 15

Case 1 .V ≈ |R|−1: .Q1Q2 /= 0. 
Case 2 .V ≈ |R|−2: 
Subcase 2a .Q1 /= 0, .Q2 = 0 and .(ϕ2, _Q2ϕ

2)2 /= 0. 
Subcase 2b .Q2 /= 0, .Q1 = 0 and .(ϕ1, _Q1ϕ

1)1 /= 0. 
Case 3 .V = O

)|R|−3
)

: 
Subcase 3a .Q1 = Q2 = 0. 
Subcase 3b .Q1 /= 0, .Q2 = 0 and .(ϕ2, _Q2ϕ

2)2 = 0. 
Subcase 3c .Q2 /= 0, .Q1 = 0 and .(ϕ1, _Q1ϕ

1)1 = 0. 

By exchanging the clusters the Subcases 2b and 3c correspond to the Subcases 2a 
and 3b, respectively. Note also that for Subcases 2a, 3a and 3b, assuming sufficient 
decay of the cluster bound states, the effective potential 

.V (R) = (ϕ1 ⊗ ϕ2, Iaϕ
1 ⊗ ϕ2)L2(Xa) = Q1

R
|R|3 · (ϕ2, _Q2ϕ

2)2 + O
)|R|−3

)

. (2.8) 

Hence indeed.V ≈ |R|−2 at infinity in Subcase 2a, while.V = O
)|R|−3

)

in Subcases 
3a and 3b. Note also that.|R|−2 is the critical decay rate for threshold analysis, cf. [62]. 
Consequently in Case 2 the effective potential .V is said to be critically decaying. In  
Case 1 the potential .V ≈ |R|−1, and.V is said to be slowly decaying. For. Q1Q2 < 0
and .Q1Q2 > 0 the one-body results of [ 21, 47, 73] will be useful, respectively. 
In Case 3 the effective potential is said to be very short-range, and other one-body 
results/techniques will be useful, cf. for example [ 36]. Case 2 (the critically decaying 
case) is different and rather ‘rich’. 

A detailed analysis of the structure of a class of generalized eigenfunctions at a 
two-cluster threshold, possibly a multiple and/or a non-simple two-cluster threshold, 
will be carried out for physical models in Sect. 5.3. (See (2.20) for the definition of 
a ‘two-cluster threshold’.) 

From the derivation follows the possibility that the second term.O
)|R|−3

)

of (2.8) 
actually has homogeneity .−3 at infinity. For example this happens for Subcase 3a 
exactly when the moments._R1 := (ϕ1, _Q1ϕ

1)1 /= 0 and._R2 := (ϕ2, _Q2ϕ
2)2 /= 0 due 

to the computation for this case, 

. O
)|R|−3

) = |R|−5
)|R|2_R1 · _R2 − 3(R · _R1)(R · _R2)

) + O
)|R|−4

)

.

If certain ‘moments’ vanish for Subcases 3a and 3b, the order of the second term of 
(2.8) is of the  form.O

)|R|−4
)

, cf.  [  34, Appendix A]. In Chap. 6 we shall obtain leading 
order resolvent expansions for Case 3 without distinguishing between whether the 
homogeneous .−3 term vanishes or not. In Sect. 9 we shall study a case where 
in fact the effective potential is (at least) of order .O

)|R|−4
)

. In the same section an 
explicit calculation of the Hamiltonian is given in terms of so-called clustered atomic 
coordinates. 

Strictly speaking, the distinction between Cases 2 and 3 as defined above makes 
best sense for a simple two-cluster threshold and we will not use this classification 
in the non-simple case. Rather in the general possibly non-simple case one needs
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the following (slightly) different definition, see Sect. 5.3 for further details. Let 
.λa be a non-threshold eigenvalue of the sub-Hamiltonian . H a = H 1 ⊗ 1 + 1 ⊗ H 2

(more precisely, we will need .λa ∈ T2, see  (2.20)). Picking an orthonormal basis 
.ϕa

1, . . . ϕ
a
m ∈ L2(Xa), .m = ma (being one or possibly bigger), in the range of the 

corresponding eigenprojection, the effective potential is the .m × m-matrix-valued 
function in the variable .R = R1 − R2, 

.V (R)kl := (ϕa
k , Iaϕ

a
l )L2(Xa) = Q1Q2δkl |R|−1 + Qkl(_R)|R|−2 + O

)|R|−3). (2.9) 

Here .δkl is the Kronecker symbol and ._R = R/|R|. Stated in terms of (2.9) by using  
the notation.Qa = )

Qkl
)

for the matrix-valued function defined by the second terms, 
the more general (and correct) classification reads: 

Case 1 (slowly decaying case) .Q1Q2 /= 0. 
Case 2 (critically decaying case) .Q1Q2 = 0 and .Qa = )

Qkl
) /= 0. 

Case 3 (very short-range case) .Q1Q2 = 0 and .Qa = )

Qkl
) = 0. 

2.2 .N-Body Schrödinger Operators with Infinite Mass 
Nuclei 

In the case of .M ≥ 1 infinite mass nuclei located at .Rm ∈ R
n , .m = 1, . . . , M , the  

Hamiltonian reads 

. H = −
N

Σ

j=1

1

2m j
Δx j +

Σ

1≤i< j≤N

Vi j (xi − x j ) +
Σ

1≤ j≤N , 1≤m≤M

V ncl
jm (x j − Rm),

(2.10) 
where we impose similar conditions on .V ncl

jm as for .Vi j in Condition 2.1. The one-
body problem .N = 1 is included in (2.10) (the middle term is absent in that case). 
The configuration space reads .X = R

nN , and we use the metric . q as before. The 
‘electron-electron’ interaction .Vi j (xi − x j ) takes as before the form .Va(xa) where 
.xa = πa x , .a = (i j), is the orthogonal projection of . x onto an .n-dimensional sub-
space. Similarly the ‘electron–nuclei’ interaction .

Σ

1≤m≤M V ncl
jm (x j − Rm) takes the 

form.Va(xa)where again.xa = πa x ,.a = a( j), is the orthogonal projection of. x onto 
an .n-dimensional subspace (let .xa = (0, . . . , 0, x j , 0, . . . , 0), i.e. all other coordi-
nates than the. j th are put equal to zero). Rather than using the cluster decompositions 
to label a family of ‘subspaces of internal motion’ .{Xa} similar to those considered 
in Sect. 2.1 we prefer henceforth to appeal to abstract labelling. Precisely, we con-
sider the smallest finite family.{Xa | a ∈ A} of subspaces of. X which is stable under 
addition and which contains .{0} and the .n-dimensional subspaces discussed above. 
See Sect. 2.3, and see [ 14, Sect. 5.1] for a discussion of the abstract.N -body problem. 
On the other hand, there is a concrete description of the index set .A and this fam-
ily .{Xa | a ∈ A} which can be useful to have in mind: Consider .a = (C1, . . . , C p)
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where the sets .Cq are disjoint subsets of .{1, . . . , N }. For .p ≥ 2 and .q < p we have 
.#Cq ≥ 2 and we let .XCq = {x ∈ X | x j = 0 if j /∈ Cq and

Σ

i∈Cq
mi xi = 0}. Either 

similarly .XC p = {x ∈ X | x j = 0 if j /∈ C p and
Σ

i∈C p
mi xi = 0} (in that case we 

have .#C p ≥ 2) or  .XC p = {x ∈ X | x j = 0 if j /∈ C p}. In both cases let correspond-
ingly .Xa = XC1 ⊕ · · · ⊕ XC p . Moreover we supplement by writing . Xamin = {0}
where, for example, .amin := ∅. This is a concrete labelling of the family of sub-
spaces of internal motion. 

The ordering of subspaces yields an ordering of the abstract set of indices . A, 
by definition .a ⊂ b ⇔ Xa ⊂ Xb. We denote .X = Xamax and .Xa + Xb = Xa∪b. The  
orthogonal complement of.Xa is denoted by.Xa . To have a uniform language we refer 
to the indices .a ∈ A as ‘cluster decompositions’. The length of a chain of cluster 
decompositions.a1 C · · · C ak is the number. k. This chain is said to connect . a = a1

and.b = ak . The maximal length of all chains connecting a given.a ∈ A \ {amax} and 
.amax is denoted by .#a. We define .#amax = 1 and note that .#amin = N + 1. We say  
.a ∈ A is .k-cluster if .#a = k. 

We note the following geometric properties for .N ≥ 2: For all .a, b ∈ A with 
.#a = 2, .#b = N and . b /⊂ a

. ran
)

πbπa
) = {0} or ran )

πbπa
) = ran πb, (2.11a) 

.πb : Xa −→ Xb is bijective. (2.11b) 

2.2.1 Principal Example, Fixed Nuclei 

Consider a system of .N .n-dimensional particles, .n ≥ 3, interacting by Coulomb 
forces. The Hamiltonian (2.10) then reads 

. H = −
N

Σ

j=1

1

2m j
Δx j +

Σ

1≤i< j≤N

qi q j |xi − x j |−1 +
Σ

1≤ j≤N , 1≤m≤M,

q j q
ncl
m |x j − Rm |−1,

(2.12) 
where . x j , .m j and .q j denote the position, mass and charge of the . j th ‘electron’, and 
.Rm and .qncl

m are the position and charge of the . mth ‘nucleus’. 
Consider the two-cluster decomposition .a = (C), .C = {1, . . . , N − 1}, mean-

ing.Xa = {x = (x1, . . . , xN ) ∈ X = R
nN | xN = 0}. Letting.R = xN we write . H =

H 1 ⊗ 1 + 1 ⊗ p2
R + Ia where .H 1 is the cluster-Hamiltonian (i.e. the Hamiltonian 

for the first .N − 1 electrons) and 

. Ia =
Σ

1≤i≤N−1

qi qN |xi − R|−1 +
Σ

1≤m≤M,

qN qncl
m |R − Rm |−1.

Introducing 

.Q =
Σ

1≤ j≤N−1

q j +
Σ

1≤m≤M

qncl
m ,
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_Q = _Q(xa ) =
Σ

1≤ j≤N−1 

q j x j ,

_Qncl =
Σ

1≤m≤M 

qncl 
m Rm, 

the asymptotics of .Ia for .|R| → ∞ reads 

.Ia = qN Q|R|−1 + qN
R

|R|3 · )

_Q(xa) + _Qncl
) + O

)|R|−3
))

1 + |xa|2). (2.13) 

For the expectation in a cluster bound state .ϕ = ϕa(xa) with sufficient decay we 
consequently obtain the asymptotics for .|R| → ∞, 

. (ϕ, Iaϕ)L2(Xa) = qN Q|R|−1 + qN
R

|R|3 · )(ϕ, _Qϕ)L2(Xa) + _Qncl
) + O

)|R|−3
)

.

(2.14) 

This leads to various cases. 

Case 1 .qN Q /= 0. 
Case 2 .qN (ϕ, _Qϕ)L2(Xa) /= −qN _Qncl and .Q = 0. 
Case 3 .qN = 0, or .qN /= 0, .Q = 0 and .(ϕ, _Qϕ)L2(Xa) = −_Qncl. 

Case 1 is the slowly decaying case, Case 2 is the critically decaying case and 
Case 3 is the very short-range case. Strictly speaking this classification makes best 
sense for . ϕ being unique, i.e. for the simple case; in the non-simple case one needs 
a slightly different terminology, see Sects. 2.1.1 and 5.3. 

2.3 Generalized .N-Body Schrödinger Operators 

Motivated by Sects. 2.1 and 2.2 we discuss the abstract .N -body problem, cf. [ 14, 
Sect. 5.1]. Let.X /= {0} be a real finite-dimensional vector space with an inner product 
. q. We consider a finite family.{Xa | a ∈ A} of subspaces of .Xa ⊂ X which is stable 
under addition and which contains .{0} and . X. The ordering of subspaces yields an 
ordering of the abstract set of indices. A,.a ⊂ b ⇔ Xa ⊂ Xb. We denote.{0} = Xamin , 
.X = Xamax and .Xa + Xb = Xa∪b. The orthogonal complement of .Xa is denoted by 
.Xa . We refer to the indices.a ∈ A as ‘cluster decompositions’. The length of a chain 
of cluster decompositions.a1 C · · · C ak is the number. k. This chain is said to connect 
.a = a1 and .b = ak . The maximal length of all chains connecting a given . a ∈ A \
{amax} and.amax is denoted by.#a. We define.#amax = 1 and denoting. #amin = N + 1
we say the family.{Xa | a ∈ A} is of.N -body type. Note that for the setup of Sects. 2.1 
and 2.2 these examples are of .(N − 1)-body type and of .N -body type, respectively. 
This terminology might appear slightly misleading for Sect. 2.1. Henceforth we 
shall treat the generalized .N -body framework only. This would consequently apply


