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Foreword 

This monograph primarily presents some important unconstrained optimization 
techniques in the setting of quantum calculus. This book begins with a historical note 
on the development of some gradient-based unconstrained optimization methods 
and presents the unconstrained optimization problems and a brief overview of 
quantum calculus. The seven chapters broadly cover q-gradient descent algorithm 
along with convergence proof, q-Fletcher-Reeves conjugate gradient method, 
q-Polak-Ribiére-Polyak conjugate gradient method, q-Dai-Yuan conjugate gradient 
algorithm based on q-gradient for solving unconstrained optimization problems, 
convergence results that take the Zoutendijk condition in the context of q-calculus 
for global convergence, unconstrained optimization problems using q-BFGS method 
using q-calculus and q-limited memory BFGS algorithm. The performance of the 
methods is illustrated with numerical examples. The monograph nicely builds the 
connection between theory, algorithms, convergence proofs, and implementation. 
Graduate or undergraduate students of mathematics and computer science and 
students from other engineering disciplines will find this book useful. 

May 2024 Prof. Samir K. Neogy 
Indian Statistical Institute 

New Delhi, India
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Preface 

Optimization is a crucial tool used by decision-makers to solve any optimization 
problems. Making the best choice out of all the options available is the responsibility 
of decision-makers. An objective function defines the goodness of the options’ perfor-
mance in the field of optimization. The field of optimization has drawn numerous 
researchers from various fields to find highly effective solutions to their scientific 
issues. Optimization techniques are the most effective means of resolving real-world 
issues that are iterative in nature. Owing to the quick advancement of digital tech-
nology, a number of software programs are already in the market that function as 
“black boxes,” providing input according to the optimization problem’s nature and 
only producing the desired result. Serious researchers, on the other hand, are not 
constrained by logic, and they seek to understand every internal process involved in 
solving the issue. Thus, the goal of this monograph is to provide all techniques in an 
easy-to-understand format. 

In the setting of quantum calculus, this monograph expands standard uncon-
strained optimization techniques. The unconstrained optimization involves mini-
mizing a function with numerous dependent variables and no constraints on these 
variables. The complexity of the optimization issues increases with the number of 
variables. Algorithms are therefore more suited to address these kinds of issues. 
Every technique in this monograph uses algorithms for solving optimization issues 
that can be implemented in any computer language. This monograph can be used 
as a textbook by readers who wish to understand the traditional approaches to opti-
mization in the context of quantum calculus. Therefore, there is a detailed discussion 
of several generalized gradient descent techniques for handling unconstrained opti-
mization issues. These are iterative processes. They begin at any position and provide 
a series of better approximations until they reach a minimal point. The optimality 
conditions are examined in order to confirm that this point is, in fact, the solution 
to the problem. The present approximation of the solution may be enhanced if the 
optimality conditions are not met. The first- and second-order q-derivatives of the 
objective function, as well as the objective function value, are used in the described 
techniques.
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viii Preface

This monograph is divided into seven chapters and is structured as follows: 
In Chap. 1, we start with the introduction of unconstrained optimization (Sect. 1.1) 

and present the historical note on the development of some gradient-based uncon-
strained optimization methods in Sect. 1.2. We present a biography of Prof. Frank 
Hilton Jackson in Sect. 1.3 who is known as the founder of quantum calculus in the 
modern era. The history of q-calculus and the development of several unconstrained 
methods in the context of quantum calculus are discussed in Sect. 1.4. In Sect. 1.5, 
we present the unconstrained optimization problems and the necessary results asso-
ciated with them to solve the optimization problems. In Sect. 1.6, we present the 
quantum calculus and performance profile. 

In Chap. 2, we present the q-steepest descent method with the quasi-Fejér conver-
gence. In Sect. 2.2, the  q-gradient descent algorithm is given under some assumptions 
and its convergence proof is provided using q-Newton-Leibniz formula and quasi-
Fejér convergence theorem in Sect. 2.3. The numerical experiments are performed 
in Sect. 2.4. First, we provide two examples to solve the problems by our method. 
Thereafter, 28 test problems are taken to compare our method with an existing method 
based on a number of iterations and function evaluations, respectively. 

In Chap. 3, we propose a q-Fletcher-Reeves conjugate gradient method and start 
by presenting the development of the conjugate gradient method which is given 
in Sect. 3.1. In Sect. 3.2, we present the q-conjugate gradient algorithm for the 
modified Fletcher-Reeves method in the context of q-calculus. Section 3.3 proves the 
global convergence of the method with Armijo type line search with backtracking. In 
Sect. 3.4, 31 test problems with three separate examples are used to illustrate the 
performance of the proposed method based on a number of iterations and function 
evaluations. 

In Chap. 4, a  q-Polak-Ribiére-Polyak conjugate gradient method is presented by 
combining the classical method with q-calculus. Section 4.1 motivates to present 
this method and discusses some closely related works. The algorithm is given in 
Sect. 4.2 that proposes that the method has sufficient decent properties. Section 4.3 
provides the global convergence results under some conventional conditions using 
standard and strong Wolfe conditions. In Sect. 4.4, we provide three numerical exam-
ples to illustrate the advantages of the present method, and with 51 different starting 
points, several test problems are solved to express the outstanding property of the 
method. 

In Chap. 5, we propose a q-Dai-Yuan conjugate gradient algorithm based on 
q-gradient for solving unconstrained optimization problems. Section 5.1 turns our 
attention to the development of the q-Dai-Yuan conjugate gradient algorithm. In 
Sect. 5.2, we provide the global convergence of the algorithm under standard Wolfe 
conditions. Section 5.3 shows the convergence results that take the Zoutendijk condi-
tion in the context of q-calculus for global convergence. Section 5.4 reports numerical 
results to show the efficiency of the proposed method. 

In Chap. 6, we solve unconstrained optimization problems using q-BFGS method. 
Section 6.1 gives a brief introduction about this method. Section 6.2 describes the 
BFGS update using q-calculus and presents an algorithm. In Sect. 6.3, we analyze 
the global convergence of the proposed algorithm. Section 6.4 reports numerical



Preface ix

results and compares with the classical method. We offer some conclusions in the 
last section. 

In Chap. 7, we propose a q-limited memory BFGS algorithm where the storage 
is critical. In Sect. 7.1, we briefly explore the several unconstrained optimization 
methods that motivate to present the limited memory BFGS method. In Sect. 7.2, an  
algorithm for this method is provided with an updated formula that generates matrices 
using information from the last m iterations, herein m is any number supplied by 
optimizers. In Sect. 7.3, the global convergence property is established under some 
suitable conditions like Armijo line search with backtracking and Wolfe conditions 
when the objective function is non-convex. In Sect. 7.4, we have taken 29 test prob-
lems. The resulting algorithm is tested numerically and compared with an existing 
method. 
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Chapter 1 
Introduction to Unconstrained 
Optimization and Quantum Calculus 

1.1 Introduction 

In this monograph, we explore certain mathematical programming techniques that 
are widely used to optimize nonlinear functions of single variables and multiple vari-
ables subject to no constraints. However, the structure of several problems involves 
the constraints that bound the design space. Instead, the methods of unconstrained 
optimization are important to study for several reasons. If no constraints are active 
for any problems, then the process of attaining a search direction and travel distance 
for minimizing the objective function involves an unconstrained minimization algo-
rithm. However, there is a violation of constraints during the movement of search 
direction in search space. Second, a constrained optimization problem can be treated 
as an unconstrained optimization problem even if the constraints are active. In this 
case, the penalty and multiplier methods directly convert the constrained optimiza-
tion problems into unconstrained optimization problems. Thus, unconstrained opti-
mization methods are necessary to explore their different dimensions. Unconstrained 
optimization is the process of minimizing a function that depends on a number of 
real variables without putting any limits on how these variables should be set. When 
the number of variables is large, this problem becomes quite challenging. The most 
important gradient methods for solving unconstrained optimization problems are 
described in this monograph. These methods are iterative. They start with an initial 
guess of the variables and generate a sequence of improved estimates until they ter-
minate with a set of values for the variables. We take the optimality conditions to 
check that this set of values for variables is indeed the solution to the problem. If the 
optimality conditions are not satisfied, then they may be used to improve the current 
estimate of the solution. The algorithms described in this book make use of the values 
of the function that minimizes the first and the second derivatives of the function. 
Most of what is said about unconstrained optimization methods are about steepest 
descent, conjugate gradient quasi-Newton, and limited-memory quasi-Newton. 
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2 1 Introduction to Unconstrained Optimization and Quantum Calculus

1.2 History of Unconstrained Optimization Methods 

We are showcasing the historical remark on unconstrained optimization techniques 
in this part. Many scholars credit Prof. Augustin-Louis Cauchy, who first devised 
the gradient descent method in 1847 to solve a system of linear equations (Cauchy 
1847). A comparable technique was separately developed by Prof. J. Hadamard 
(Fig. 1.1) for solving systems of linear equations (Hadamard 1908). Further, Curry 
(1944) provided the convergence properties of gradient descent method for solv-
ing non-linear optimization problems. Many scholars studied this strategy in-depth 
after that. A probabilistic method was proposed by Akaike (1959) to demonstrate the 
convergence of the gradient descent method. Zangwill (1969) demonstrated the deter-
ministic approach to prove the global convergence which was linearly converged. 
Other scholars were motivated to create certain sophisticated kinds of optimization 
algorithms by this technique. Probably the most used optimization approach is called 
Newton’s method. Nonetheless, Prof. Francois Vieta (1540–1603) developed a per-
turbation technique for solving scalar polynomial equations, which served as the 
inspiration for this method. Prof. Issac Newton improved on this process in 1669 
by linearizing the polynomials that arose one after the other. In 1690, Prof. Joseph 
Raphson (1648–1715) reintroduced the same procedure, but he employed distinct 
derivations in order to avoid the tedious computation of successive polynomials. 

Ultimately, in 1740, Prof. Thomas Simpson provided a summary of all of New-
ton’s earlier accomplishments when he explained that Newton’s method was an iter-
ative way to solving generic nonlinear equations with general calculus. Additionally, 
Simpson expanded on the systems of two equations and pointed out that optimization 
issues can be resolved using Newton’s approach by setting the function’s gradient to 

Fig. 1.1 Prof. A. L. Cauchy


