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Abstract

This thesis introduces a system that continuously keeps track of the functional
status of older adults through monitoring their behaviour, physical parameters,
and mobility in their domestic environments in daily life. Functional decline in
older adults can lead to a loss in independence and an increased need of care. As
a consequence, moving to a nursing home may be indicated. Moving to a nurs-
ing home may has a negative impact on the three innate psychological needs of
humans For the purpose of enabling older adults independently living in their own
homes for longer, the system links data from unobtrusive and privacy preserving
ambient and wearable sensors to five items of the International Classification of
Functioning, Disability and Health (ICF), developed by the World Health Orga-
nization (WHO), from three categories and measures their change over time.
The linking was realised by one Deep Neural Network (DNN), linear regression
models, and a new unsupervised concept drift detection algorithm which com-
bined a Variational Autoencoder (VAE) with a statistical hypothesis test. Based
on the information provided by the system, health care professionals can design
individualised rehabilitation programmes and monitor their effect. Moreover, the
activities of daily living where assistance is needed can be identified and pointed
assistance can be provided. Data from 20 (pre—)frail older adults (aged >75y) col-
lected during a 10-month observational randomised pilot intervention study was
used for evaluation. The DNN achieved an accuracy of 94.27 % and 95.79 %
on predicting the Short Physical Performance Battery (SPPB) and Timed Up &
Go (TUG) score respectively. The linear regression model was able to detect all
significant weight changes related to malnutrition and all abnormal days were
correctly recognised by the unsupervised concept drift detection algorithm and
hence the system provides useful information for health care professionals.
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Kurzzusammenfassung

In dieser Arbeit wurde ein System zur kontinuierlichen Beobachtung des funk-
tionalen Zustands &lterer Menschen im tiglichen Leben entwickelt. Das System
beobachtet das Verhalten, physische Parameter und die Mobilitdt im Bereich
des tidglichen Lebens. Funktionaler Abbau im Alter fiihrt zu einer erhohten
Abhiéngigkeit bis hin zu einem notwendigen Umzug in eine Einrichtung des
betreuten Wohnens oder ein Pflegeheim. Insbesondere letzteres kann negative
Auswirkungen auf die drei psychologischen Grundbediirfnisse von Menschen
haben. Das System kann in den hduslichen Umgebungen von dlteren Menschen
installiert werden, um es ihnen zu ermoglichen lidnger dort zu leben. Es verbindet
Daten von Hausautomations-, Energie- und tragbaren Sensoren, die die Privat-
sphére nur minimal beeintrdchtigen, mit fiinf verschiedenen Kategorien aus drei
Kapiteln des Internationale Klassifikation der Funktionsfihigkeit, Behinderung
und Gesundheit (ICF) der Weltgesundheitsorganisation (WHO). Die Kategorien
und ihr Verlauf werden mit Hilfe eines tiefen neuronalen Netzes, einem Regres-
sionsmodells und einem neu entwickelten Algorithmus, der ein probalistisches
neurales Netz mit einem statistischen Hypothesentest kombiniert gemessen. Diese
Informationen kann geschultes medizinisches Personal nutzen, um individual-
isierte Rehabilitationsmaflnahmen zu konzipieren, einzuleiten und ihren Effekt zu
tiberpriifen. Auferdem kann das System Situationen, in denen dltere Menschen
Unterstiitzung bendtigen, identifizieren, damit gezielt unterstiitzt werden kann.
Mit den Daten von 20 iiber 75—jihrigen und gebrechlichen Teilnehmern*innen,
mit Frailty Syndrom oder im Vorstadium (pre—frail), einer 10-monatigen ran-
domisierten Interventionspilotstudie wurde das System evaluiert. Das tiefe neu-
ronale Netz erreichte eine Genauigkeit von 94,27 % und 95,79 % bei der
Vorhersage von Short Physical Performance Battery (SPPB) und Timed Up & Go
(TUG) Ergebnissen und das Regressionsmodell war in der Lage alle signifikanten



X Kurzzusammenfassung

auf Mangelernidhrung hindeutenden Gewichtsverdanderungen zu erkennen. Auler-
dem konnte der neu entwickelte Algorithmus alle von der Norm abweichende
Tage korrekt identifizieren. Die Ergebnisse haben gezeigt, dass es wertvolle
Informationen fiir medizinisches Personal bereitstellt.
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