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Preface

This book gives an introduction to random variables (RVs) and their transformations. The
aim is to give a clear exposition of mathematical expectations, univariate RVs, and joint
distributions.

Chapter 1 introduces RVs and mathematical expectations. Discrete and continuous
random variables and their basic properties are discussed. Cumulative distribution func-
tions (CDF), survival functions (SF), quantile functions (QF), and their properties are
detailed. Arithmetic operations on RVs give rise to new RVs. A simple technique to find
the expectation of functions of RVs is given. This is followed by a discussion on moments
(ordinary, central, factorial), variance, and co-variance as expected values. The conditional
expectation is introduced and its applications to finding the moments of infinite mixture
distributions such as noncentral chi-square, noncentral beta, and noncentral F distribu-
tions are demonstrated. Chapter 1 ends with a discussion on the applications of random
variables.

Chapter 2 discusses the distributions of functions of single RVs. Topics discussed
include distribution of absolute value, method of distribution functions (MoDF), change
of variable technique (CoVT), distribution of sums, squares, square-roots, reciprocals,
trigonometric, and transcendental functions, minimum and maximum, integer and frac-
tional parts, arbitrary functions, and ratio of sums. A summary table of common
single-variable transformations is provided in Sect. 2.11.1. These results are used to
express the mean deviation of continuous distributions as a simple integral from lower
limit to F(mean) where F() is the CDF. The chapter ends with a discussion of transforma-
tions of normal variates and some applications of functions of random variables in various
fields.

Distribution of functions of several random variables is introduced in Chap. 3. Marginal
and conditional distributions are briefly discussed. The Jacobian of matrix transformation
is described and its applications in various fields are cited. This is illustrated in finding
the distribution of a variety of transformations including products, ratios, and nonlin-
ear functions of two or more RVs. A “do-little” technique to quickly find the Jacobian of
transformation of random variables useful in statistics is described. Plane-polar, spherical-
polar, cylindrical-polar, toroidal-polar, Helmert, and Rosenblatt transformations are also
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vi Preface

discussed. Integral calculus is heavily used in this chapter. A summary table of com-
mon transformation in two variables is provided in Sect. 3.4. The chapter ends with a
discussion on copula-based methods.

Suggestions for changes are always welcome. For any suggestions on improvement
please contact rajancv@am.amrita.edu.

Amaravati, India Rajan Chattamvelli
February 2024 Ramalingam Shanmugam
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Mathematical Expectation

This chapter introduces random variables and mathematical expectation. Discrete
and continuous random variables and their basic properties are discussed. A simple
technique to find the expectation of functions of random variables is given. This
is followed by a discussion on moments (ordinary, central, factorial) and variance
as expected values. The conditional expectation is introduced and its applications
to finding the low-order moments of mixture distributions are demonstrated. A brief
discussion of inverse and incomplete moments, and distance as expected value follows
it. The chapter ends with some common applications of random variables.

1.1 Meaning of Expectation

The concept of “‘expected value” appeared for the first time in the works of Christian Huygens
(1629-1695) around 1657. It was used to predict the possible gains in gambling and games
of chance. It can be associated either with a single random variable (RV) or a well-defined
function of the RV. Location measures (such as the mean, median, mode) condense the infor-
mation in a sample as a single number (in univariate case). Analogous measures are needed
to succinctly present the characteristics of statistical populations or random experiments.
This is where the concept of expectation comes in. The functional form of the population
is known precisely in most of the discussions below. But theoretically, the concept is valid
even when the exact form is either unknown or is partially known (as in random experi-
ments involving circuits, transmission medium, moving objects, etc.) The expected value
of observed phenomena are applicable in the long-run during which an event of interest is
going to occur repeatedly under identical experimental conditions. This may sometimes be
observed from past data. For instance, consider the price of a stock that fluctuates randomly
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2 1 Mathematical Expectation

over time. We could find the expected value of stock price by averaging the observed values
over a suitable time period using an uncertainly measure (probability for it to rise, fall or
remain steady). Insurance companies use expected values to predict various quantities. For
example, flooding and power outages are quite common during monsoon season in tropical
cities with poor drainage facilities. If a weatherman predicts that a heavy thunderstorm is
likely in the next few days with a probability of 0.90, the insurance companies can use this
information using past data to estimate the expected amount on insurance claims that will be
received after the event. This is discussed further in Sect. 1.3. The notion of mathematical
expectation (or simply called expectation) relies on one or more random variables defined
below.

1.2 Random Variables

The concept of RV is of prime importance in mathematical expectation. It is defined on
the sample space of a random experiment, which is an experiment that can be repeated any
number of times under (more or less) identical conditions.

Definition 1.1 The set of all possible outcomes of a random experiment is called the sample
space. It is usually denoted by the Greek letter €2 or the letter S.

The outcome of a random experiment can be given names, labels or an enumeration.
Thus when a coin is tossed, the possible outcomes are represented as {H, T}, {Head, Tail}
or simply as {0, 1} where 0 denotes the nonoccurence and 1 denotes the occurrence of an
event.

Definition 1.2 A random variable is a function defined on the sample space of a random
experiment that maps each possible outcome of the sample space to real numbers such that
the associated probabilities sum to one.

Mathematically, an RV is a rule that assigns a unique numerical value to each event
(outcome) of a random experiment (Fig. 1.1). An indicator function is a special type of RV
in which each element in the sample space is mapped to either O or 1. If E is an arbitrary
event

Fig.1.1 Random variable Sample Space
maps sample space to real line
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1.2.1 Realisation of Random Variables

AnRYV ensues when (i) an experimenter performs a random experiment, (ii) defines arandom
experiment on a hypothetical experiment (like tossing a die or coin), (iii) observes the results
of an experimental outcome, or (iv) a physical or natural process generates data that can
be approximated by a statistical law. Such occurrences are denoted by lowercase letters (in
which case it is an implicit assumption that the corresponding uppercase letter denotes the
RV). RandVar is an R-package to implement random variables. (r-project.org)

Random processes are RVs where the values of a variable vary systematically over time.
Note that the outcomes can be anything including numbers, labels, symbols or even text
strings. Thus in an industrial experiment that checks whether a machine or part is defective,
the outcomes could be { DD, DN, ND, NN} where ‘D’ denotes defective or non-working and
‘N’ denotes non-defective or in good working condition. There are multiple ways in which
these outcomes can be mapped numerically. If the aim of a study is to identify defectives,
we could map ‘D’ to a ‘1’ and ‘N’ to a ‘0’ so that the possible values the random variable
can take are {2, 1, 0}. However, some people prefer to always map a defective to a zero
and non-defective to a one. In this case the probabilities simply get reversed. An RV can be
denoted as X:2 — R where the values that it takes in R are known from the mapping used
(see Fig.1.1). All RVs are denoted by uppercase letters and particular values by lowercase
letters in the following discussion.

We will denote “distributed as” by the symbol “~”” (which is the tilde symbol), and ‘inde-
pendently and identically distributed’ as IID. Abbreviations will be used for distributions
in an unambiguous way (POIS for Poisson, CUNI for continuous uniform, DUNI for dis-
crete uniform, EXP for exponential, BINO(n, p) for binomial, etc.). Thus X~CUNI(O0, 1) =
U(0, 1) is read as “X is distributed as continuous uniform in [0, 1]”.

1.2.2 Discrete and Continuous Random Variables

An RV can be discrete, continuous or mixed type. Among these discrete RVs are often used
with count data, and continuous RVs are used when measurements are done by machines or
computed using mathematical formula (like BMI).

Definition 1.3 An RV is discrete if the set of possible values (outcomes) that it could
take is finite or countably infinite. Mathematically, X is discrete if xe {x1, x2, ..., x,} or
x€ {x1,x2, ..., }. This concept is easy to understand for discrete RVs as the number of
events in the sample space (domain) is countably finite. The domain can also be a part
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of an integer (such as half-integer). As an example, suppose X represents the number of
medical leaves taken by an employee where the employer allows either full-day leave or
half-day leave types only. In this case the domain can be integers or half-integers per month.
The domain of several discrete RVs are an ordered sequence. Consider a vehicle insurance
company who screens new customers for the number of past accidents. A great majority of
customers might have no severe accidents at all (x = 0). There could be several customers
with one accident (x = 1), two accidents (x = 2) and so on. If the number of applicants
is large, we expect x to take values in (0, 1, ..., m) where m is a fixed number. However,
there could be breaks in such a sequence in which case we simply insert missing values and
assume the corresponding frequency to be zero. This makes it into an ordered sequence.

In some practical applications, the discrete RV represents count data that may occur
over time or space. As examples, the number of defective items in a shipment, number of
patients with a particular symptom, number of alpha-particles emitted by aradioactive source
in a small time-interval, number of crossovers that have occurred in a genome, number of
earthquakes in a particular locality are all examples of count data. Here the last two examples
are occurrences over space while others occur over time. Any number of RVs can be defined
on a given sample space. These may be related or independent. There are some numerical
values associated with each outcome of a random experiment. For instance, consider the toss
of a die with six faces. The possible outcomes are {1, 2, 3, 4, 5, 6}, each with probability
1/6. If X denotes the face that turns up, we express it mathematically as f(x) = 1/6 for x =
1,2, ... 6. We have simply assigned a mathematical function to each outcome of a random
experiment. This experiment is called equally likely (and the RV as equiprobable) because
the associated probabilities are all equal. The corresponding mapping from the sample space
to the real line is called probability mass function (PMF) in the discrete case and probability
density function (PDF) in the continuous case. This is the most common way to define a
discrete RV. Similarly, f(x) = ¢*p is a mathematically defined RV associated with a countably
infinite sample space consisting of the sequence 0, 1, 2, ..., oo associated with a random
experiment (with two mutually exclusive outcomes) that is repeated until a special event
occurs. The above RV occurs when a coin is tossed repeatedly until a Head (with Pr(H ead)
= p) occurs. The values of a well-defined RV are subject to chance (i.e. it is stochastic).
Thus even if we toss a coin thousands of times, we can’t predict in advance what the next
outcome is going to be. Some RVs are time-dependent. Consider the number of phone calls
passing through an automated telephone exchange in a fixed time interval (say 10s). This
varies from time to time, but could be modeled using a statistical law if the time interval is
properly chosen. Similarly, the number of phone calls received at an emergency number or
fire-station can be modeled using a statistical law such as the Poisson law. As these are rare
events, the time interval is large.

There is one more way to define discrete RVs. It is called complete enumeration method.
Consider the RV p(1) = 0.2, p(2) = 0.6, p(3) = 0.2. Here x takes 3 values {1, 2, 3}. Itis a
well-defined RV as the probabilities add up to one. This can also be written as p(x = 1) =
0.2, p(x =2) = 0.6, p(x = 3) = 0.2 for a univariate RV X. This notation can be extended to



