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Preface 

Federated Learning, standing at the intersection of collaborative knowledge learning 
and preserving individual data privacy, has emerged as a transformative paradigm 
in the dynamic landscape of machine learning. The origins of Federated Learning 
can be traced back to the early 2010s, a period coinciding with the proliferation of 
mobile devices. Traditional machine learning models faced a significant challenge in 
adapting to the decentralized nature of data generated by these devices. The pursuit 
of collaborative learning while preserving user data privacy gained momentum 
during this era, leading to the conceptualization of federated approaches. In 2016, 
Google researchers made a groundbreaking contribution by introducing the term 
“Federated Learning,” positioning it as a solution for training machine learning 
models across decentralized edge devices. This groundbreaking concept allowed 
devices to collaboratively learn a shared model while keeping raw data localized, 
thus promising to protect data privacy. 

Since those pioneering days, Federated Learning has undergone a remarkable 
evolution. The field has matured with an influx of research, addressing challenges 
ranging from privacy concerns and security vulnerabilities to optimizing model 
performance in distributed settings. Importantly, Trustworthy Federated Learning, 
as a concept, evolved organically in response to the growing recognition that 
Federated Learning’s promise of collaborative learning was inseparable from the 
imperatives of privacy preservation and model security. The increasing demand 
for Trustworthy Federated Learning coincided with an era where data privacy and 
protection gained unprecedented prominence. 

This handbook encapsulates this evolution, offering insights into the diverse 
facets of FL and its pivotal role in shaping the future of collaborative and trustworthy 
machine learning. It is an effort to be a reliable resource for researchers, academics, 
and practitioners deeply engaged or venturing into the realms of Trustworthy 
Federated Learning. Each chapter, in survey or expository form, is self-contained, 
making it easy for reading. There are 14 chapters, organized into 4 parts:

v
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• Part I: Security and Privacy scrutinizes the intricate interplay between trust-
worthiness, privacy, and security within Federated Learning. These chapters 
not only explore robust defense mechanisms against targeted attacks but also 
address fairness concerns, providing a multifaceted foundation for securing 
Federated Learning systems against evolving threats. The historical context of 
privacy regulations, such as the European Union’s General Data Protection 
Regulation (GDPR), underscores the relevance and urgency of these discussions 
in contemporary settings. 

• Part II: Bilevel Optimization immerses readers in the nuanced world of feder-
ated bilevel optimization. With a focus on applications such as hyperparameter 
optimization and neural network architecture search, these chapters unravel the 
intricacies of optimizing performance in federated settings. The historical per-
spective reveals the evolution of optimization challenges, mirroring the trajectory 
of Federated Learning from its nascent stages to its current applications. 

• Part III: Graph and Large Language Models walks readers to the cutting 
edge of Federated Graph Learning. Addressing challenges in training Graph 
Neural Networks and ensuring privacy in Federated Learning of natural language 
models, these chapters spotlight the transformative potential of FL in graph-
related tasks and large language models. The historical journey continues, 
highlighting the pivotal role of FL in advancing graph-related machine learning 
applications and also to the recent success of pre-trained large models. 

• Part IV: Edge Intelligence and Applications introduces pioneering concepts 
such as Edge Federated Learning and Zone-Based Federated Learning. These 
chapters demonstrate how Federated Learning can empower mobile applications 
and preserve privacy with synthetic data. The historical exploration culminates 
in discussions about the evolution of edge computing and its integration with 
Federated Learning paradigms. The book concludes with Chap. 14, where the 
emerging landscape of Green Federated Learning takes center stage. It explores 
the intricate trade-offs between computing, learning algorithms, and communica-
tion systems, framing Green Federated Learning as a response to contemporary 
challenges in energy-intensive model training. 

As the filed continues to evolve, we do not intend to cover every possible issue 
in Trustworthy Federated Learning, but instead, present areas that we think are the 
most beneficial to the readers in getting the first overall picture of the field. It is 
our hope that the insights, strategies, and innovations presented within these pages 
not only deepen understanding but also propel the field of Trustworthy Federated 
Learning into new realms of trust, responsibility, and transformative impact. 

We would like to extend gratitude to the 47 authors/co-authors who poured 
their expertise and passion into shaping this handbook. Their commitment to 
advancing the field of Federated Learning is evident in the richness and depth of the 
content presented within these pages. It would not have been possible without their 
high-quality work. We would like to thank the Springer editorial team, especially 
Elizabeth Loew, for their help and support in publishing this book. This project is
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Security and Privacy



Trustworthiness, Privacy, and Security 
in Federated Learning 

Sisi Zhou, Lijun Xiao, Yufeng Xiao, and Meikang Qiu 

1 Introduction 

GDPR is a landmark bill in global personal data security legislation, introduced 
by the European Union in 2018. The bill is divided into 99 Articles, granting 
data subjects the right to agree, access, correct, be forgotten, restrict processing, 
refuse, and automate self-determination, among other normative data rights. The 
law on personal data privacy was introduced in Germany as early as 1970, followed 
by data protection laws introduced by Switzerland, the United States, and others. 
According to incomplete statistics, it covers over 140 countries worldwide. The 
GDPR introduced by the European Union has the greatest impact. Part of the global 
data security legislation is shown in Fig. 1. 

Governments around the world have established various forms of legal and com-
pliant guidelines and norms for data usage, gradually forming a global awareness 
of data security. The era of barbaric use and arbitrary sharing of data has come to 
an end. However, in order to ensure the orderly circulation of data elements under 
the premise of legal compliance and ensuring the rights and interests of all parties, 
it undoubtedly increases the cost for data users to obtain and store user personal 
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Fig. 1 Global Partial Data Security Legislation 

information through Internet technology. Exploring feasible models for data element 
circulation has important practical significance [1]. 

In the context of the GDPR [2], legal compliance issues have been raised for 
a range of emerging technologies including Internet of Things (IoT), artificial 
intelligence (AI), and big data analytics, and also blockchains [3]. Especially in the 
field of machine learning where data is regarded as the core, industry, academia, and 
users are paying more attention to data privacy protection, believing that private data 
should not be exposed or uploaded to central servers. Based on this, the federated 
learning [4], proposed by Google in 2016, effectively solves the contradiction 
between data privacy and data sharing on decentralized devices by the feature of 
“data available but not visible.” This framework belongs to the distributed training 
model and has two roles, namely the participating device and the central server. 
Nodes update the global model locally, upload model updates (i.e., local gradients), 
and do not upload private data. The central server collects updates and integrates 
them to form an updated model. Due to this privacy characteristic of FL, it has 
received widespread attention and rapid development in recent years. 

However, under the federated learning framework, the server needs to collect 
update information from multiple clients for aggregation operations and needs 
to broadcast new global models to these clients, which requires high network 
bandwidth [5, 6] and computing capability [7–9]. In addition, centralized servers 
may have behaviors that favor certain clients and distort the global model, and 
malicious central servers may also disrupt the model and even collect client privacy 
from updates. Therefore, the single-point failure of the center server and the fairness 
and security issues of the federated learning have attracted extensive attention [10]. 

In recent years, blockchain has innovative integrated technologies such as 
cryptography, distributed consensus algorithms, and P2P networks to build a 
decentralized trust environment. For example, B. Thuraisingham and M. Qiu et al. 
proposed a novel secure data sharing algorithm through untrusted clouds with
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blockchain-enhanced key management method [11] and several blockchain-enabled 
service optimizations in supply chain digital twin [12], which can be widely used in 
computer vision [13] and cybersecurity [14, 15] areas. 

Z. Tian et al. [16] proposed a lightweight blockchain-based secure digital evi-
dence framework, which combines a mixed block structure with an optimized name-
based practical Byzantine fault tolerance consensus mechanism. The multisignature 
technique is adopted for evidence submission and retrieval, ensuring the traceability 
and privacy of evidence. H. Qiu et al. [17] proposed a dynamic trust system based on 
blockchain that will provide a dynamic and scalable communication architecture for 
IoT networks. W. Pan et al. [18] proposed to use blockchain technology to improve 
the Asset-Backed Securitization (ABS) financial business system. By analyzing the 
current situation and existing issues of ABS business in China, the problems to be 
solved are summarized, and a design scheme of ABS business system based on 
blockchain technology is proposed. 

Blockchain, as a distributed, decentralized, immutable, and transparent technol-
ogy, provides new possibilities for the development of federated learning, providing 
new possibilities for the development of federated learning [19]. Hou et al. [20] 
summarized and compared the infrastructure and application scenarios of some 
existing blockchain and federated learning fusion frameworks. Wahab et al. [21] 
conducted research on federated learning, covering aspects such as federated 
learning architecture, privacy protection, communication efficiency, etc., which also 
includes some integrated architectures of blockchain and federated learning. Kim 
et al. [22] and Qu et al. [23] point out that decentralized blockchain is commonly 
used in the fusion framework of blockchain and federated learning to replace the 
central server in traditional federated learning frameworks, in order to solve the 
problems of single-point trust and failure caused by the central server. 

From recent research work on the integration of blockchain technology and 
federated learning technology, research in this field mainly focuses on the BC-
empowered FL framework itself and its application prospects in the field of artificial 
intelligence. The BC-empowered FL is broadly used in diverse fields, includ-
ing industrial Internet, intelligent transportation, smart healthcare, and wireless 
network infrastructure. It has shown tremendous success, and several impactful 
solutions have been proposed, such as BlockFL [22] and Deepchain [24]. In 
the literature, there are many surveys about blockchain and federated learning, 
respectively. However, these surveys mainly focus on the practical applications, 
challenging issues, and technical solutions of blockchain or federated learning. 
Despite their comprehensiveness in either area, they rarely explain the potential of 
using blockchain for federated learning. In other words, none of them systematically 
studies the BC-empowered FL providing an overview of the current research trends 
and future directions. 

The rest of this chapter is organized as follows. In Sect. 2, federated learning 
framework is given. Section 3 explains the Blockchain-empowered Federated 
Learning framework. Next, we summarize the future research directions in Sect. 4.
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2 Federated Learning 

With the increasing number of IoT devices, the amount of generated data is also 
growing rapidly. This presents significant privacy concerns, particularly when using 
centralized AI solutions. Centralized AI solutions are less suitable for modern 
IoT applications due to the heterogeneous nature of IoT devices’ data, resources, 
and their distribution across multiple geographical locations [25]. To address 
these privacy and security issues associated with centralized AI solutions, the 
architectures of FL have been proposed. 

Federated learning technology, as a computational framework for multiparty 
joint modeling, interacts with model parameters through security mechanisms to 
achieve collaborative training effects [26]. Federated learning belongs to distributed 
machine learning methods and belongs to the category of privacy computing. It aims 
to avoid sharing the private local data of IoT devices with a central server. Instead, in 
FL, each IoT device participating in the FL process trains the machine learning (ML) 
model locally using its own data. Only the learned model parameters are shared with 
the central server for global model aggregation. This approach improves privacy, 
saves communication resources, and enhances the robustness of the training process 
compared to centralized ML. 

In detail, privacy computing in FL-related technologies includes machine learn-
ing [27], distributed machine learning [28], cryptography [29], differential privacy 
[30], secure multiparty computing [31], and other different technologies in addition 
to federated learning. This framework can promote distributed collaborative learn-
ing without disclosing the original training data. It is a promising framework to give 
play to the value of data fusion in the increasingly strict global environment of data 
security and privacy protection. The relationship between federated learning and 
related technologies is shown in Fig. 2. 

Taking the training of a deep neural network (DNN) model as an example, we 
assume that a central server delegates a DNN task. Under the federated learning 
framework, all training data is retained at the user end. The basic process of FL with 
. K clients is shown in Fig. 3. 

The central server first assigns an initialized model to . K clients, and each client of 
the client set completes local training using the newly received model and sends the 
updated model to the central server. From then on, a round of updates is completed. 
Repeat these processes until the model converges or reaches a specific number of 

Fig. 2 The relationship 
between federated learning 
and the related technologies
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Fig. 3 The basic process of FL 

rounds. Since staff only submit models, their raw data will not be shared with the 
central server, so their privacy can be protected to some extent. Federated learning 
runs round by round as follows:

• Client selection. A new round starts. The coordinator selects some clients from 
sample devices based on certain criteria, e.g., historical activities, model quality, 
network bandwidth, and computation capabilities. The criteria are designed in 
advance to get the federated learning system rid of malicious client devices.

• Model selection and initialization. This step determines which type of ML 
is the most suitable and whether it is a pretrained or new model that needs to 
be trained from scratch. Besides that, the model parameters are initialized .W 0

G, 
and the model is broadcast to the participating clients . K to start the FL training 
rounds . T , where .W 0

G is the initial global model, . K is the total number of selected 
clients, and . T refers to the total number of global training rounds.

• Local model training. Each selected client receives the shared global machine 
learning model from the coordinator and executes a model training program to 
update the local machine learning model taking local data as input. More specif-
ically, in the first round, every client . k receives the initial global model .W 0

G and 
begins the local training on its data .Dk ∈ D, where . D = {D1

U
D2

U
. . .

U
Dk}

and . Dk is the local dataset of the .k-th client. Subsequent training rounds will use 
the latest global model for local training. Hence, in every global round .t ∈ T , 
each client . k calculates the local model update . wt

k by minimizing a loss function. 
After the local training is finished for a round, the local learned parameters will 
be sent to the central entity for aggregation.
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• Global model aggregation. The coordinator aggregates the models or updates 
from the client devices. To improve efficiency, the coordinator may stop the 
aggregation once enough client devices have submitted the models or updates. 
From the client’s perspective, they may slightly adjust the models before sending 
them to the coordinator for data privacy concerns.

• Global model update. The coordinator updates the shared global model based 
on the models or updates from the client devices participating in the current 
round. The model update algorithm can be a simple average of the received 
models or updates. The design of the model update algorithm is critical for the 
convergence speed and accuracy of the final output model.

• Convergence checking. The coordinator calculates the model difference 
between two consecutive rounds. If the difference is smaller than a predefined 
threshold, the procedure ends. Otherwise, it goes back to the step of client 
selection. The local model training, global model aggregation, and update are 
repeated until the number of training rounds is reached or the predefined accuracy 
threshold is achieved. The server stops the training at this point, and the trained 
global model is broadcast to all clients. 

By following these steps, FL enables collaborative learning among distributed 
IoT devices without compromising data privacy. It allows IoT devices to contribute 
to the training process while keeping their data local, thereby addressing the 
challenges of trustworthiness, privacy, security, communication efficiency, and 
robustness in modern IoT applications. 

2.1 The Architectures of FL 

In this section, we will explore different architectures of FL and how the parameter 
exchange occurs between the clients and the FL coordinator. 

A. Centralized FL 
The architecture of centralized FL relies on a centralized server to initiate the FL 
process and aggregate the global model. It represents the traditional FL approach 
and follows the same steps outlined earlier. Centralized FL addresses privacy 
concerns by avoiding the transmission of sensitive client data to the central server. 
However, it suffers from robustness issues due to a single point of failure. The 
architecture of centralized FL is depicted in Fig. 4. 

Although FL has some privacy protection effects, large-scale data collection and 
processing on powerful cloud-based servers will bring risks of single point of failure 
and serious data leakage. From the GDPR perspective, Truong et al. [32] pointed 
out that centralized data processing and management have limited transparency and 
sources for the system, which may lead to a lack of trust among end users and 
difficulty in complying with GDPR.
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Fig. 4 The architecture of centralized FL 

Fig. 5 The architecture of decentralized FL 

B. Decentralized FL 
In contrast to a centralized architecture, in the decentralized federated learning 
architecture, also known as a peer-to-peer network architecture [33], participating 
client devices can communicate directly with each other without the need for a third-
party server. The architecture of decentralized FL is depicted in Fig. 5. 

Under the decentralized FL framework, all clients connect in a peer-to-peer(P2P) 
or mutual communication manner to exchange local model updates and aggregate 
the global model. Centralized FL architectures are unsuitable for environments
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Fig. 6 The architecture of hierarchical FL 

where it is likely that communication between participating clients and the central 
entity will be unstable. In such cases, it is recommended to use the decentralized 
federated learning architecture. For instance, clients in a P2P network can commu-
nicate via blockchain ledger to store their local updates and aggregate the global 
model in a trusted and secure way. 

C. Hierarchical FL 
In the architecture of Hierarchical FL, mobile users (MUs) are clustered into groups 
(clusters) based on their locations, and each cluster is assigned to a small cell base 
station (SBS). MUs train models on their local data and send their local updates 
to the SBS. This process is repeated for a specific number of iterations. Afterward, 
all SBSs send the aggregated local updates to the mobile base station (MBS) to 
aggregate the global model. The architecture of hierarchical FL is depicted in Fig. 6. 

Abad et al. [34] showed that the architecture of hierarchical FL helps reduce the 
communication latency, speeding up the training of the global model. 

D. Collaborative FL 
In centralized FL, there are scenarios where a subset of IoT devices may fail to send 
their local model updates to the central server. This can occur due to various reasons 
such as low energy requirements of the devices, limited communication resources, 
or transmission delays. To address these challenges, a collaborative federated 
learning architecture has been proposed by Chen et al. [35]. In the collaborative 
FL framework, it is not necessary for all devices to be connected directly to the 
central server. Instead, some IoT devices connect to the central server, while others 
connect to neighboring devices based on their proximity. This creates a mesh-like 
network structure. While the proposed framework helps overcome some limitations 
of centralized FL, it also has its own limitations. These include slower convergence



Trustworthiness, Privacy, and Security in Federated Learning 11

Fig. 7 The architecture of collaborative FL 

speed compared to centralized FL, potential impact of imperfect communication 
between devices on the training process, and different ML convergence for each 
group of associated devices. Additionally, the centralized server still represents a 
single point of failure. The architecture of collaborative FL is depicted in Fig. 7. 

E. Dispersed FL 
Dispersed FL is a distributed federated learning framework that enables global 
model learning in two stages. In the first stage, subglobal models are aggregated 
within different groups, each consisting of closely located devices. In the second 
stage, the global model is computed by aggregating the subglobal models either 
in a centralized or distributed manner. Dispersed FL can be categorized into two 
types: centralized dispersed FL and distributed dispersed FL. However, according 
to Khan et al. [36], dispersed FL still has limitations concerning client privacy and 
non-Independent and Identically Distributed (non-IID) data. The architecture of 
dispersed FL is depicted in Fig. 8. 

From a system architecture perspective, both federated learning and traditional 
distributed learning consist of servers and multiple distributed nodes, exhibiting 
high similarities. However, compared to traditional distributed learning, federated 
learning has its own characteristics in terms of data, communication, and system 
composition. Specifically, the optimization problem is implicit in federated learning 
as federated optimization, drawing a connection (and contrast) with distributed 
optimization. Federated optimization has several key properties that differentiate 
it from a typical distributed optimization problem:
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Fig. 8 The architecture of dispersed FL

• Non-IID. The training data on a given client is typically based on the usage of the 
mobile device by a particular user, and hence any particular user’s local dataset 
will not be representative of the population distribution.

• Unbalanced. Similarly, some users will make much heavier use of the service or 
app than others, leading to varying amounts of local training data.

• Massively distributed. We expect the number of clients participating in an 
optimization to be much larger than the average number of examples per client.

• Limited communication. Mobile devices are frequently offline or on slow or 
expensive connections. 

2.2 Scale and Data Partitions in FL 

FL systems can be categorized into either cross-device or cross-silo, based on the 
number of participating clients and their data volume. The cross-silo and cross-
device structures are depicted in Fig. 9. 

Cross-device It is an FL approach that involves a large number of clients with 
limited data size. Thus, the number of the involved devices ranges from millions 
to billions. Examples of cross-device FL systems include IoT devices and smart-
phones. Due to the volume of devices, selecting the most qualified devices (i.e., 
with enough computational, communication, and energy resources) to participate 
effectively in the FL is important. 

Cross-silo Unlike the cross-device FL approach, the cross-silo approach has a 
small number of clients with a large data volume. Such clients may be data centers
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Fig. 9 The cross-silo and cross-device structures 

Fig. 10 The three categories of FL 

or organizations. For instance, the Amazon product recommendation model learns 
via the contribution of numerous data centers, each using its local data. 

When designing FL models, it is crucial to take into account data distributions 
and partitions. Based on the sample and feature spaces, FL can be categorized 
into the three categories, namely horizontal FL, vertical FL, and federated transfer 
learning. The three categories of FL are depicted in Fig. 10. 

Horizontal FL is dubbed sample-based FL, where the clients that participated in 
the FL process have different data samples with the same feature space. Therefore, 
participating clients can use the same ML to be trained locally due to the same 
feature space. For instance, next word prediction models learn from datasets with 
different sample spaces and the same feature space to predict the next word. 

Vertical FL is known as feature-based FL, where clients’ datasets have the same 
sample space with different feature spaces. For example, in IoT applications, the 
ML model can be shared among different entities such as banks and e-commerce 
companies that serve clients in the same city (the same sample space). At the 
same time, different users will collect various features. For example, a bank may 
contain a set of features that differs from the features collected by the e-commerce 
application for the same client (different feature spaces). Furthermore, the bank and 
the e-commerce company can cooperatively train ML models using the Vertical FL 
scheme to predict the personalized loans based on the online shopping activities of 
clients.
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Fig. 11 Three synchronization schemes 

Federated transfer learning is a combination between vertical FL and horizontal 
FL, where the clients have datasets with different sample spaces and different feature 
spaces. Furthermore, federated transfer learning is vital in transforming different 
sample spaces’ features into the same representation. For instance, federated transfer 
learning can be used in disease diagnosis applications where the global model 
training depends on clients from different countries (sample space) and has different 
medical tests (feature space). 

2.3 Aggregation Time Schemes 

FL approaches can be classified into three synchronization schemes based on the 
timing of global model aggregation, as depicted in Fig. 11. 

The details of these three schemes are as follows: 
Synchronous FL does not consider the heterogeneity of edge devices, which may 

have varying computational and energy resources. As a result, it does not effectively 
utilize the resources of participating devices, as high-computational devices remain 
idle until other devices complete their local training. Additionally, in real scenarios, 
some devices may join midway through the process, while others may fail to submit 
their local updates. The speed of rounds in synchronous FL is limited by the slowest 
device, leading to a “straggler effect” that hampers efficient processing. Although 
synchronous FL consumes low communication resources, it exhibits slow learning 
convergence. 

In contrast, asynchronous FL does not have a specific synchronization point. Par-
ticipating devices can submit their local updates and download new versions of the 
computed global model whenever they complete local training. Asynchronous FL 
approaches have higher convergence but consume more communication resources 
compared to synchronous FL. Feng et al. [37] proposed another asynchronous FL 
approach to improve scalability and efficiency while addressing poisoning attacks 
targeting asynchronous FL. 

Semisynchronous FL is considered as a middle ground solution between the syn-
chronous and asynchronous FL methods. In a semisynchronous FL, the participating 
devices are permitted to train the ML locally up to a certain synchronization point 
where the global model is calculated. As a result, this method lowers communication 
costs and makes better use of the resources of participating devices. In general, the 
semisynchronous FL approach has been proposed to balance communication costs
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and resource usage. Stripelis et al. [38] proposed a semisynchronous FL approach 
that accelerates the model convergence while reducing communication cost. Also, 
it improves resource utilization by eliminating the idle time of high-computational 
devices and involving the local update of low-computational devices in the global 
model computation. 

2.4 Federated Optimization 

A. The Federated Averaging Algorithm 
Federated averaging (FedAvg) [4], proposed by McMahan, is a communication-
efficient algorithm for distributed training with an enormous number of clients. In 
FedAvg, clients keep their data locally for privacy protection; a central parameter 
server is used to communicate between clients. The complete pseudocode of 
FedAvg is given in Algorithm 1. 

Algorithm 1 FedAvg 
1 Server executes: 
2 initialize W 0 

G 
3 for each round t = 1, 2, ... do 
4 m ← max(C · K, 1) 
5 St ← (random set of m clients) 
6 for each client k ∈ St in parallel do 
7 wk 

t+1 ← ClientUpdate(k, wt) 

8 wt+1 ← 
KΣ

k=1 

nk 
n w

k 
t+1 

9 ClientUpdate(k, w ): // Run on client  k 
10 B← (split Pk int o batches of size B) 
11 for each local epoch i from 1 to T do 
12 for batch b ∈ B do 
13 w ← w − η∇𝓁(w; b) 
14 return w to server 

The clients K are indexed by k, B is the local minibatch size, T is the number 
of local epochs, and η is the learning rate. We write to indicate that the full local 
dataset is treated as a single minibatch. 

B. Adaptive Federated Optimization 
In this section, some adaptive federated optimizations are introduced, namely, 
FedAdagrad, FedYogi, and FedAdam. Their pseudocode is given in Algorithm 2. 

The parameter τ controls the algorithms’ degree of adaptivity, with smaller 
values of τ representing higher degrees of adaptivity. Note that the server updates of 
our methods are invariant to fixed multiplicative changes to the client learning rate 
η for appropriately chosen.
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Algorithm 2 FedAdagrad, FedYogi, and FedAdam 

1 Initialization: x0, v−1 ≥ τ 2, decay parameters β1, β2 ∈ [0, 1) 
2 for t = 0, ..., T − 1 do 
3 Sample subset S of clients 
4 xt 

i,0 = xt 
5 for each client i ∈ S in parallel do 
6 for k = 0, ..., K − 1 do 
7 Compute an unbiased estimate gt 

i,k of ∇Fi

(
wt 

i,k

)

8 xt 
i,k+1 = xt 

i,k − η1gt 
i,k 

9 Δt 
i = xt 

i,K − xt 

10 Δt = 1 
|S|

Σ

i∈S

Δt 
i 

11 mt = β1mt−1 + (1 − β1)Δt 
12 vt = vt−1 + Δ2 

t ( FedAdagrad) 

13 vt = vt−1 + (1 − β2)Δ
2 
t sign(vt−1 − Δ2 

t )(FedYogi) 

14 vt = β2vt−1 + (1 − β2)Δ
2 
t (FedAdam) 

15 xt+1 = xt + η mt√
vt+τ 

Fig. 12 The architecture of FATE 

2.5 Federated Learning Platforms 

In order to mitigate the risk of privacy breaches and enhance the security of sensitive 
data, both industry and academia have introduced several open-source frameworks 
for federated learning, such as: Federated AI Technology Enabler (FATE) [39], 
PaddleFL [40], and federated learning natural language processing (FedNLP) [41]. 

FATE helps to learn and understand the theory of federated learning. Its architec-
ture mainly consists of two components: offline training and online prediction. The 
architecture of FATE is depicted in Fig. 12.
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Fig. 13 The architecture of PaddleFL 

FATE Flow is the learning task pipeline management module responsible for 
job scheduling in federated learning. Federation serves as the data communication 
module in the federated network, facilitating message transmission among different 
functional units. Proxy acts as the network communication module and handles 
routing functionality. Meta-service functions as the cluster metadata service module. 
MySQL serves as the foundational component for both the meta-service and 
FATE-Flow, storing system data and work logs. FATE Serving provides the online 
federated prediction module, offering federated online inference capabilities. FATE-
Board is the module for visualizing the federated learning process. Egg and Roll 
respectively serve as the distributed computing processor management module 
and computation result aggregation module, responsible for data computation and 
storage. 

PaddleFL supports two types of strategies: horizontal federated learning and 
vertical federated learning. For horizontal federated learning, it primarily supports 
strategies such as FedAvg, DPSGD, and SECAGG. PaddleFL adopts the underlying 
programming model of the Paddle training framework. By combining Paddle’s 
parameter server functionality, it enables the deployment of federated learning 
systems in Kubernetes clusters. In terms of training strategies, PaddleFL supports 
multitask learning, transfer learning, active learning, and other training techniques. 
Please note that the translation provided above may require further review and 
adjustment based on the specific technical terminology and context used in the 
PaddleFL documentation. The architecture of PaddleFL is depicted in Fig. 13. 

FedNLP, developed by Lin et al. at the University of Southern California, is 
the first research-oriented open-source federated learning framework for natural 
language processing (NLP). It consists primarily of three layers: the application 
layer, the algorithm layer, and the infrastructure layer. The architecture of FedNLP 
is depicted in Fig. 14. 

At the application layer, FedNLP offers a wide range of predefined NLP tasks 
and datasets, allowing researchers to easily apply federated learning to various NLP 
problems such as text classification, named entity recognition, sentiment analysis, 
and machine translation. The algorithm layer of FedNLP incorporates state-of-
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Fig. 14 The architecture of FedNLP 

the-art federated learning algorithms specifically designed for NLP tasks. These 
algorithms include federated optimization techniques, secure aggregation methods, 
and privacy-preserving mechanisms to ensure efficient and secure collaboration 
among distributed NLP models. The infrastructure layer of FedNLP leverages 
the underlying federated learning frameworks to enable seamless deployment and 
scalability. It supports distributed computing platforms such as TensorFlow and 
PyTorch, allowing researchers to leverage the power of distributed systems and 
parallel computing for federated NLP. 

2.6 Solutions of the Security and Privacy in FL 

Several techniques aim to design a secure and privacy-preserved FL architec-
ture. However, designing a secure and privacy-preserving FL while maintaining 
model accuracy and optimizing computational and communication resources is 
challenging. The most common approaches designed to produce secure FL can be 
summarized as follows:
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Homomorphic encryption (HE): It is a method of exchanging encrypted model 
parameters to protect the privacy of users and reduce the risk of data leak-
age. However, HE requires a trade-off between accuracy and privacy. Some 
researchers proposed federated learning privacy preservation approaches based 
on HE to encrypt the local gradients. Further, it employed distributed selective 
stochastic gradient descent to minimize the computation cost. 

Secure multiparty computation (SMC): It is a multiparty proof-of-zero-
knowledge security mechanism. Each party has no knowledge of the other 
and only has direct exposure to its related data. Because of its complicated 
calculations, achieving zero-knowledge proof is usually impossible. Therefore, 
whenever the required security constraints are satisfied, the partial zero-
knowledge proof is acceptable. Moreover, SMC relies on cryptographic 
techniques for securing client updates in the FL. SMC outperforms traditional 
cryptographic mechanisms by encrypting only the model parameters rather than 
a large volume of data, making it preferable in FL applications. The main issue 
with SMC is the trade-off between privacy and deficiency, as SMC execution 
takes time and has a negative impact on FL training. As a result, lightweight 
SMC solutions for FL are still required. 

Differential privacy (DP): It is an approach that aims to protect the client’s sensitive 
data from privacy leakage in FL. DP adds a small amount of noise to the local 
model parameters to make it difficult for attackers to extract personal information 
about the participants. However, the DP approaches reduce the privacy leakage 
risk, but there is still a trade-off between the amount of added noise and the 
overall model accuracy. Furthermore, adding more noise will prolong the model 
convergence time. To avoid privacy leakage of FL in IoV environments, some 
researchers proposed Local Differential Privacy (LDP) mechanisms. This LDP 
mechanism reduced communication costs while preventing adversaries from 
recreating exact training data from vehicle gradients. 

Anonymization: Anonymization techniques are used to protect privacy by remov-
ing personally identifiable and sensitive data while maintaining data utility. Three 
techniques are commonly used to achieve the data anonymization: k-anonymity, 
l-diversity, and t-closeness. These techniques have been applied in recent peer-
reviewed research. 

Blockchain: It is a distributed ledger technology characterized by immutability, 
transparency, reliability, trustworthiness, auditability, and accountability fea-
tures. These promoting features make the blockchain a more convenient for 
defending against FL attacks. Due to its security and traceability features, 
blockchain is an excellent choice for serving as a decentralized coordinator in 
FL. Some researchers proposed an algorithm to protect FL from model poisoning 
attacks. The algorithm is implemented and run in the smart contract on the 
blockchain. Unlike other algorithms that use data sample size or reputation to 
verify the quality of local updates, this algorithm uses accuracy as a metric 
to verify the accuracy of local updates before aggregating the global model. 
Similarly, some researchers introduced blockchain-enabled federated learning 
frameworks for securing the control of urban tragic low. The authors revealed
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that blockchain has been used to allow decentralized federated learning, in which 
model updates can be verified by miners to avoid fraudulent updates and so 
mitigate the impact of data poisoning attacks. 

3 The Blockchain-Empowered FL Framework 

3.1 Blockchain Technology 

Blockchain, conceptualized by a pseudonymous creator Satoshi Nakamoto in 2008 
[32], is a decentralized shared ledger (DSL) that combines data blocks in a 
chronological order into a specific data structure in a chain manner and ensures 
tamper resistance and unforgeability through cryptography. In a broad sense, it is an 
entirely new infrastructure and distributed computing paradigm. Taking the Bitcoin 
block, for example, the blockchain structure is shown in Fig. 15. 

The data layer encapsulates the blockchain’s underlying encryption technology 
and data storage method. 

The network layer involves the distributed peer-to-peer network and the transport 
mechanisms required to connect and operate among network nodes. 

The consensus layer includes various consensus mechanisms. They are combined 
with incentive mechanisms to achieve data consistency among nodes. 

The contract layer is a programmable implementation of blockchain technology. 
The application layer draws support from the underlying technology to imple-

ment various application scenarios and cases. 
As an analogy to the OSI 7-layer model, the basic architecture of blockchain 

can be divided into six layers: data, network, consensus, incentive, contract, and 
application. The basic architecture of blockchain is shown in Fig. 16. 

Regardless of the concept, blockchain has the characteristics of distributed, 
tamper proof, smart contracts, and encryption, as follows:

• Distributed structure. It not only implements P2P mode for data transmission, 
but also enables mutual verification of node information, thereby forming 

Fig. 15 The structure of the blockchain
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Fig. 16 The basic architecture of blockchain 

consensus on a certain information. Consensus information is stored by each 
user on local carriers (such as mobile phones or computers), greatly increasing 
the cost of tampering with the new information.

• Immutability. Because every node on the blockchain records the transaction 
information, if you want to change the transaction information, taking Bitcoin as 
an example, you must use more than 51% of the blockchain’s computing power to 
complete it. The more users in blockchain, the more users need to obtain consent 
when tampering with data information, and the greater the difficulty.

• Smart Contract. Smart contracts utilize computer algorithms to transform 
traditional contracts into automated execution techniques triggered by intelligent 
recognition. When the contract conditions agreed upon by all parties are met, 
the automatic execution instruction of the smart contract is triggered, and the 
contract will be irreversibly and automatically fulfilled.

• Encryption. The most critical technology of blockchain should be digital 
encryption technology, which utilizes a digital encryption algorithm. This 
encryption algorithm is generally divided into symmetric encryption algorithm 
and asymmetric encryption algorithm, and asymmetric encryption algorithm is 
mainly used in blockchain. 

With immutability and trustworthiness, blockchain has developed into an 
enabling technology and has built a credible digital environment, widely used in 
broader fields and deeper scenarios, such as Liang et al. [42] proposed a blockchain-
based homomorphic encryption for IP circuit protection recopyright transactions. 
Chen et al. [43] introduced the medical data privacy protection method based 
on blockchain technology data privacy protection. Liang et al. [44] proposed a


