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Foreword 

Technical springs are well-known machine components that can be reversibly 
deformed under load and cyclic or oscillating forces. Springs convert kinetic energy 
into potential energy, store energy, and return it to the system almost without loss 
when relieved. In order to take advantage of these properties for optimized applica-
tions, two essential aspects must be considered: the characteristics of the material 
used and a spring design that is adapted and optimized for the application. Spring 
steel alloys have the appropriate material characteristics for springs, which are usually 
highly stressed. In addition, the well-designed shape of the spring allows the technical 
requirements and characteristics such as stiffness, fatigue life, etc. to be met. Various 
spring designs are classified according to their shape and type of loading, which 
in most cases also provides the basic understanding for their technical calculation. 
Due to their various technical characteristics and functions, springs are still almost 
irreplaceable components in every new and modern machine concept, in airplanes, 
ships, buildings, trains, or automobiles. In order to meet all these high requirements, 
standards, and specifications, accurate calculation methods are needed, which take 
into account all important physical effects of springs. 

The purpose of this script is to explain the mechanical and physical properties 
of specific steel alloy springs and to present complementary analytical calculation 
methods based on existing and summarized calculation models. Approaches for 
characteristic spring data such as weight and package, life and crack growth, creep 
and relaxation rate, and lateral vibrations and natural frequencies are presented for 
specific spring shapes. The script includes calculations for coil springs, disk springs, 
wave springs, and thin-walled rods with semi-open cross-section. Due to the analyt-
ical approach of all calculation models, ambitious development and design engineers 
get a helpful review and overview of existing and complementary calculation methods 
for springs. 

Professor Vladimir Kobelev was born in Rostow-on-Don, Russian Federation. 
He studied Physical Engineering at the Moscow Institute of Physics and Tech-
nology. After his Ph.D. at the Department of Aerophysics and Space Research 
(FAKI), he habilitated at the University of Siegen, Scientific-Technical Faculty.
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Today, Prof. Kobelev is a lecturer and APL professor at the University of Siegen 
in the subject area of Mechanical Engineering. 

In his industrial career, Prof. Kobelev is an employee at Mubea, a successful 
automotive supplier located near Cologne/Germany. In the Corporate Engineering 
Department, Prof. Kobelev is responsible for the development of calculation methods 
and physical modeling of Mubea components. 

Dr.-Ing., Dr. h. c. Thomas Muhr 
Managing Partner Muhr and Bender 

KG, Mubea 
Attendorn, Germany



Preface 

This book focuses on the mechanics of elastic elements made of steel alloys, with 
an emphasis on metal springs for the automotive industry. Industry and scientific 
organizations are intensively studying the fundamentals of spring element design and 
constantly improving the mechanical properties of spring materials. The development 
tasks of spring manufacturing companies include the optimal application of existing 
material types. The task is therefore to evaluate the mechanical properties in a targeted 
manner and then to design springs that make full use of the achievable material 
properties. The first edition of this book (Kobelev, 2018) was revised to reflect the 
current trends and the state of the art in the modeling of springs. The second edition 
includes several corrections and improvements of the theory from the first edition. 
Most of the methods for fatigue assessment of spring materials have been revised. 
Experimental data for creep and relaxation under temperature have been added. The 
theory of simultaneous creep and plastic flow has been added to describe the time-
delayed presetting of coiled springs. This theory is essential for the fine tuning of 
presetting processes in machines. 

The third edition was considerably extended compared to the second edition 
(Kobelev, 2021). Chapters 5 and 6 deal with the new theory of disk springs with 
fixed inner and outer edges. In Chap. 5, disk springs with constant material thick-
ness are studied using the models of thin and moderately thick isotropic shells. The 
deformation behavior of the disk spring is treated as a one-dimensional inversion of 
a circular ring of rectangular section about certain inversion centers. The calculation 
of the disk springs examines the free-gliding edges and the edges with constrained 
radial motion. The formulations are used to derive load-displacement formulae for 
the disk springs with different constraints on radial movement on the inner and outer 
surfaces. 

Based on this model, the disk spring with non-constant thickness is calculated in 
Chap. 6. The disk spring with radially or tangentially variable material is studied. The 
equations provided are sufficiently accurate to evaluate relatively flat disk springs 
with smooth thickness variations along the latitude and longitude of the conical 
central surface. The derived formulae are applicable for design purposes. With these
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viii Preface

two new chapters, the formulae cover most conceivable applications of disk springs 
in heavy industry, mechanical engineering and automotive engineering. 

Another reorganized topic deals with the calculation of damage during fatigue 
loading. There are several independently invented criteria for calculating damage 
during loading with different amplitudes and an average force in the cycle. The engi-
neer must occasionally recalculate the damage from one damage model to another. 
At first sight, the recalculation appears to be difficult. The new Appendix D provides 
methods for recalculating the most common damage criteria. This is an important 
task for the correct application of finite-element methods to damage assessment. A 
correct description of fatigue processes is important for machinery where poten-
tial damage can become a hazard to people. This applies to the aerospace, energy, 
and automotive industries, among others. In particular, the fatigue life of springs 
has not yet been fully evaluated. The merging of the multiaxial stress tensor to 
the equivalent scalar value is one open question. The mean stress sensitivity is the 
other. Various strength hypotheses have been proposed to answer these questions. 
The strength hypotheses lead to relationships for a reasonable curve expressed in 
stress or strain. From this curve, the final allowable amplitudes of stress or strain are 
obtained. The final allowable amplitudes correspond to a certain number of cycles to 
failure. The dominant stresses in leaf and disk springs are normal stresses. For shear 
compression or helical tension springs, the shear stresses should be used instead of 
the normal stresses. Fatigue characteristics are determined by analyzing the failure 
parameters and fatigue properties of the materials. The appendix discusses in detail 
the mean stress sensitivity of the common spring material and compares the different 
approaches to evaluating the fatigue characteristics of the spring. 

The motivation of the previous editions was mainly the fatigue phenomena of the 
spring elements. The scope of the manuscript was considerably extended in the 2nd 
and 3rd editions of the book, entitled Durability of Springs. Two-thirds of the text of 
the current volume deal with design and manufacturing aspects of spring technology. 
This status quo argues for an extension of the title. Since the 3rd edition, the text has 
been given the new title Fundamentals of Spring Mechanics. The logical structure of 
the text remains largely unchanged. Readers familiar with the old editions will find 
the updated, corrected, and expanded chapters in the new edition as well. 

Siegen, Germany Vladimir Kobelev 
Vladimir.kobelev@uni-siegen.de 

https://www.mb.uni-siegen.de/kobelev/

mailto:Vladimir.kobelev@uni-siegen.de
https://www.mb.uni-siegen.de/kobelev/


Introduction 

Aims and Methods of the Book 

The integral parts of many mechanical systems are elastic elements or springs 
(Juvinall & Marshek, 2017, Chap. 12). The springs make it possible to maintain a 
tension or force in a mechanical system, to absorb the shocks and to reduce the vibra-
tions. Highly stressed spring elements in modern industrial and transport equipment 
must survive a very high number of cycles with high average stress and high ampli-
tude stress. These springs are manufactured from high-quality wires and by means 
of special mechanical and heat treatment processes. The standard designations of 
various spring steels are summarized in (ASTM DS67A, 2002). 

The spring is the widespread resilient element, which is used in the industrial 
machinery and automotive systems: 

• coil tension springs and/or torsion springs in disk or drum brakes, locks or locking 
or blocking systems, 

• torsion or bending springs for belt tensioners, safety belts, and for load compen-
sation in clutch pedals, 

• disk springs with or without slots for use in clutches, bearings, and for load 
pre-tensioning, 

• leaf springs for chassis suspension, 
• helical, or coil, spring for reducing impact events in passenger cars, some heavy 

trucks, and railroad cars 
• coil springs for nozzle holders, in transmissions, as valve springs, injection regula-

tors, or as vibration dampers in clutches and brake cylinders, as diesel fuel pumps, 
valvetrains, brakes, seats, doors, and control elements. 

Coil, of helical, springs are formed by winding a wire or rod of uniform cross-
section around a cylinder. A fixed distance is maintained between successive coils of 
a spring so that the axis of the wire forms a helix. The standard design procedures for 
helical springs are (SAE, 1996) and (DIN EN, 2012, 2013, 2015). Efficient design 
procedures for spring elements are based on modern simulation and optimization
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methods. Achieved by these methods, the reduction of the weight of suspension 
springs causes the reduction of the unsprung mass of the axle. This reduction has a 
positive effect on the comfort, traction, and steering characteristics of the car. The 
development of modern passenger cars has also highlighted the trend toward reduced 
packaging of suspension components to maximize space for occupants and cargo. 
Such requirements lead to a reduction in spring dimensions and wire cross-section. 
Springs can also be found in high-precision test equipment, where springs play the 
role of energy harvesters. 

One of the most important applications for heavy-duty springs is in the valve 
train of internal combustion engines. Valve springs in internal combustion engines 
provide forced contact between all moving valve train components during the valve 
lift up to maximum engine speed. Assuming annual production of 100 million cars 
having roughly 20 valve springs per engine, one gets a rough number of 2000 million 
valve springs produced. In Europe and North America, the valve spring is produced 
mainly from high-tensile wire alloyed with the elements chrome and vanadium. The 
extremely high oscillating stresses on the surface of the wire achieve the peak values 
up to 2000 MPa. The requirements on failure rate must be below 1.5% for engine 
operation test. Hereby, they are subjected to extreme vibration stresses and must 
endure up to 3 × 108 cycles without failure (Muhr, 1992). 

There are some common characteristics of high-quality and properly designed 
springs: 

• the high homogeneity of stresses on the surface of the spring; thus, the absence 
of stress-concentrators; 

• the considerable residual stresses, which, if properly induced, significantly 
prolong the operation life; 

• high sensitivity to imperfections, flaws, inclusions, and corrosion; 
• high amount of specific stored elastic energy. 

The spring industry has developed specialized materials and sophisticated 
manufacturing processes to meet the above requirements. 

The springs are mostly made from oil-quenched and tempered steel wire, which is 
wire formed by drawing hot-rolled steel rod through a drawing die and oil-quenching 
the resulting wire. Oil quenching is a term of art that identifies a process that generally 
involves heating the wire to austenitizing temperatures, quenching it in oil, quenching 
it by heating, and recoiling it. This sequence of manufacturing steps increases the 
tensile strength of the material. However, the ductility of the austenitized material is 
reduced. The material behaves almost elastically until the moment of fracture. The 
influence of these two effects, the requirement to increase the ultimate stress and the 
reduction in ductility, on the fatigue life of the material is contradictory. 

The oil-quenched and tempered low-alloy chrome-silicon spring steel wire 
achieves strengths in excess of 2600 MPa. Even higher strengths can be achieved with 
chrome-silicon-vanadium alloy steels for valve applications. The wire is peeled or 
ground before drawing and subjected to non-destructive crack testing after annealing. 
At the same time, high strength requires high purity and surface finish of the semi-
finished product, good formability in cold-forming steels, and corrosion resistance.
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High purity also improves ductility while maintaining static strength, which is partic-
ularly important for cold-formed springs. The latest phase of materials development 
for spring steels has therefore been strongly characterized by efforts to achieve very 
good purity and surface qualities on the one hand, and high-strength steels with the 
best possible ductility on the other. A metallurgy specially adapted to high-strength 
spring steel wires allows a very good degree of purity (Hagiwara et al., 1991; Kawa-
hara et al., 1992; Wiemer, 1998). Several publications are devoted to the improvement 
of wire properties and surface conditions (O’Malley & Hayes, 1990; Postma, 1993). 
Also included are developments in the direction of thermo-mechanical forming, 
improvement of toughness properties for a given strength, considerations of the 
most suitable heat treatment equipment, and the special manufacturing and treat-
ment processes for stainless spring semi-finished products (Lehnert, 1997; Illgner, 
1995; Schmitz-Cohnen, 1994). 

This setting reduces relaxation and improves creep behavior of springs at operating 
temperature. It is well known that curing affects the static residual stresses in the 
spring and changes the cyclic fatigue properties of the spring. In modern spring 
manufacturing, both cold and hot settings are used. Heat setting refers to the process 
of applying a time-dependent load to the spring at an elevated temperature. The main 
physical process during spring setting is material creep. 

Shot peening is another mechanical surface treatment used to improve spring 
performance. Local plastic deformation occurs on the wire surface, resulting in an 
improvement and strengthening of the properly machined surface. Shot peening 
significantly increases the fatigue life of springs. 

As a result, springs are a highly sophisticated element of modern machines 
with the highest fatigue life for relatively intensive cyclical stresses. To achieve 
the required fatigue life, the production of springs involves several specific proce-
dures. The production of modern springs includes several special techniques, which 
make springs stand out from ordinary machine components. It is worth mentioning 
that occasionally occurring fatigue failure of springs can cause damage to the entire 
machine component. In this case, the failure provokes costs that are incompatible 
even with the price of the highest quality spring. 

Structure of the Book 

The book reviews the advanced theory of elastic elements from the point of view of 
structural and material mechanics. The book examines the principal problems that 
are essential for clarifying the manufacturing and performance of the metallic spring 
elements. The elements of creep, plasticity, and fatigue serve as the building blocks 
of the physical background. What all the problems considered have in common is 
that they are solved in closed form. 

The content of the book is divided into three parts. Part I studies springs from the 
design point of view. The spring elements of machines and vehicles can be roughly 
divided into helical, leaf, disk, and twist beams. The models of each family of elastic
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elements and their optimization are discussed in Part I of the book, which covers 
Chaps. 1–7. Part II explains the basic processes of spring manufacturing. Plastic 
cold working is the main manufacturing process. Coiling and plastic presetting are 
described in Chaps. 8–10. Part II examines the creep and relaxation of springs during 
presetting. Part III of the manuscript estimates the service life of the springs. This 
part deals with the fatigue phenomena that usually limit the spring life. This part 
consists of Chaps. 11–14. The appendix includes the mathematical formulary for 
fatigue estimation of springs and different presentations of fatigue diagrams. 

Part I begins with the determination and evaluation of the spring design. The 
optimization of springs is studied in Chap. 1. The helical springs are the typical 
energy-storing elements of the valve train in automotive engines, in the suspensions 
of passenger cars and railway wagons, and in mechanical engineering. The design 
formulas for linear helical springs with inconstant wire diameter and variable mean 
spring diameter are presented. These formulas are used to optimize the spring for 
a given spring rate and wire strength. The basic principles of leaf spring design are 
also briefly discoursed. 

Chapter 2 presents analytical solutions for the torsion problem of an incomplete 
torus with circular and non-circular cross-sections. The hollow cross-sections of the 
shape demonstrate a closed form of the analytical solution. The solution is useful 
for the analysis and design of helical springs with non-circular wires. The torsion 
problems for straight cylinders with circular and elliptical cross-sections allow for 
the well-known closed-form solutions that will be needed in the next chapters. Two 
main load applications, axial force and axial moment, are analyzed. 

Chapter 3 explains a powerful method for simplifying the helical spring equa-
tions. Instead of a full treatment of the helical wire, the deformation of the virtual 
center line is studied. The virtual centerline has effective strain, torsion, and bending 
stiffness. It behaves like an initially straight elastic rod or column. This simplification 
allows a straightforward solution of several practically important problems. These 
include the load dependence of the transversal vibrations of helical springs and the 
transformation of transversal vibrations into buckling mode. Lateral buckling of the 
spring is considered in the context of dynamic stability as a limit case for vibration 
analysis. 

For proper consideration of dynamic effects, models of flexible springs with solid 
wire are required. In some cases, such as when the spring is uniform, analytical 
models for dynamics and buckling can be developed. However, in typical springs, 
only the central coils are uniform; the ends are often not (e.g., they have a varying 
helix angle or cross-section). Thus, obtaining analytical models in this case can be 
very difficult, if possible. A variety of theories can be found in the literature to 
describe the dynamic behavior of helical springs, which includes the interaction of 
bending (flexural), torsion, and longitudinal waves. In addition, various approximate 
methods are used to determine the fundamental frequencies of spring vibrations. The 
methods used to determine the fundamental frequencies can be roughly divided into 
three groups: 

• analysis methods, based on the concept of an equivalent column;
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• exact analysis methods, based on the theory of spatially curved bars; 
• numerical methods, based on finite-element formulation for spatially curved bars. 

The governing equations for the transversal vibrations of the axially loaded linear 
helical springs are developed. The method is based on the traditional concept of an 
equivalent column. The effect of the axial load on the fundamental frequency of the 
transversal vibrations is shown. The natural frequency of the transverse vibrations 
of the spring depends on the variable length of the spring. If the number of active 
coils remains constant, the frequency gradually decreases as the length of the spring 
is shortened. Finally, when the frequency becomes zero, the lateral buckling of the 
spring occurs by the divergence mode. Note that progressive springs have the opposite 
behavior. The number of active coils in compressed progressive springs decreases 
and the transverse frequency increases. Therefore, the progressive springs rarely 
became transversely unstable. 

The combination of tension, compression, and torque loads often causes defor-
mation of spring elements. These loads sometimes lead to spatial buckling of the 
elements. The stability of helical springs under the combined tension, compression, 
and torsion is elucidated. 

Disk springs (also known as Belleville washers) are studied in Chap. 4. Disk  
springs are examples of highly stressed machine elements. The workpiece for disk 
springs is in the form of a sheet or roll. The disk springs are usually produced by 
stamping. Other processes to produce disk springs are blanking, stamping, perfo-
rating, cutting, drawing, notching, lancing, and bending. Multiple punches can be 
used together to produce a part in one step. The “Conical Disk Spring,” “Belleville 
Spring,” or “Belleville Washer” is typically used as a spring or to apply a preload 
or flexible quality to a bolted joint or bearing. These springs are the typical energy-
storing elements of the valve train in clutches and automatic transmissions of auto-
mobiles. Belleville springs are generally made of spring steel and can be subjected 
to static loads, rarely alternating loads, and dynamic loads. Belleville springs must 
meet stringent fatigue life and creep requirements. Because the basic characteristics 
of disk springs include high fatigue life, better space utilization, low creep tendency, 
high load capacity with small spring deflection. From a mechanical point of view, 
Belleville washers are flat conical rings subjected to axial load. Normally, the thick-
ness of the ring is constant, and the applied load is evenly distributed between the 
upper inner edge and the lower outer edge. In this chapter, the equilibrium equa-
tions of thin and moderately variable thickness disk springs are obtained. Variational 
principles for conical shells are used for the derivation. Simplification is based on 
common deformation hypotheses. Closed-form analytical solutions of thin and thick 
truncated cone shells are obtained. 

Disk wave springs are also analyzed in Chap. 4. Wave springs are coiled, resilient 
parts made of flat material. The special feature of these springs is the reduction of 
their spring height under the conditions of spring force and travel. This feature makes 
wave springs suitable for compact installation. The production of wave springs from 
wire, as opposed to the punching of disk springs from flat or rolled sheet metal.
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This allows a considerable amount of scrap to be saved, which is typical of stamping 
operations. Both linear and nonlinear disk wave springs are deliberated. 

Chapter 5 examines fixed-edge disk springs using the thin and moderately thick 
isotropic shell models. The thickness of the material is kept constant in this chapter. 
The calculation of the disk springs examines the free-gliding edges and the edges 
with constrained radial motion. The variation formulas are used to derive load-
displacement formulas for the disk springs with different radial constraints on the 
inner and outer surfaces. The kinematic hypothesis is used for the shell models of 
conical shells. The motivating feature of the presented theory is its ability to calcu-
late the cup springs with free-gliding edges and the edges with constrained radial 
motion. The equations developed here are based on general assumptions and are 
suitable for disk springs made of isotropic materials, such as spring steel and light 
metal alloys. The advantage of the methodology is the derivation of closed-form 
solutions for several common restrictions on the radial motion of the inner and outer 
edges. The developed formulas are recommended for industrial calculations of free 
and restricted disk springs and Belleville washers. 

Chapter 6 observes the disk spring with variable thickness. The thickness of the 
material is variable along the meridional and parallel coordinates of the conical coor-
dinate system. The calculation of disk springs includes the cases of free-gliding edges 
and edges on cylindrical curbs, which restrict the radial movement. The equations 
developed here are based on common assumptions and are simple enough to be 
applied to industrial calculations. 

The analysis of thin-walled, semi-open-section beams is performed in Chap. 7. 
An essential characteristic of this class of thin-walled beam-like structures is their 
closed but flattened profile. In this book, an intermediate class of thin-walled beam 
sections is studied. The cross-section of the beam is closed, but the shape of the cross-
section is elongated and curved. The walls forming the section are nearly equidistant. 
The unusual shape of semi-open thin-walled beams allows for efficient optimization 
due to the large variability of shapes. The automotive application of semi-open thin-
walled beams is conversed later in Chap. 7. The main application of the theory of 
semi-open thin-walled beams is the twist beam of the semi-solid trailing arm axle. 
The analytical expressions for the effective torsional stiffness and effective bending 
stiffness of the twist beam are derived in terms of the section properties of the semi-
open section twist beam. Based on the stiffness coefficients of the twist beam, the 
roll rate, chamber, and lateral stiffness of the suspension are derived. 

Mechanical problems encountered in the manufacture of helical springs are exam-
ined in Part II, which includes Chaps. 8 and 9. In Chap. 8, we analyze the coiling 
of helical springs. For this purpose, we study the plastic flow and the appearance of 
residual stresses. It is well known that the excessive stresses during the coiling of 
helical springs can cause the rod to break. In addition, the high level of residual stress 
in the formed coil spring significantly reduces its fatigue life. For practical estimation 
of the residual and coiling stresses in the helical springs, the analytical formulas are 
required. In this chapter, the analytical solution of the problem of elastic-plastic defor-
mation of cylindrical bar under combined bending and torsional moments is found 
for a special nonlinear stress-strain law. The obtained solution allows the analysis of
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the active stresses during the combined bending and torsion. In addition, the residual 
stresses in the beam after spring-back are also derived in a closed analytical form. 
The obtained results agree with the reported measured values. The developed method 
does not require numerical simulation and is perfectly suitable for the programming 
of coiling machines, the estimation of loads during the production of cold-wound 
helical springs and for the dimensioning and wear calculation of coiling tools. 

In Chap. 9, the prestressing calculation for helical springs is developed. The 
method is based on the deformation formulation of the plasticity theory and common 
kinematic hypotheses. From a mathematical point of view, the governing equations 
of prestressing are somewhat analogous to the equations of the coiling process. Two 
main types of helical springs are studied—compression springs and torsion springs. 
For the first type (axial compression or tension springs), the spring wire is twisted. 
The basic approach neglects the pitch and curvature of the coil and replaces the 
helical wire with a straight cylindrical rod. The elastic-plastic torsion of the straight 
bar with circular cross-section is studied. The analysis is based on the hypothesis of 
St. Venant. In the second type (torsion helical springs), the helical wire is in the state 
of bending. The model analyzes the delayed prestressing, which is accompanied by 
a significant creep. 

The last, Part III, includes the life cycle of the elastic elements, the high static 
stresses lead to the residual deformation. The loss of sag leads to the gradual reduction 
of spring forces with the resulting failure if the spring’s working length continues. 
Spring breakage due to static creep is the extremely rare event. Moderate cyclic 
loading is accompanied by some creep and cyclic sag loss. Severe cyclic loading 
sooner or later leads to fatigue failure of the spring. These two sources of possible 
damage to elastic elements are summarized in Chaps. 10–14. 

Understanding the long-term behavior of springs under high static loading is 
essential to their proper design. Creep and relaxation of springs is the subject of 
Chap. 10. Stress analysis for creep has a long history in engineering mechanics, 
driven by the need to design for elevated temperatures. In solid mechanics, creep is 
the tendency of materials to deform gradually or continuously under the action of 
external mechanical stresses. At stresses below the yield strength of the material, 
slow inelastic deformation occurs. In the spring industry, this is called creep when 
a spring under constant load loses length, and it is called relaxation when a spring 
under constant compression loses load. Creep and relaxation rates depend on temper-
ature, stress in the metal, yield strength, and time. Increased temperature, stress, and 
time significantly increase the creep and relaxation rates. In particular, temperature 
and stress have the greatest influence. An accurate description of creep is essential 
for proper spring design. Finally, Chap. 10 demonstrates the evaluation of creep 
constants in a wire twisting experiment. In addition, the exact analytical expressions 
for the torsional and bending creep of bars are derived using the common constitu-
tive models. One of the common creep constitutive models is the Norton-Bailey law, 
which gives a power law relationship between minimum creep rate and (constant) 
stress. The power law can be found in high-temperature design and creep numerical 
codes.
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Other common creep laws are the exponential and Garofalo laws, which more 
adequately describe the stress dependence over a wide range of working stresses. For 
all these laws, we derive the analytical formulas for creep caused by steady or oscil-
lating loading. In Chap. 10, the generalized expression for the creep law is studied. 
The new expression is based on experimental data and unifies the primary, secondary, 
and tertiary regions of the creep curve. The relaxation functions for bending and 
torsion depend only on the maximum stress in the cross-section, which occurs at 
the outer surface of the coil. Finally, we explain the temperature dependence for the 
creep of spring materials. 

Chapters 11 and 12 briefly consider the fatigue effects of springs. We begin with the 
deterministic approach. The results presented show the average fatigue characteristics 
and evaluate the stress levels at which the majority of springs fail. In this case, we 
speak about mean S-N lines. The durability of springs under oscillating loads is the 
subject of Chap. 11. Traditional fatigue design methods are based on collecting a 
large amount of experimental data in cyclic tests, structuring the data, and extracting 
empirical formulas. The method of analyzing crack growth under repeated loading 
is reviewed in Chap. 11. The expressions for the spring length over the number of 
cycles are derived in terms of a higher transcendental function. The proposed method 
starts from the micromechanically inspired effects of crack propagation, explains the 
history of crack propagation, and finally provides the stress-life curves. 

Several effects on fatigue life, mainly the effects of stress ratio and multiaxiality, 
are deliberated in Chap. 12. The solutions presented are used to estimate the fatigue 
life of springs for asymmetric harmonic loading with substantial mean stress. An 
attempt is made to unify various traditional methods into a unified Bergmann-Walker 
formula. Different settings of two fitting parameters in the unified criterion result in 
the common fatigue criteria. 

It is noteworthy that the high-quality springs differ from the low-quality products 
mainly by the scattering ranges. The evaluation of scatter requires the statistical 
methods conversed in the next chapters. The statistical effects on fatigue life are 
further discussed in Chaps. 13 and 14. We study the probability descriptions for 
the fatigue limit of heterogeneously stressed members. The proposed approach for 
stress gradient sensitivity of fatigue life is based on the “weakest link” concept. This 
method is applicable to the exceptionally brittle materials that fail immediately after 
the failure of the first constituent element. The weakest link approach is used to 
calculate the number of cycles to complete failure under different probability levels. 
The effect of fluctuating stresses on the fatigue life of springs is combined with the 
influence of heterogeneous stress distribution (stress gradient) over the wire cross-
section and time-varying stresses. The stress field is inhomogeneous over the cross-
section of the spring wire. The stress distribution is uniquely defined by the ratio of 
the diameter of the wire to the diameter of the spring body. The calculated lifetimes 
are compared with the lifetimes of helical springs subjected to cyclic loading. 

Chapter 14 examines the stochastic effects on the fatigue life of springs. Stochastic 
crack propagation is typical of the low-stress and high-cycle fatigue regions. The 
deviation and branching of the crack are caused by the high inhomogeneity of the 
polycrystalline structure at the micro level. For the low amplitude of stress, the crack
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extension per cycle is less than the typical size of inhomogeneities. The stochastic 
differential equation for the traveling crack is derived. The stochastic equation is 
similar to the forced Brownian motion equation. The methods are based on the 
unified fatigue laws. These laws lead to analytical solutions for the crack length at 
the mean value and the range of cyclic variation of the stress intensity factor. In this 
chapter, we demonstrate the closed-form expressions for the number of cycles to 
failure as a function of the initial crack size. 

Target Audience of the Book 

This book was written as a script for the courses “Applied Mechanics of the Automo-
bile,” “Automotive Engineering, Chassis, II, III,” “Structural Optimization in Auto-
motive Engineering,” and “Powertrain Modeling and Optimization,” which the author 
has been teaching at the University of Siegen, North Rhine-Westphalia, Germany, 
since 2001. 

This book is primarily intended for engineers involved in the design and devel-
opment of springs who have graduated from automotive or mechanical engineering 
programs at technical colleges or other engineering schools. Researchers working 
on elastic elements and energy harvesting devices will also find a broad overview of 
the fundamentals of spring methodology. 

The current book presents powerful methods for the analysis of elastic elements 
made of steel alloys. The focus is on metal springs for the automotive industry. 

It is well known that the industry researches the design of spring elements and 
constantly develops the quality of spring materials. New materials are developed in 
the factories of material suppliers. The task of the spring manufacturing companies 
is the optimal application of the existing and newly developed types of materials. 
The technologically advanced method consists in the target-oriented evaluation of 
the mechanical properties and the subsequent design of the springs, which makes full 
use of the measured material properties. Thus, the full development of the improved 
materials is only possible if their essential properties are rigorously acquired. Design 
and manufacturing must fully exploit all available capabilities of the semi-finished 
product. 

An enormous number of papers have been written on this and related subjects. 
This does not mean that the science of spring mechanics and strength has become 
completely useless. Rather, it is necessary to have a thorough understanding 
of mechanics and metallic disciplines in order to elucidate the wide range of 
possibilities. Therefore, much of this book is devoted to these topics. 

The precise methods for the design of different types of springs are summarized 
in the relevant standards. Industrial research has developed reliable methods for 
estimating fatigue life and creep effects. The purpose of this book is not to replace the 
established methods of design and pragmatic methods of life assessment of springs. 
The aim of this book is to qualitatively explain the mechanical behavior of the spring 
as a unique elastic element, which has some very specific properties. We try to survey
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the vast and fragmented landscape of springs from a single point of view of classical 
mechanics. We try to compare the different methods of service life evaluation and 
to point out the most effective and general methods. There are many experimental 
values that are currently the subject of speculation. It is possible that these values 
will be obtained in future studies. Most of the methods presented are recognized and 
applicable to other heavily loaded structural elements. 

A few words about solution methods. There are several recognized commer-
cial finite-element codes, e.g., (ANSYS, 2020; ABAQUS, 2020). However, for the 
modeling of technical systems, analytical solutions often offer important advan-
tages. First, the transparency of closed-form solutions. Because analytical solu-
tions are represented as mathematical expressions, they provide an understandable 
view of how variables and relationships between variables affect the result. Second, 
performance: algorithms and models expressed in terms of analytical solutions are 
often more effective than the corresponding numerical applications. For example, to 
compute the solution of an ordinary differential equation for different values of its 
parametric inputs, it is often faster, more accurate, and more appropriate to evaluate 
an analytical solution than to integrate numerically. Third, numerical solutions are 
sometimes extremely abundant. The main reason is that sometimes we either don’t 
have an analytical approach, or the analytical solution is too slow, and instead of 
computing for hours and getting an exact solution, we rather compute for seconds 
and get a good approximation. Finally, numerical solutions can seldom contribute to 
the invention of new ideas. For this reason, the treatment of the material in this book 
resolves the problems studied to closed-form solutions in the form of mathematical 
expressions. 

The content of this book is logically related to the work Design and Analysis of 
Composite Structures for Automotive Applications by the same author. The latter 
book is an extension of the present book and covers the subject of composite mate-
rials. The manuscript (Kobelev, 2019a) examines the special properties of composite 
materials, such as their anisotropy, inhomogeneity, load direction dependence, stress 
coupling, and stacking capabilities.
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Symbols1 

Symbol Description Unita 

Qa Activation energy of diffusion kJ/mol 

χ Angle between meridian and principal material axis rad 

φQ Angle of inclination of the bent axis rad 

α Angle of pitch of helical spring rad 

ϑ Angle of twist per unit length rad 

ϑ̄ Angle of twist per unit length after spring-back rad 

ψ = H/(re − ri ) Angle, of slope, deformed middle surface of disk spring rad 

α = h/(re − ri ) Angle, of slope, free middle surface of disk spring rad 

φ Angle, rotation of the middle surface disk spring rad 

A Area of the material part of the cross-section m2 

Am Area, enclosed by the curve Lm m2 

φ1(r ), φ2(z) Auxiliary functions 1 

k1, k2 Auxiliary functions for survival probabilities and ratio of 
cycles to failure of spring to straight rod 

1 

σ0, N0 Auxiliary scaling constants, σ  
f = σ0(2N0)

−b0 1 

T , B Axes of wire cross-section (thickness and width) m 

R̄ = 1/κ̄ Bending radius after unloading (after spring-back) m 

R = 1/κ Bending radius in during active coiling m 

θa = 2πna Circumferential angle along wire length rad

(continued)

1 For the sake of continuous consistency in the manuscript, the designations may be different 
from those used in the standards. 
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xxx Symbols

(continued)

xe ≤ x ≤ xi Coordinate on the meridian of free conical shell m 

xc, yc Coordinates of the center of mass of the cross-section m 

αx , αy Coordinates of the twist center of the cross-section m 

x = ρ cos φ, 
y = ρ sin φ 

Coordinates, Cartesian of the circular cross-section m 

0 ≤ ρ ≤ r, 
0 ≤ φ ≤ 2π 

Coordinates, polar of the circular cross-section m 
rad 

ki = ki (w) Correction factors for stress, i = 1, .., 4 1 

cτ Creep constant, for shear strain s−ς 
Paξ +1 

cσ Creep constant, for uniaxial strain s−ς 
Paξ +1 

tc Creep, average time s 

t̄ Creep, Norton-Bailey constant s 

ε̄, γ̄ Creep, strain rate constants 1/s 

ξ Creep, stress exponent 1 

σ̄ ,  τ̄ Creep, stress scaling constants Pa 

ς Creep, time exponent 1 

κ Curvature in moment of plastic deformation 1/m 

κi Curvature principal, i = 1, 2 1/m 

NL Cycles number to the failure for a given stress amplitude, 
highest (failure event of the last homogeneously stressed 
specimen) 

1 

NF Cycles number to the failure for a given stress amplitude, 
lowest (failure event of the first homogeneously stressed 
specimen) 

1 

μ∗+, μ∗− Deflection at loading and unloading, critical 1 

ρm Density of material kg/m3 

Dα
 

Derivative, fractional of order α
 

1/sα
 

d = 2r Diameter of circular wire or bar m 

De Diameter of middle surface of free spring, external 
(outside) 

m 

Di Diameter of middle surface of free spring, internal (inside) m 

dopt Diameter of wire, optimal m 

μ∗ Dimensionless length, character 1 

s̃ Displacement, axial, measured from upper inside edge to 
lower outside edge 

m 

sb Displacement, caused by bending moment m 

ss Displacement, caused by shearing force m 

sQ Displacement, lateral m 

τe Endurance limit for completely reversed stress Pa 

Kth Endurance threshold limit N 
√
m

(continued)



Symbols xxxi

(continued)

Ue, U1...U5 Energy, elastic strain J 

U f Energy, potential of applied forces J

 Energy, total potential J

 E IB Equivalent bending stiffness Pa m4

 GS Equivalent shear stiffness Pa m2 

F∗ Euler’s critical load for compression N 

m2 > 1 Exponent, at short-term limit 1 

m1 > 1 Exponent, endurance limit 1 

p > 1 Exponent, fatigue 1 

c(Rσ ) Exponent, fatigue ductility 1 

pS Exponent, fatigue in high-cycle range 1 

pL Exponent, fatigue in moderate cycle range 1 

b0(Rσ ) = −1/pσ Exponent, of fatigue strength 1 

k Exponent, secant 1 

k f Extent constant of failure region – 

S f Factor for safety 1 

γ  
f (Rσ ) Fatigue ductility coefficient, shear 1 

ε f (Rσ ) Fatigue ductility coefficient, uniaxial 1 

λ ≡ 1 2
 
σ  
f

 − 1 bσ Fatigue equation, constant 1 

σ  
f (Rσ ) Fatigue strength coefficient for normal stress Pa 

τ  
f (Rσ ) Fatigue strength coefficient for shear stress Pa 

FR Force acting on the upper middle surface, radial N 

Fτ (z, s) Force tangential, pro unit length N/m 

F Force, axial on the spring N 

Fθ Force, Circumferential in the wire direction N 

F̃1Z Force, corrected total axial N 

Fσ (z, s) Force, normal, pro unit length N/m 

Fz (t) Force, of spring as the function of time N 

Q Force, shear N 

F0 
z Force, Spring at the moment t = 0 N 

Fmin Force, spring loads at lengths Lcomp N 

Fmax Force, spring loads at lengths Lre  f N 

Fz Force, total axial acting on the upper middle surface N 

FAL Force, total axial due to Almen and Laszlo N 

FzDI  N Force, total axial, DIN standard N 

N1, N2, N12 Forces, meridional, circumferential and shear direct N
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