Vladimir Kobelev

Fundamentals of Springs Mechanics

Fundamentals of Springs Mechanics

Vladimir Kobelev

Fundamentals of Springs Mechanics

Third Edition

Vladimir Kobelev Department of Natural Sciences Faculty IV: School of Science and Technology University of Siegen Siegen, Nordrhein-Westfalen, Germany

ISBN 978-3-031-58583-8 ISBN 978-3-031-58584-5 (eBook) https://doi.org/10.1007/978-3-031-58584-5

1st edition: © Springer International Publishing AG 2018 2nd and 3rd editions: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021, 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Foreword

Technical springs are well-known machine components that can be reversibly deformed under load and cyclic or oscillating forces. Springs convert kinetic energy into potential energy, store energy, and return it to the system almost without loss when relieved. In order to take advantage of these properties for optimized applications, two essential aspects must be considered: the characteristics of the material used and a spring design that is adapted and optimized for the application. Spring steel alloys have the appropriate material characteristics for springs, which are usually highly stressed. In addition, the well-designed shape of the spring allows the technical requirements and characteristics such as stiffness, fatigue life, etc. to be met. Various spring designs are classified according to their shape and type of loading, which in most cases also provides the basic understanding for their technical calculation. Due to their various technical characteristics and functions, springs are still almost irreplaceable components in every new and modern machine concept, in airplanes, ships, buildings, trains, or automobiles. In order to meet all these high requirements, standards, and specifications, accurate calculation methods are needed, which take into account all important physical effects of springs.

The purpose of this script is to explain the mechanical and physical properties of specific steel alloy springs and to present complementary analytical calculation methods based on existing and summarized calculation models. Approaches for characteristic spring data such as weight and package, life and crack growth, creep and relaxation rate, and lateral vibrations and natural frequencies are presented for specific spring shapes. The script includes calculations for coil springs, disk springs, wave springs, and thin-walled rods with semi-open cross-section. Due to the analytical approach of all calculation models, ambitious development and design engineers get a helpful review and overview of existing and complementary calculation methods for springs.

Professor Vladimir Kobelev was born in Rostow-on-Don, Russian Federation. He studied Physical Engineering at the Moscow Institute of Physics and Technology. After his Ph.D. at the Department of Aerophysics and Space Research (FAKI), he habilitated at the University of Siegen, Scientific-Technical Faculty. Today, Prof. Kobelev is a lecturer and APL professor at the University of Siegen in the subject area of Mechanical Engineering.

In his industrial career, Prof. Kobelev is an employee at Mubea, a successful automotive supplier located near Cologne/Germany. In the Corporate Engineering Department, Prof. Kobelev is responsible for the development of calculation methods and physical modeling of Mubea components.

Dr.-Ing., Dr. h. c. Thomas Muhr Managing Partner Muhr and Bender KG, Mubea Attendorn, Germany

Preface

This book focuses on the mechanics of elastic elements made of steel alloys, with an emphasis on metal springs for the automotive industry. Industry and scientific organizations are intensively studying the fundamentals of spring element design and constantly improving the mechanical properties of spring materials. The development tasks of spring manufacturing companies include the optimal application of existing material types. The task is therefore to evaluate the mechanical properties in a targeted manner and then to design springs that make full use of the achievable material properties. The first edition of this book (Kobelev, 2018) was revised to reflect the current trends and the state of the art in the modeling of springs. The second edition includes several corrections and improvements of the theory from the first edition. Most of the methods for fatigue assessment of spring materials have been revised. Experimental data for creep and relaxation under temperature have been added. The theory of simultaneous creep and plastic flow has been added to describe the timedelayed presetting of coiled springs. This theory is essential for the fine tuning of presetting processes in machines.

The third edition was considerably extended compared to the second edition (Kobelev, 2021). Chapters 5 and 6 deal with the new theory of disk springs with fixed inner and outer edges. In Chap. 5, disk springs with constant material thickness are studied using the models of thin and moderately thick isotropic shells. The deformation behavior of the disk spring is treated as a one-dimensional inversion of a circular ring of rectangular section about certain inversion centers. The calculation of the disk springs examines the free-gliding edges and the edges with constrained radial motion. The formulations are used to derive load-displacement formulae for the disk springs with different constraints on radial movement on the inner and outer surfaces.

Based on this model, the disk spring with non-constant thickness is calculated in Chap. 6. The disk spring with radially or tangentially variable material is studied. The equations provided are sufficiently accurate to evaluate relatively flat disk springs with smooth thickness variations along the latitude and longitude of the conical central surface. The derived formulae are applicable for design purposes. With these two new chapters, the formulae cover most conceivable applications of disk springs in heavy industry, mechanical engineering and automotive engineering.

Another reorganized topic deals with the calculation of damage during fatigue loading. There are several independently invented criteria for calculating damage during loading with different amplitudes and an average force in the cycle. The engineer must occasionally recalculate the damage from one damage model to another. At first sight, the recalculation appears to be difficult. The new Appendix D provides methods for recalculating the most common damage criteria. This is an important task for the correct application of finite-element methods to damage assessment. A correct description of fatigue processes is important for machinery where potential damage can become a hazard to people. This applies to the aerospace, energy, and automotive industries, among others. In particular, the fatigue life of springs has not yet been fully evaluated. The merging of the multiaxial stress tensor to the equivalent scalar value is one open question. The mean stress sensitivity is the other. Various strength hypotheses have been proposed to answer these questions. The strength hypotheses lead to relationships for a reasonable curve expressed in stress or strain. From this curve, the final allowable amplitudes of stress or strain are obtained. The final allowable amplitudes correspond to a certain number of cycles to failure. The dominant stresses in leaf and disk springs are normal stresses. For shear compression or helical tension springs, the shear stresses should be used instead of the normal stresses. Fatigue characteristics are determined by analyzing the failure parameters and fatigue properties of the materials. The appendix discusses in detail the mean stress sensitivity of the common spring material and compares the different approaches to evaluating the fatigue characteristics of the spring.

The motivation of the previous editions was mainly the fatigue phenomena of the spring elements. The scope of the manuscript was considerably extended in the 2nd and 3rd editions of the book, entitled *Durability of Springs*. Two-thirds of the text of the current volume deal with design and manufacturing aspects of spring technology. This status quo argues for an extension of the title. Since the 3rd edition, the text has been given the new title *Fundamentals of Spring Mechanics*. The logical structure of the text remains largely unchanged. Readers familiar with the old editions will find the updated, corrected, and expanded chapters in the new edition as well.

Siegen, Germany

Vladimir Kobelev Vladimir.kobelev@uni-siegen.de https://www.mb.uni-siegen.de/kobelev/

Introduction

Aims and Methods of the Book

The integral parts of many mechanical systems are elastic elements or springs (Juvinall & Marshek, 2017, Chap. 12). The springs make it possible to maintain a tension or force in a mechanical system, to absorb the shocks and to reduce the vibrations. Highly stressed spring elements in modern industrial and transport equipment must survive a very high number of cycles with high average stress and high amplitude stress. These springs are manufactured from high-quality wires and by means of special mechanical and heat treatment processes. The standard designations of various spring steels are summarized in (ASTM DS67A, 2002).

The spring is the widespread resilient element, which is used in the industrial machinery and automotive systems:

- coil tension springs and/or torsion springs in disk or drum brakes, locks or locking or blocking systems,
- torsion or bending springs for belt tensioners, safety belts, and for load compensation in clutch pedals,
- disk springs with or without slots for use in clutches, bearings, and for load pre-tensioning,
- leaf springs for chassis suspension,
- helical, or coil, spring for reducing impact events in passenger cars, some heavy trucks, and railroad cars
- coil springs for nozzle holders, in transmissions, as valve springs, injection regulators, or as vibration dampers in clutches and brake cylinders, as diesel fuel pumps, valvetrains, brakes, seats, doors, and control elements.

Coil, of helical, springs are formed by winding a wire or rod of uniform crosssection around a cylinder. A fixed distance is maintained between successive coils of a spring so that the axis of the wire forms a helix. The standard design procedures for helical springs are (SAE, 1996) and (DIN EN, 2012, 2013, 2015). Efficient design procedures for spring elements are based on modern simulation and optimization methods. Achieved by these methods, the reduction of the weight of suspension springs causes the reduction of the unsprung mass of the axle. This reduction has a positive effect on the comfort, traction, and steering characteristics of the car. The development of modern passenger cars has also highlighted the trend toward reduced packaging of suspension components to maximize space for occupants and cargo. Such requirements lead to a reduction in spring dimensions and wire cross-section. Springs can also be found in high-precision test equipment, where springs play the role of energy harvesters.

One of the most important applications for heavy-duty springs is in the valve train of internal combustion engines. Valve springs in internal combustion engines provide forced contact between all moving valve train components during the valve lift up to maximum engine speed. Assuming annual production of 100 million cars having roughly 20 valve springs per engine, one gets a rough number of 2000 million valve springs produced. In Europe and North America, the valve spring is produced mainly from high-tensile wire alloyed with the elements chrome and vanadium. The extremely high oscillating stresses on the surface of the wire achieve the peak values up to 2000 MPa. The requirements on failure rate must be below 1.5% for engine operation test. Hereby, they are subjected to extreme vibration stresses and must endure up to 3×10^8 cycles without failure (Muhr, 1992).

There are some common characteristics of high-quality and properly designed springs:

- the high homogeneity of stresses on the surface of the spring; thus, the absence of stress-concentrators;
- the considerable residual stresses, which, if properly induced, significantly prolong the operation life;
- high sensitivity to imperfections, flaws, inclusions, and corrosion;
- high amount of specific stored elastic energy.

The spring industry has developed specialized materials and sophisticated manufacturing processes to meet the above requirements.

The springs are mostly made from oil-quenched and tempered steel wire, which is wire formed by drawing hot-rolled steel rod through a drawing die and oil-quenching the resulting wire. Oil quenching is a term of art that identifies a process that generally involves heating the wire to austenitizing temperatures, quenching it in oil, quenching it by heating, and recoiling it. This sequence of manufacturing steps increases the tensile strength of the material. However, the ductility of the austenitized material is reduced. The material behaves almost elastically until the moment of fracture. The influence of these two effects, the requirement to increase the ultimate stress and the reduction in ductility, on the fatigue life of the material is contradictory.

The oil-quenched and tempered low-alloy chrome-silicon spring steel wire achieves strengths in excess of 2600 MPa. Even higher strengths can be achieved with chrome-silicon-vanadium alloy steels for valve applications. The wire is peeled or ground before drawing and subjected to non-destructive crack testing after annealing. At the same time, high strength requires high purity and surface finish of the semi-finished product, good formability in cold-forming steels, and corrosion resistance.

High purity also improves ductility while maintaining static strength, which is particularly important for cold-formed springs. The latest phase of materials development for spring steels has therefore been strongly characterized by efforts to achieve very good purity and surface qualities on the one hand, and high-strength steels with the best possible ductility on the other. A metallurgy specially adapted to high-strength spring steel wires allows a very good degree of purity (Hagiwara et al., 1991; Kawahara et al., 1992; Wiemer, 1998). Several publications are devoted to the improvement of wire properties and surface conditions (O'Malley & Hayes, 1990; Postma, 1993). Also included are developments in the direction of thermo-mechanical forming, improvement of toughness properties for a given strength, considerations of the most suitable heat treatment equipment, and the special manufacturing and treatment processes for stainless spring semi-finished products (Lehnert, 1997; Illgner, 1995; Schmitz-Cohnen, 1994).

This setting reduces relaxation and improves creep behavior of springs at operating temperature. It is well known that curing affects the static residual stresses in the spring and changes the cyclic fatigue properties of the spring. In modern spring manufacturing, both cold and hot settings are used. Heat setting refers to the process of applying a time-dependent load to the spring at an elevated temperature. The main physical process during spring setting is material creep.

Shot peening is another mechanical surface treatment used to improve spring performance. Local plastic deformation occurs on the wire surface, resulting in an improvement and strengthening of the properly machined surface. Shot peening significantly increases the fatigue life of springs.

As a result, springs are a highly sophisticated element of modern machines with the highest fatigue life for relatively intensive cyclical stresses. To achieve the required fatigue life, the production of springs involves several specific procedures. The production of modern springs includes several special techniques, which make springs stand out from ordinary machine components. It is worth mentioning that occasionally occurring fatigue failure of springs can cause damage to the entire machine component. In this case, the failure provokes costs that are incompatible even with the price of the highest quality spring.

Structure of the Book

The book reviews the advanced theory of elastic elements from the point of view of structural and material mechanics. The book examines the principal problems that are essential for clarifying the manufacturing and performance of the metallic spring elements. The elements of creep, plasticity, and fatigue serve as the building blocks of the physical background. What all the problems considered have in common is that they are solved in closed form.

The content of the book is divided into three parts. Part I studies springs from the design point of view. The spring elements of machines and vehicles can be roughly divided into helical, leaf, disk, and twist beams. The models of each family of elastic

elements and their optimization are discussed in Part I of the book, which covers Chaps. 1–7. Part II explains the basic processes of spring manufacturing. Plastic cold working is the main manufacturing process. Coiling and plastic presetting are described in Chaps. 8–10. Part II examines the creep and relaxation of springs during presetting. Part III of the manuscript estimates the service life of the springs. This part deals with the fatigue phenomena that usually limit the spring life. This part consists of Chaps. 11–14. The appendix includes the mathematical formulary for fatigue estimation of springs and different presentations of fatigue diagrams.

Part I begins with the determination and evaluation of the spring design. The optimization of springs is studied in Chap. 1. The helical springs are the typical energy-storing elements of the valve train in automotive engines, in the suspensions of passenger cars and railway wagons, and in mechanical engineering. The design formulas for linear helical springs with inconstant wire diameter and variable mean spring diameter are presented. These formulas are used to optimize the spring for a given spring rate and wire strength. The basic principles of leaf spring design are also briefly discoursed.

Chapter 2 presents analytical solutions for the torsion problem of an incomplete torus with circular and non-circular cross-sections. The hollow cross-sections of the shape demonstrate a closed form of the analytical solution. The solution is useful for the analysis and design of helical springs with non-circular wires. The torsion problems for straight cylinders with circular and elliptical cross-sections allow for the well-known closed-form solutions that will be needed in the next chapters. Two main load applications, axial force and axial moment, are analyzed.

Chapter 3 explains a powerful method for simplifying the helical spring equations. Instead of a full treatment of the helical wire, the deformation of the virtual center line is studied. The virtual centerline has effective strain, torsion, and bending stiffness. It behaves like an initially straight elastic rod or column. This simplification allows a straightforward solution of several practically important problems. These include the load dependence of the transversal vibrations of helical springs and the transformation of transversal vibrations into buckling mode. Lateral buckling of the spring is considered in the context of dynamic stability as a limit case for vibration analysis.

For proper consideration of dynamic effects, models of flexible springs with solid wire are required. In some cases, such as when the spring is uniform, analytical models for dynamics and buckling can be developed. However, in typical springs, only the central coils are uniform; the ends are often not (e.g., they have a varying helix angle or cross-section). Thus, obtaining analytical models in this case can be very difficult, if possible. A variety of theories can be found in the literature to describe the dynamic behavior of helical springs, which includes the interaction of bending (flexural), torsion, and longitudinal waves. In addition, various approximate methods are used to determine the fundamental frequencies of spring vibrations. The methods used to determine the fundamental frequencies can be roughly divided into three groups:

• analysis methods, based on the concept of an equivalent column;

- exact analysis methods, based on the theory of spatially curved bars;
- numerical methods, based on finite-element formulation for spatially curved bars.

The governing equations for the transversal vibrations of the axially loaded linear helical springs are developed. The method is based on the traditional concept of an equivalent column. The effect of the axial load on the fundamental frequency of the transversal vibrations is shown. The natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. If the number of active coils remains constant, the frequency gradually decreases as the length of the spring is shortened. Finally, when the frequency becomes zero, the lateral buckling of the spring occurs by the divergence mode. Note that progressive springs have the opposite behavior. The number of active coils in compressed progressive springs decreases and the transverse frequency increases. Therefore, the progressive springs rarely became transversely unstable.

The combination of tension, compression, and torque loads often causes deformation of spring elements. These loads sometimes lead to spatial buckling of the elements. The stability of helical springs under the combined tension, compression, and torsion is elucidated.

Disk springs (also known as Belleville washers) are studied in Chap. 4. Disk springs are examples of highly stressed machine elements. The workpiece for disk springs is in the form of a sheet or roll. The disk springs are usually produced by stamping. Other processes to produce disk springs are blanking, stamping, perforating, cutting, drawing, notching, lancing, and bending. Multiple punches can be used together to produce a part in one step. The "Conical Disk Spring," "Belleville Spring," or "Belleville Washer" is typically used as a spring or to apply a preload or flexible quality to a bolted joint or bearing. These springs are the typical energystoring elements of the valve train in clutches and automatic transmissions of automobiles. Belleville springs are generally made of spring steel and can be subjected to static loads, rarely alternating loads, and dynamic loads. Belleville springs must meet stringent fatigue life and creep requirements. Because the basic characteristics of disk springs include high fatigue life, better space utilization, low creep tendency, high load capacity with small spring deflection. From a mechanical point of view, Belleville washers are flat conical rings subjected to axial load. Normally, the thickness of the ring is constant, and the applied load is evenly distributed between the upper inner edge and the lower outer edge. In this chapter, the equilibrium equations of thin and moderately variable thickness disk springs are obtained. Variational principles for conical shells are used for the derivation. Simplification is based on common deformation hypotheses. Closed-form analytical solutions of thin and thick truncated cone shells are obtained.

Disk wave springs are also analyzed in Chap. 4. Wave springs are coiled, resilient parts made of flat material. The special feature of these springs is the reduction of their spring height under the conditions of spring force and travel. This feature makes wave springs suitable for compact installation. The production of wave springs from wire, as opposed to the punching of disk springs from flat or rolled sheet metal.

This allows a considerable amount of scrap to be saved, which is typical of stamping operations. Both linear and nonlinear disk wave springs are deliberated.

Chapter 5 examines fixed-edge disk springs using the thin and moderately thick isotropic shell models. The thickness of the material is kept constant in this chapter. The calculation of the disk springs examines the free-gliding edges and the edges with constrained radial motion. The variation formulas are used to derive load-displacement formulas for the disk springs with different radial constraints on the inner and outer surfaces. The kinematic hypothesis is used for the shell models of conical shells. The motivating feature of the presented theory is its ability to calculate the cup springs with free-gliding edges and the edges with constrained radial motion. The equations developed here are based on general assumptions and are suitable for disk springs made of isotropic materials, such as spring steel and light metal alloys. The advantage of the methodology is the derivation of closed-form solutions for several common restrictions on the radial motion of the inner and outer edges. The developed formulas are recommended for industrial calculations of free and restricted disk springs and Belleville washers.

Chapter 6 observes the disk spring with variable thickness. The thickness of the material is variable along the meridional and parallel coordinates of the conical coordinate system. The calculation of disk springs includes the cases of free-gliding edges and edges on cylindrical curbs, which restrict the radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to industrial calculations.

The analysis of thin-walled, semi-open-section beams is performed in Chap. 7. An essential characteristic of this class of thin-walled beam-like structures is their closed but flattened profile. In this book, an intermediate class of thin-walled beam sections is studied. The cross-section of the beam is closed, but the shape of the cross-section is elongated and curved. The walls forming the section are nearly equidistant. The unusual shape of semi-open thin-walled beams allows for efficient optimization due to the large variability of shapes. The automotive application of semi-open thin-walled beams is conversed later in Chap. 7. The main application of the theory of semi-open thin-walled beams is the twist beam of the semi-solid trailing arm axle. The analytical expressions for the effective torsional stiffness and effective bending stiffness of the twist beam. Based on the stiffness coefficients of the twist beam, the roll rate, chamber, and lateral stiffness of the suspension are derived.

Mechanical problems encountered in the manufacture of helical springs are examined in Part II, which includes Chaps. 8 and 9. In Chap. 8, we analyze the coiling of helical springs. For this purpose, we study the plastic flow and the appearance of residual stresses. It is well known that the excessive stresses during the coiling of helical springs can cause the rod to break. In addition, the high level of residual stress in the formed coil spring significantly reduces its fatigue life. For practical estimation of the residual and coiling stresses in the helical springs, the analytical formulas are required. In this chapter, the analytical solution of the problem of elastic-plastic deformation of cylindrical bar under combined bending and torsional moments is found for a special nonlinear stress-strain law. The obtained solution allows the analysis of the active stresses during the combined bending and torsion. In addition, the residual stresses in the beam after spring-back are also derived in a closed analytical form. The obtained results agree with the reported measured values. The developed method does not require numerical simulation and is perfectly suitable for the programming of coiling machines, the estimation of loads during the production of cold-wound helical springs and for the dimensioning and wear calculation of coiling tools.

In Chap. 9, the prestressing calculation for helical springs is developed. The method is based on the deformation formulation of the plasticity theory and common kinematic hypotheses. From a mathematical point of view, the governing equations of prestressing are somewhat analogous to the equations of the coiling process. Two main types of helical springs are studied—compression springs and torsion springs. For the first type (axial compression or tension springs), the spring wire is twisted. The basic approach neglects the pitch and curvature of the coil and replaces the helical wire with a straight cylindrical rod. The elastic-plastic torsion of the straight bar with circular cross-section is studied. The analysis is based on the hypothesis of St. Venant. In the second type (torsion helical springs), the helical wire is in the state of bending. The model analyzes the delayed prestressing, which is accompanied by a significant creep.

The last, Part III, includes the life cycle of the elastic elements, the high static stresses lead to the residual deformation. The loss of sag leads to the gradual reduction of spring forces with the resulting failure if the spring's working length continues. Spring breakage due to static creep is the extremely rare event. Moderate cyclic loading is accompanied by some creep and cyclic sag loss. Severe cyclic loading sooner or later leads to fatigue failure of the spring. These two sources of possible damage to elastic elements are summarized in Chaps. 10–14.

Understanding the long-term behavior of springs under high static loading is essential to their proper design. Creep and relaxation of springs is the subject of Chap. 10. Stress analysis for creep has a long history in engineering mechanics, driven by the need to design for elevated temperatures. In solid mechanics, creep is the tendency of materials to deform gradually or continuously under the action of external mechanical stresses. At stresses below the yield strength of the material, slow inelastic deformation occurs. In the spring industry, this is called creep when a spring under constant load loses length, and it is called relaxation when a spring under constant compression loses load. Creep and relaxation rates depend on temperature, stress in the metal, yield strength, and time. Increased temperature, stress, and time significantly increase the creep and relaxation rates. In particular, temperature and stress have the greatest influence. An accurate description of creep is essential for proper spring design. Finally, Chap. 10 demonstrates the evaluation of creep constants in a wire twisting experiment. In addition, the exact analytical expressions for the torsional and bending creep of bars are derived using the common constitutive models. One of the common creep constitutive models is the Norton-Bailey law, which gives a power law relationship between minimum creep rate and (constant) stress. The power law can be found in high-temperature design and creep numerical codes.

Other common creep laws are the exponential and Garofalo laws, which more adequately describe the stress dependence over a wide range of working stresses. For all these laws, we derive the analytical formulas for creep caused by steady or oscillating loading. In Chap. 10, the generalized expression for the creep law is studied. The new expression is based on experimental data and unifies the primary, secondary, and tertiary regions of the creep curve. The relaxation functions for bending and torsion depend only on the maximum stress in the cross-section, which occurs at the outer surface of the coil. Finally, we explain the temperature dependence for the creep of spring materials.

Chapters 11 and 12 briefly consider the fatigue effects of springs. We begin with the deterministic approach. The results presented show the average fatigue characteristics and evaluate the stress levels at which the majority of springs fail. In this case, we speak about mean S-N lines. The durability of springs under oscillating loads is the subject of Chap. 11. Traditional fatigue design methods are based on collecting a large amount of experimental data in cyclic tests, structuring the data, and extracting empirical formulas. The method of analyzing crack growth under repeated loading is reviewed in Chap. 11. The expressions for the spring length over the number of cycles are derived in terms of a higher transcendental function. The proposed method starts from the micromechanically inspired effects of crack propagation, explains the history of crack propagation, and finally provides the stress-life curves.

Several effects on fatigue life, mainly the effects of stress ratio and multiaxiality, are deliberated in Chap. 12. The solutions presented are used to estimate the fatigue life of springs for asymmetric harmonic loading with substantial mean stress. An attempt is made to unify various traditional methods into a unified Bergmann-Walker formula. Different settings of two fitting parameters in the unified criterion result in the common fatigue criteria.

It is noteworthy that the high-quality springs differ from the low-quality products mainly by the scattering ranges. The evaluation of scatter requires the statistical methods conversed in the next chapters. The statistical effects on fatigue life are further discussed in Chaps. 13 and 14. We study the probability descriptions for the fatigue limit of heterogeneously stressed members. The proposed approach for stress gradient sensitivity of fatigue life is based on the "weakest link" concept. This method is applicable to the exceptionally brittle materials that fail immediately after the failure of the first constituent element. The weakest link approach is used to calculate the number of cycles to complete failure under different probability levels. The effect of fluctuating stresses on the fatigue life of springs is combined with the influence of heterogeneous stress distribution (stress gradient) over the wire cross-section and time-varying stresses. The stress field is inhomogeneous over the cross-section of the spring wire. The stress distribution is uniquely defined by the ratio of the diameter of the wire to the diameter of the spring body. The calculated lifetimes are compared with the lifetimes of helical springs subjected to cyclic loading.

Chapter 14 examines the stochastic effects on the fatigue life of springs. Stochastic crack propagation is typical of the low-stress and high-cycle fatigue regions. The deviation and branching of the crack are caused by the high inhomogeneity of the polycrystalline structure at the micro level. For the low amplitude of stress, the crack

extension per cycle is less than the typical size of inhomogeneities. The stochastic differential equation for the traveling crack is derived. The stochastic equation is similar to the forced Brownian motion equation. The methods are based on the unified fatigue laws. These laws lead to analytical solutions for the crack length at the mean value and the range of cyclic variation of the stress intensity factor. In this chapter, we demonstrate the closed-form expressions for the number of cycles to failure as a function of the initial crack size.

Target Audience of the Book

This book was written as a script for the courses "Applied Mechanics of the Automobile," "Automotive Engineering, Chassis, II, III," "Structural Optimization in Automotive Engineering," and "Powertrain Modeling and Optimization," which the author has been teaching at the University of Siegen, North Rhine-Westphalia, Germany, since 2001.

This book is primarily intended for engineers involved in the design and development of springs who have graduated from automotive or mechanical engineering programs at technical colleges or other engineering schools. Researchers working on elastic elements and energy harvesting devices will also find a broad overview of the fundamentals of spring methodology.

The current book presents powerful methods for the analysis of elastic elements made of steel alloys. The focus is on metal springs for the automotive industry.

It is well known that the industry researches the design of spring elements and constantly develops the quality of spring materials. New materials are developed in the factories of material suppliers. The task of the spring manufacturing companies is the optimal application of the existing and newly developed types of materials. The technologically advanced method consists in the target-oriented evaluation of the mechanical properties and the subsequent design of the springs, which makes full use of the measured material properties. Thus, the full development of the improved materials is only possible if their essential properties are rigorously acquired. Design and manufacturing must fully exploit all available capabilities of the semi-finished product.

An enormous number of papers have been written on this and related subjects. This does not mean that the science of spring mechanics and strength has become completely useless. Rather, it is necessary to have a thorough understanding of mechanics and metallic disciplines in order to elucidate the wide range of possibilities. Therefore, much of this book is devoted to these topics.

The precise methods for the design of different types of springs are summarized in the relevant standards. Industrial research has developed reliable methods for estimating fatigue life and creep effects. The purpose of this book is not to replace the established methods of design and pragmatic methods of life assessment of springs. The aim of this book is to qualitatively explain the mechanical behavior of the spring as a unique elastic element, which has some very specific properties. We try to survey the vast and fragmented landscape of springs from a single point of view of classical mechanics. We try to compare the different methods of service life evaluation and to point out the most effective and general methods. There are many experimental values that are currently the subject of speculation. It is possible that these values will be obtained in future studies. Most of the methods presented are recognized and applicable to other heavily loaded structural elements.

A few words about solution methods. There are several recognized commercial finite-element codes, e.g., (ANSYS, 2020; ABAQUS, 2020). However, for the modeling of technical systems, analytical solutions often offer important advantages. First, the transparency of closed-form solutions. Because analytical solutions are represented as mathematical expressions, they provide an understandable view of how variables and relationships between variables affect the result. Second, performance: algorithms and models expressed in terms of analytical solutions are often more effective than the corresponding numerical applications. For example, to compute the solution of an ordinary differential equation for different values of its parametric inputs, it is often faster, more accurate, and more appropriate to evaluate an analytical solution than to integrate numerically. Third, numerical solutions are sometimes extremely abundant. The main reason is that sometimes we either don't have an analytical approach, or the analytical solution is too slow, and instead of computing for hours and getting an exact solution, we rather compute for seconds and get a good approximation. Finally, numerical solutions can seldom contribute to the invention of new ideas. For this reason, the treatment of the material in this book resolves the problems studied to closed-form solutions in the form of mathematical expressions.

The content of this book is logically related to the work *Design and Analysis of Composite Structures for Automotive Applications* by the same author. The latter book is an extension of the present book and covers the subject of composite materials. The manuscript (Kobelev, 2019a) examines the special properties of composite materials, such as their anisotropy, inhomogeneity, load direction dependence, stress coupling, and stacking capabilities.

Contents

Part I Design of Mechanical Springs

Princ	ciples of S	Spring Design	
1.1	Compr	ression, Extension, and Torque of Helical Springs	
	1.1.1	Forces and Moments in Coil Springs	
	1.1.2	Elastic Energy of the Coil Spring	
	1.1.3	Compression and Twist Spring Rates	
	1.1.4	Change in Diameter Due to Simultaneous	
		Compression and Torque Application	
1.2	Design	Formulas for Compression-Extension Springs	
	1.2.1	Stiffness and Stored Energy of Cylindrical	
		Helical Springs	
	1.2.2	Stresses in Spring Wire	
	1.2.3	Fatigue Life and Damage Accumulation Criteria	
1.3	Helical	l Springs of Minimal Mass	
	1.3.1	Restricted Optimization Problem	
	1.3.2	Optimization of Helical Springs for Maximal	
		Stress	
	1.3.3	Design for Fatigue Life	
	1.3.4	Spring Quality Parameter for Helical Springs	
1.4	Semi-e	elliptic Longitudinal and Transverse Leaf Springs	
	of Min	imal Mass	
	1.4.1	Rectangular Cross-Section	
	1.4.2	Circular Cross-Section	
1.5	Multi-	material Design of Springs	
1.6	Conclu	isions	
Refer	ences		

2	Stress	S Distributions Over Wire Cross-Section	37
	2.1	Warping Function	37
	2.2	Prandtl Stress Function	40
	2.3	Shear Stresses on Surface of Elliptic and Circular Wires	43
	2.4	Shear Stresses on Surface of Ovate Wire	46
	2.5	Quasi-elliptical Cross-Section	48
	2.6	Hollow Ovate Wire	53
	2.7	Helical Spring Deformation Dislocation Character	55
		2.7.1 Screw and Edge Dislocations	55
		2.7.2 Torsion of Helical Spring	57
	2.8	Conclusions	63
	Refere	ences	64
2	(E and	ivalant Columns" for Holicol Spring	67
3	2 1	Statia Stability Guitaria of Halical Spring	67
	2.1	Static Stability Criteria of Hencal Springs	07
	3.2 2.2	Dynamia "Equivalent Column" Equations	09 70
	3.3 2.4	Dynamic Equivalent Column Equations	12
	3.4	Natural Frequency of Transverse vibrations	75
	3.5	Stability Conditions and Buckling of Spring	/9
	3.6	Buckling of Twisted, Compressed, and Tensioned Helical	
		Spring	85
		3.6.1 Instability of Twisted Helical Spring	85
		3.6.2 Instability of Helical Springs Under Torque	
		and Axial Force	88
		3.6.3 Instability of Tension Spring	91
	3.7	Spatial Models for Dynamic Behavior of Helical Springs	93
	Refere	ences	97
4	Disk S	Springs	101
	4.1	Thick Shell Model for Disk Springs	101
		4.1.1 Mechanical Models of Elastic Disk Springs	101
		4.1.2 Geometry of Disk Spring in Undeformed State	102
		4.1.3 Mass of Disk Spring with Variable Material	
		Thickness	104
		4.1.4 Load-Caused Alteration of Strain and Curvature	105
		4.1.5 Disk Springs of Moderate Material Thickness	107
	4.2	Disk Springs of Moderate Thickness	109
		4.2.1 Deformation of Thick Conical Shell	109
		4.2.2 Variation Method for Thick Shell Models of Disk	
		Springs	110
		4.2.3 Comparison of Calculation Techniques	112
	4.3	Statics of Thin Disk Springs	113
		4.3.1 Forces and Moments in Disk Springs	113
		4.3.2 Strain Energy of Thin Disk Springs	11/
		4.3.3 Almen and Laszlo Method for Thin Disk Springs	114
		4.3.4 Strasses in Disk Springs	110
		7.J.7 JUC35C5 III DISK SPIIIIZS	119

Contents

	4.4	Disk Wave Springs	120
		4.4.1 Application Fields of Disk Wave Springs	120
		4.4.2 Design Formulas for Linear Disk Wave Springs	122
		4.4.3 Design Formulas for Non-linear Disk Wave	
		Springs	124
	Refere	ences	129
5	Radia	Ilv Constrained Disk Springs	131
	5.1	Shell Model for Conical Disk Springs	131
		5.1.1 Introduction	131
		5.1.2 Models of Elastic Disk Springs	133
		5.1.3 Geometry of Disk Spring in Undeformed State	134
		5.1.4 Variations of Strain and Curvature Due to Axial	
		Contraction of Conical Spring	136
		5.1.5 Spring Travel and Heights of Disk Springs	138
	5.2	Statics of Disk Springs Using Equations of Axisymmetric	
		Elasticity	139
		5.2.1 Deformation of Conical Shell	139
		5.2.2 Variation Method for Shell Models of Disk	
		Springs	140
	5.3	Forces and Stresses in Disk Springs	146
	5.4	Deformation of Conical Spring with Both Radially	
		Constrained Edges	152
	5.5	Comparison of Spring Constants for Differently Confined	
		Disk Springs	154
	5.6	Finite Element Simulation of the Disk Springs	
		with the Free Gliding and Radially Constrained Edges	155
	5.7	Conclusions	161
	Refere	ences	163
6	Disk S	Springs with Variable Thickness	165
	6.1	Models of Elastic Disk Springs	165
	6.2	Geometry of Disk Spring in Undeformed State	166
	6.3	Load-Caused Variations of Strain and Curvature	172
	6.4	Statics of Disk Springs Using Equations of Axisymmetric	
		Elasticity	173
	6.5	Linearly Variable Thickness of Disk Spring	177
	6.6	Quadratically Variable Thickness of Disk Spring	179
	6.7	Variable Thickness Along the Parallels	181
	6.8	Radial Forces on the Radially Constrained Disk Springs	182
	6.9	Verification of the Analytical Results	
		with the Finite-Element Simulation	187
	6.10	Stresses in Disk Springs	200
	Refere	ences	202

Thin	-Walled I	Rods with Semi-open Profiles	203
7.1	Thin-V	Walled Rods with Semi-open Profiles	203
	7.1.1	Open, Closed and Semi-open Wall Sections	20.
	7.1.2	Baseline of Semi-open Cross-Section	20
	7.1.3	Main Hypotheses of Thin-Walled Open-Profile	
		Bars	20
7.2	Deforr	nation Behavior of Cross-Sections	20
	7.2.1	Deformation of Rods with Opened and Closed	
		Profiles	20
	7.2.2	Deformation of Rods with Semi-open Profiles	209
7.3	Statics	of Semi-open Profile Bars	21
	7.3.1	Normal Stresses in Semi-open Profile Bars	21
	7.3.2	Torque and Bi-moment	212
	7.3.3	Tangential Stresses in bar Cross-Sections	212
	7.3.4	Average Tangential Stress and Equilibrium	
		Conditions	21
	7.3.5	Strain Energy of Semi-open Rod	21:
7.4	Applic	ations of Thin-Walled Rods with Semi-open	
	Cross-	Sections	210
	7.4.1	Semi-solid Axis with Twist Beam	210
	7.4.2	Mechanical Models of Twist-Beam Axle	21
7.5	Elastic	Behavior of Twist-Beam Axles Under Load	219
	7.5.1	Loads and Displacements of Twist-Beam Axles	21
	7.5.2	Roll Stiffness of Twist-Beam Axle	219
	7.5.3	Lateral Stiffness of Twist-Beam Axle	220
	7.5.4	Camber Stiffness of Twist-Beam Axle	22
7.6	Deforr	nation of Semi-open Beam Under Terminal Load	223
	7.6.1	Bending of Semi-open Beam Due to End	
		Moments	22
	7.6.2	Torsion Stiffness of Beam with Constant Section	
		Due to Terminal Torques	224
	7.6.3	Stresses in the Beam with Constant Section Due	
		to Terminal Torques	22:
	7.6.4	Equivalent Tensile Stress Due to Simultaneous	
		Bending and Torsion	22
	7.6.5	Stiffness Properties of Semi-open Profiles	
		for Automotive Applications	227
	7.6.6	Semi-open Beams with Variable Cross-Sections	228
Refe	rences		230

Part II Manufacturing of Springs

8	Coiliı	ng of Hel	lical Springs	235
	8.1	Elastic	-Plastic Bending and Torsion of Wire	235
	8.2	Modifi	ed Ramberg–Osgood's Law	237
	8.3	Plastic	Deformation of Wire During Coiling	239
	8.4	Behavi	ior of Wire in Manufacturing Process	240
	8.5	Elastic	Spring-Back and Appearance of Residual Stresses	243
	8.6	Post-co	oiling Shape of Helical Spring	244
	8.7	Conclu	usions	249
	Refer	ences		253
9	Prese	tting and	d Residual Stresses in Springs	255
	9.1	Elastic	-Plastic Deformation During the Presetting	
		Proces	s of Helical Springs	256
	9.2	Implic	it Formulations for the Stress–Strain Curves	
		of Plas	stic Materials	260
	9.3	Analys	sis of Active Plastic Torsion and Spring-Back	
		of Circ	cular Wire for Presetting Assessment of Helical	
		Comp	ression Springs	267
		9.3.1	Plastic Deformation of Wire During Active	
			Plastic Twisting of a Solid Rod	267
		9.3.2	Torque Moment During the Active Plastic	
			Presetting in the Wire Cross Section	
			for Hyperbolic Law	268
		9.3.3	Torque Moment During the Active Plastic	
			Presetting in the Wire Cross Section	
			for Ramberg–Osgood Law	271
		9.3.4	Elastic Spring-Back and Residual Stresses	
			Appearing	272
	9.4	Evalua	ation of Helical Torsion Spring Presetting	
		by Ana	alysis of Active Plastic Bending of Rectangular Wire	275
		9.4.1	Plastic Deformation of Wire During Active	
			Plastic Bending Process	275
		9.4.2	Bending Moment During the Active Plastic	
			Presetting in the Wire Cross Section	
			for Hyperbolic Law	276
		9.4.3	Bending Moment During the Active Plastic	
			Presetting in the Wire Cross Section	
			for Ramberg–Osgood Law	278
		9.4.4	Elastic Recovery and Evaluation of Residual	
			Stresses	279
	9.5	Explic	it Formulations for Plastic Stress–Strain Curves	283
		9.5.1	Relationships of Ramberg–Osgood	
			and Johnson–Cook Formulas	283
		9.5.2	Torsion of the Rod with Circular Cross-Section	285

	9.5.3	Bending of the Rod with Circular Cross-Section	286
	9.5.4	Bending of the Rod with Rectangular	
		Cross-Section	286
9.6	Time-l	Delayed Presetting	287
	9.6.1	Instantaneous Ideal Elastic-Ideal Plastic Flow	287
	9.6.2	Equations of Creep During Time-Delayed	
		Presetting	288
	9.6.3	Creep Deformation After Instant Plastic Flow	289
	9.6.4	Elastic Spring-Back and Occurrence of Residual	
		Stresses	292
	9.6.5	Creep Deformation After Instant Plastic Flow	
		for Garofalo Law	297
9.7	Conclu	asions	297
9.8	Summ	Summary of Principal Results	
Refer	ences	· · ·	299

Part III Service Life and Durability of Springs

10	Creep	and Rel	axation of Springs	303
	10.1	Operati	onal Damage of Spring Elements	303
	10.2	Commo	on Creep Constitutive Equations	304
		10.2.1	Constitutive Equations for Creep of Spring	
			Elements	304
		10.2.2	Time-Dependent Constitutive Equations	307
		10.2.3	Experimental Acquisition of Creep Laws	309
		10.2.4	Time-Invariant Constitutive Equations	311
	10.3	Scalar (Constitutive Equations for Uniaxial Stresses	316
		10.3.1	Norton-Bailey Law	316
		10.3.2	Garofalo Creep Law	317
		10.3.3	Exponential Law	318
	10.4	Creep a	and Relaxation of Twisted Rods	318
		10.4.1	Constitutive Equations for Relaxation in Torsion	318
		10.4.2	Torque Relaxation for Norton-Bailey Law	319
		10.4.3	Torque Relaxation for Garofalo Law	320
		10.4.4	Torque Relaxation for Exponential Law	321
	10.5	Creep a	and Relaxation of Helical Coiled Springs	322
		10.5.1	Phenomena of Relaxation and Creep	322
		10.5.2	Relaxation of Helical Springs	323
		10.5.3	Creep of Helical Compression Springs	324
	10.6	Creep a	and Relaxation of Beams in State of Pure Bending	326
		10.6.1	Constitutive Equations for Relaxation in Bending	326
		10.6.2	Relaxation of Bending Moment	
			for Norton-Bailey Law	326
		10.6.3	Relaxation of Bending Moment for Garofalo Law	328

Contents

		10.6.4 Relaxation of Bending Moment for Exponential Law	329
		10.6.5 Creep in State of Bending	329
	10.7	Creep and Relaxation of Disk Springs	330
		10.7.1 Creep of Disk Springs	330
		10.7.2 Relaxation of Disk Springs	337
	10.8	Cyclic Creep and Fatigue-Creep Interaction	339
	10.9	Temperature Influence on Creep	341
	10.10	Conclusions	346
	Refere	ices	347
11	Fatigu	e of Spring Materials	349
	11.1	Phenomenon of Fatigue	349
		11.1.1 Fatigue Influence Factors	349
		11.1.2 Stages of Fatigue Fracture	352
	11.2	Crack Initiation Approach for Uniaxial Stress State	354
		11.2.1 Stress-Life Approach for Symmetric Cycle	354
		11.2.2 Strain-Life Approach for Symmetric Cycle	355
	11.3	Crack Propagation Approach	357
		11.3.1 Crack Growths Functions of Paris-Erdogan Type	357
		11.3.2 Fatigue Crack Growths Functions for Crack	
		Under Cyclic Loading	360
	11.4	Fatigue Crack Growths	362
		11.4.1 Unification of Paris Law	362
		11.4.2 Unification of Paris Law Type I	363
		11.4.3 Unification of Fatigue Law Type I	369
	11.5	Conclusions	375
	Referen		376
	Referen		570
12	Factor	s Affecting the Fatigue Life of Springs	379
	12.1	Fatigue Life Estimation Based on Empirical Damage	
		Models	379
		12.1.1 Influence of Stress Ratio, Amplitude and Mean	
		Stress	379
		12.1.2 Evaluation of Fatigue Life with Goodman	
		Diagrams	381
		12.1.3 Evaluation of Fatigue Life with Haigh Diagrams	383
		12.1.4 Consistence of Fatigue Life Diagrams and Creep	
		Diagrams	385
		12.1.5 Accumulation of Damage and Sequence Effects	386
	12.2	Stress Ratio Influence in Uni-axial Fatigue	387
		12.2.1 Stress-Life Approach with Variable Stress Ratio	387
		12.2.2 Equivalent Stress Amplitude	389
		12.2.3 Strain-Life Approach with Variable Stress Ratio	395
		11	

	12.3	Stress Ratio Influence on Fatigue Crack Growth 3	397
		12.3.1 Influence of Stress Ratio on Fatigue Threshold 3	397
		12.3.2 Models for Estimation of Stress Ratio Influence 3	399
		12.3.3 Stress Ratio Influence in NASGRO Model 4	400
	12.4	Influence of Defects on Fatigue Resistance 4	403
		12.4.1 Influence of Area of Defects for Uniaxial Stress 4	403
		12.4.2 Influence of Area of Defects for Shear Stress 4	404
		12.4.3 Influence of Corrosion-Induced Defects 4	405
	12.5	Influence of Multiaxial Stresses 4	407
		12.5.1 Stress-Life Approach in Multiaxial Fatigue 4	108
		12.5.2 Strain-Life Approach in Multiaxial Fatigue 4	414
	12.6	Influence of Environment and Manufacturing 4	417
		12.6.1 Influence of Wire Diameter 4	417
		12.6.2 Influence of Shot Peening 4	418
	Refere	ces 4	425
13	Failur	Analysis Based on Weakest Link Concepts 4	133
10	13.1	Evaluation of Failure Probability of Springs	133
	13.2	Weakest Link Concepts for Homogeneously Loaded	
	10.2	Elements 4	135
		13.2.1 Failure Probability of Elements with Distributed	
		Defects	135
		13.2.2 Application of Weakest Link for Fatigue	136
	13.3	Analysis of Springs with Weakest Link Method	139
		13.3.1 Failure Probability of Helical Springs	139
		13.3.2 Effect of Spring Index on Immediate Failure 4	140
		13.3.3 Effect of Spring Index on Fatigue Life	142
	13.4	Conclusions 4	145
	13.5	Summary of Principal Results 4	145
	Refere	ces	146
1/	Statist	al Effects on Fatigue of Spring Materials	117
14		Entique Analysis at Very High Number of Cycles	+4 / 1 <i>1</i> 7
	14.1	14.1.1 Eatique Strength and Eailure Machanisms	1/7
		14.1.1 Faligue Strength and Faline Mechanisms	+-+ /
		Springs' Estigue	1/18
		14.1.3 Modelling Hypothesis for Low-Stress Springs'	110
		Fatime	152
	14.2	Statistical Assessment of Springs Fatigue Test	153
	14.2	14.2.1 Eatigue Scattering of Spring Steels	153
		14.2.2 Uniformity of Stress on Wire Surface	155
		and Averaged Fatigue Stress	154
		14.2.3 Experimental Acquisition for Sensitivity	
		to Stress Ratio and Spring Indices	155
		14.2.4 Median S–N Curves	158

Contents

	14.2.5	Valuation of S–N Lines for Prearranged Failure	
		Probabilities	459
	14.2.6	S–N Curves of Spring Steels in VHCF Range	462
14	.3 Scale-	Dependent Propagation of Straight Crack	464
	14.3.1	S–N Curves of Spring Steels in Transition Range	464
	14.3.2	Piecewise Linear Paris-Irvin Equation	470
14	.4 Scale-	Dependent Propagation of Probabilistic Crack	475
	14.4.1	Simulation of Crack Propagation with Random	
		Deviation	475
	14.4.2	Closed-Form Solution of the Stochastic	
		Differential Equation	480
14	.5 Conclu	isions	487
Re	eferences		488
Appen	dix A: Mod	els of Spring Materials	491
Appen	dix B: Some	e Special Functions	497
Appen	dix C: Stati	stical Assessment for Scattering of Fatigue Data	501
Appen	dix D: Influ	ence of Mean Stress on Fatigue Life	509
Refere	nces		525
Index			535

Symbols¹

Symbol	Description	Unit ^a
Q _a	Activation energy of diffusion	kJ/mol
χ	Angle between meridian and principal material axis	rad
ϕ_Q	Angle of inclination of the bent axis	rad
α	Angle of pitch of helical spring	rad
θ	Angle of twist per unit length	rad
$\bar{\vartheta}$	Angle of twist per unit length after spring-back	rad
$\psi = H/(r_e - r_i)$	Angle, of slope, deformed middle surface of disk spring	rad
$\alpha = h/(r_e - r_i)$	Angle, of slope, free middle surface of disk spring	rad
φ	Angle, rotation of the middle surface disk spring	rad
Α	Area of the material part of the cross-section	m ²
A_m	Area, enclosed by the curve L_m	m ²
$\phi_1(r), \phi_2(z)$	Auxiliary functions	1
k_1, k_2	Auxiliary functions for survival probabilities and ratio of cycles to failure of spring to straight rod	1
σ_0, N_0	Auxiliary scaling constants, $\sigma'_f = \sigma_0 (2N_0)^{-b_0}$	1
Т, В	Axes of wire cross-section (thickness and width)	m
$\bar{R} = 1/\bar{\kappa}$	Bending radius after unloading (after spring-back)	m
$R = 1/\kappa$	Bending radius in during active coiling	m
$\theta_a = 2\pi n_a$	Circumferential angle along wire length	rad

(continued)

 $^{^{\}rm l}$ For the sake of continuous consistency in the manuscript, the designations may be different from those used in the standards.

$x_e \leq x \leq x_i$	Coordinate on the meridian of free conical shell	m
x_c, y_c	Coordinates of the center of mass of the cross-section	m
α_x, α_y	Coordinates of the twist center of the cross-section	m
$\begin{aligned} x &= \rho \cos \phi, \\ y &= \rho \sin \phi \end{aligned}$	Coordinates, Cartesian of the circular cross-section	m
$ \begin{array}{l} 0 \le \rho \le r, \\ 0 \le \phi \le 2\pi \end{array} $	Coordinates, polar of the circular cross-section	m rad
$k_i = k_i(w)$	Correction factors for stress, $i = 1,, 4$	1
C _T	Creep constant, for shear strain	$\frac{s^{-\varsigma}}{Pa^{\xi+1}}$
Cσ	Creep constant, for uniaxial strain	$\frac{s^{-\varsigma}}{Pa^{\xi+1}}$
t _c	Creep, average time	s
ī	Creep, Norton-Bailey constant	s
$\bar{\varepsilon}, \bar{\gamma}$	Creep, strain rate constants	1/s
ξ	Creep, stress exponent	1
$\bar{\sigma}, \bar{\tau}$	Creep, stress scaling constants	Ра
5	Creep, time exponent	1
К	Curvature in moment of plastic deformation	1/m
ĸi	Curvature principal, $i = 1, 2$	1/m
N _L	Cycles number to the failure for a given stress amplitude, highest (failure event of the last homogeneously stressed specimen)	1
N _F	Cycles number to the failure for a given stress amplitude, lowest (failure event of the first homogeneously stressed specimen)	1
μ_{+}^{*}, μ_{-}^{*}	Deflection at loading and unloading, critical	1
ρ _m	Density of material	kg/m ³
$D^{\widehat{lpha}}$	Derivative, fractional of order $\hat{\alpha}$	$1/s^{\widehat{\alpha}}$
d = 2r	Diameter of circular wire or bar	m
D _e	Diameter of middle surface of free spring, external (outside)	m
D _i	Diameter of middle surface of free spring, internal (inside)	m
d _{opt}	Diameter of wire, optimal	m
μ^*	Dimensionless length, character	1
ŝ	Displacement, axial, measured from upper inside edge to lower outside edge	m
sb	Displacement, caused by bending moment	m
Ss	Displacement, caused by shearing force	m
sq	Displacement, lateral	m
τ _e	Endurance limit for completely reversed stress	Pa
K _{th}	Endurance threshold limit	N√m

(continued)

(continued)

Symbols

(continued)

U_e, U_1U_5	Energy, elastic strain	J
U_f	Energy, potential of applied forces	J
П	Energy, total potential	J
$\langle EI_B \rangle$	Equivalent bending stiffness	Pa m ⁴
$\langle GS \rangle$	Equivalent shear stiffness	Pa m ²
F^*	Euler's critical load for compression	N
$m_2 > 1$	Exponent, at short-term limit	1
$m_1 > 1$	Exponent, endurance limit	1
<i>p</i> > 1	Exponent, fatigue	1
$c(R_{\sigma})$	Exponent, fatigue ductility	1
ps	Exponent, fatigue in high-cycle range	1
p_L	Exponent, fatigue in moderate cycle range	1
$b_0(R_\sigma) = -1/p_\sigma$	Exponent, of fatigue strength	1
k	Exponent, secant	1
k _f	Extent constant of failure region	-
S_f	Factor for safety	1
$\gamma'_f(R_\sigma)$	Fatigue ductility coefficient, shear	1
$\varepsilon'_f(R_\sigma)$	Fatigue ductility coefficient, uniaxial	1
$\lambda \equiv \frac{1}{2} \left(\sigma'_f \right)^{-\frac{1}{b_\sigma}}$	Fatigue equation, constant	1
$\sigma_{f}^{\prime}\left(R_{\sigma}\right)$	Fatigue strength coefficient for normal stress	Pa
$ au_f'(R_\sigma)$	Fatigue strength coefficient for shear stress	Pa
F_R	Force acting on the upper middle surface, radial	Ν
$F_{\tau}(z, s)$	Force tangential, pro unit length	N/m
F	Force, axial on the spring	N
$F_{ heta}$	Force, Circumferential in the wire direction	N
\tilde{F}_{1Z}	Force, corrected total axial	N
$F_{\sigma}(z, s)$	Force, normal, pro unit length	N/m
$F_z(t)$	Force, of spring as the function of time	N
Q	Force, shear	N
F_z^0	Force, Spring at the moment $t = 0$	N
F _{min}	Force, spring loads at lengths L_{comp}	N
F _{max}	Force, spring loads at lengths L_{ref}	N
Fz	Force, total axial acting on the upper middle surface	N
F _{AL}	Force, total axial due to Almen and Laszlo	N
F _{zDIN}	Force, total axial, DIN standard	N
N_1, N_2, N_{12}	Forces, meridional, circumferential and shear direct	N