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1.1 Motivations

It appears that the methods for solving entire order and fractional ordinary differential
equations are similar [DielO, Chap. 5 & 6]. Regarding partial differential equations,
there are also analog results for usual evolutionary partial differential equations and for
the corresponding time-fractional equations. In addition, the solvability methods may be
similar for equations with a first-order time derivative and for the corresponding fractional
equations involving a Riemann-Liouville derivative [ORB21]. When we consider frac-
tional equations involving a Caputo derivative, the solvability methods are more involved
than in standard cases, but remain quite similar: see [Zac09, Zac12, FRW22, FKR*21].
Hence, we may expect to set up a unified theory for the analysis of entire and fractional
derivatives. This is our first motivation.

Let us be a little more explicit about such a theory. Being given a positive real number
b and a function & : (0, b) — R, consider the following three basic differential equations.

Dlu=u+n (1.1.1)
RiDYy = v + & (1.1.2)
‘D =w+h (1.1.3)

where the unknowns u, v and w are scalar functions defined on (0, b). Here D'u denotes
the first-order derivative of u, and R-D%v, CD% »w are respectively, the Riemann—Liouville
derivative of v and the Caputo derivative of w. We seek an abstract framework in which
the latter equations can be rewritten under the form
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2 1 Introduction

Du=u+h, (1.1.4)

and (1.1.4) is solvable. Otherwise said, we are interested in a framework allowing to solve
the three Egs. (1.1.1)—(1.1.3) in one shot. Of course, an issue is to define the symbol D
appearing in (1.1.4). In general, the cost to pay for an unified theory is an increase of the
level of abstraction.

Let us give a second motivation. Starting from the heat equation

—u = Au

dr

where the unknown u : [0, 00) x R3 — R is a function of the time variable ¢ and the space
variable x, we consider the following more general evolution equation.

d L 1.1.5
au =Lu (1.1.5)
where L is an operator on an abstract space X, and u : (0,00) — X. In order to
solve (1.1.5), it is assumed that L keeps some properties of the Laplace operator A. For
example, it is assumed that L is (at least) sectorial [Hen81] or dissipative [Paz83] or
self-adjoint [Brell].
Now our aim is to go one step further by introducing the equation

Au = Lu (1.1.6)

where A and L are operators acting on another abstract space Z and u lies in the domains
of A and L. Proceeding for A as we have done for L, we would like that A keeps some
properties of the operator %. There are many works in that direction (see for instance
[dPG75,Sho97]). However, we would like that A keeps also some properties of fractional
operators. Moreover, we look for an framework allowing to solve boundary value problems
at an abstract level.

1.2 Some Issues in Fractional Calculus

How many initial conditions? If we consider a first-order initial value problem, it is clear
that only one initial condition is needed for well posedness. Also, a second-order initial
value problem requires two initial conditions. Now consider a fractional initial value
problem of order o where « lies in (0, 1). Then, the issue is to find the suitable number of
initial conditions to get a well-posed problem. As we will see in Chap. 7, this number is
equal to the dimension of the kernel of the corresponding fractional operator D¥.

What are the boundary values of functions in the domain of D*? Since we consider
only operators acting on functions of the one variable x, if « = 1 and x lies in the interval
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(0, b), then a function u in the domain of D! has two boundary values, namely u(0) and
u(b). The issue is to define and compute the boundary values in the case where « is not a
integer.

This issue is central in this book and is addressed mainly in Chap.6. Altough the
precise representation of these boundary values depends of course on the specific fractional
differential operator under consideration, there are some invariants. More precisely, there
are always 2n boundary values where n is the finite dimension of the kernel of D*.
Furthermore, these boundary values may be splitted into two parts of equal size n. A
first part is obtained by evaluations of some functions at x = 0, whereas the second part is
obtained by evaluations at x = b.

Another issue is to classify the dozens of fractional time derivatives available in the
literature [DGGS20, Sil20]. We have started this task by classifying derivatives built upon
the usual first-order derivative % and the Riemann-Liouville derivative (see Sect. 6.4).

1.3 Unified Theories

1.3.1 How to Construct a Unified Theory?

The starting point is to gather well-chosen significant examples. Secondly, identify the
invariants among these examples, and define classes of objects from these invariants. At
this stage, we proceed by induction in the sense that we go from particular situations to a
general case. Notice that there is nothing to prove here.

Then, deduce the properties of these objects, to setup a mathematical theory. Finally,
apply the abstract results of the theory to any suitable situations and in particular to the
previous examples.

Unified theories are very common in mathematics. As a first example, let us quote linear
algebra. Abstract vector spaces constitute a class of objects defined from the invariants.
Linear maps between vector spaces form another class. Basically, computations in R”, C",
or in the space of polynomials are replaced by computations in an abstract vector space.
The theory of symmetric operators and the groups theory are also unified theories.

1.3.2 Outline of Our Unified Theory

This theory offers to unify the calculus of standard and fractional derivatives by means
of an abstract operator-theoretic approach. Significant examples involve usual first-
order derivatives, Riemann—-Liouville and Caputo derivatives. We consider the operators
induced by these derivatives, denoted respectively by D!, ®‘'D® and “D“. This basic change
of point of view (i.e., operators versus derivatives) is of fundamental importance in our
theory.
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Then, the analysis of these operators (in particular the computation of their adjoint)
allows to identify some invariants. The first invariant is that D', ®*D%, and D% possess a
right inverse. For D!, this property is well known and is called the fundamental theorem of
calculus. Then, we consider these operators as instances of an unbounded operator acting
on some abstract space. Let us call A this operator, and suppose for simplicity that A acts
on a (abstract) Hilbert space . We assume that A possesses a right inverse, which means
that AB = idy for some operator B : H — H. This statement, which was seen as property
in concrete examples, now becomes an axiom of the theory.

The second invariant turns out to concern B and is the following. The adjoint B* of B
is conjugate to B in the sense that

B* = SBS,

where S is a basic operator on H, namely a symmetry (see Sect. 4.2.1). These two invariants
led us to introduce the so-called class of differential triplets (A, B,S) on the Hilbert
space H.

When the underlying abstract space is a reflexive Banach space, we have to consider a
differential quadruplet (see Chap. 5). Then, things are more involved, but the fundamental
ideas remain the same.

Let us give two topics developed in this theory. Let us go back for simplicity to the
Hilbertian setting where (A, B, S) is a differential triplet acting on a Hilbert space .
The first aim is to define abstract boundary values, which we call (abstract) endogenous
boundary values. Let us first explain the meaning of the adjective endogenous in the
present context. If we consider a partial differential equations set on an open ball 2 of
IR3, then its solutions live typically in a subspace of L*(£2). However, the boundary values
of these solutions lie in general in (a subspace of) L2(3S2), which is disjoint from L3().
So, in order to define boundary values at an abstract level, it is natural to introduce extra
spaces [Cal39]. In this sense, usual boundary values may be described as heterogeneous.
On the contrary, we introduce a kind of boundary values directly linked to the ambient
space H. That is why they are called endogenous.

In the case where the kernel of A has positive (finite) dimension (let us say n), it appears
that any element in the domain of A possesses 2n (abstract) endogenous boundary values,
which are coordinates on a subspace of D(A) isomorphic to ker A x ker A. See Sect. 4.4
and in particular Definition 4.4.2. Moreover, these 2n endogenous boundary values may be
splitted in two parts. A first part is obtained by projection on the kernel of A (Sect.7.2.3),
and in applications correspond to initial values. See (4.1.3) and Sect.7.3. The other n
endogenous boundary values of the second part are a little bit more difficult to detect even
in a Hilbertian setting. They correspond in applications to “final” boundary values. We
refer the reader to Sects. 4.4.2, 5.7.1.3, and 6.4 for more details.

This splitting reveals a main difference between linear initial value problems and
boundary values problems. The former are unconditionally solvable (Definition 7.2.9) and
use only endogenous boundary values of the first part. On the other hand, the latter are in
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general not unconditionally solvable and use endogenous boundary values of the second
part. There results that roughly speaking only sublinear initial value problems are solvable
by iterative methods (Sect. 7.6).

A second topic is to establish a quantitative theory of linear endogenous boundary value
problems. That is, we will give existence and uniqueness results for linear systems of
abstract differential equations supplemented with inhomogeneous endogenous boundary
conditions. The equations have the form

Au=Lu+h

where L is a bounded operator on H commuting with B, & lies in H, and the unknown u
belongs to the domain of A. It should be emphasized that there is no time variable here
since H is a generic Hilbert space. This quantitative theory is featured in Chap. 7.

The abstract results of these two topics apply to the first-order derivative and to the
Riemann-Liouville and Caputo derivatives of order «. For example, Egs. (1.1.1)—(1.1.3)
are particular cases of the latter equation. Moreover, these results apply also to more
general derivatives built upon Sonine kernels. See for instance, Chap. 6 and Sects. 7.3-7.5.

1.4 About This Book

1.4.1 Preliminary Remarks

The author has tried to ensure that the skills allowing a self-contained reading of this book
are that of a postgraduate diploma in mathematical analysis. That said, any additional
information should be freely accessible online.

Since this book establishes the axiomatic foundations of a certain branch of the
fractional calculus, there results that in principle no a priori knowledge on fractional
calculus is needed. However, acculturation to fractional calculus will make reading easier.

One of the main ideas of this book is to state and prove ready-to-use results at an
abstract level and to apply these results to entire and fractional derivatives. That shows the
deep unity between entire and fractional derivatives.

To make the new objects introduced in this book more easily accessible, we do not
always go from general to particular cases. For instance, regarding the unified theory, the
Hilbertian setting is covered first, although in many aspects, it is a particular case of the
Banach space setting. This approach obviously impacts the way to read this book (see
Sect. 1.4.3).

This book is organized into chapters, sections, subsections, paragraphs, and sub-
paragraphs. For instance Sect. 5.7.2.1 refers to the first paragraph in the second subsection
of the 7th section in Chap. 5. Moreover, Equation (1.2.17) is the 17th equation in the
second section of Chap. 1. Proposition 2.3.5 takes place in the third section of Chap. 2.
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1.4.2 Outline of the Book

The unified theory is featured in Chaps. 4 and 5. The former deals with differential triplets
and boundary restriction operators in a Hilbertian setting. The latter is concerned with
differential quadruplets and boundary restriction operators on Banach spaces. The next
chapter deals with applications. It is a catalog of differential quadruplets. The boundary
values of functions in the domain of various fractional differential operators are computed,
and some (fractional) integration by parts formulae are given. Also, adjoints of fractional
differential operators are computed.

Chapter 7 is concerned with fractional boundary values problems. That is, in appli-
cations, we consider systems of fractional differential equations supplemented with
(endogenous) boundary conditions. In accordance with the precited main idea, almost
all the existence and uniqueness results are proved at an abstract level. The exception
concerns non linear problems (Sect. 7.6). The last chapter has a flavor of partial differential
equations and deals with abstract and fractional Laplace operators.

Prerequisites are given in Chaps.2 and 3. These chapters should contain no new
material; however, some results are not usual.

1.4.3 How to Read This Book?

The answer depends of the aims of the reader. In the sequel, we list some aims and give a
corresponding way to proceed.

(i) To get a quick overview of the unified theory and its applications, it is simpler to
consider only the Hilbertian setting. So we suggest to read Chap. 4, which deals with
the theory of abstract differential triplets and boundary restriction operators. The ideas
underlying the formal definitions of these objects are explained. Also, we give some
simple examples built upon the usual first-order derivative. There is no fractional
calculus in this chapter. Basic applications are given in Sect. 6.2. Regarding differential
equations, only the introductory example of Chap. 7.1 takes place on a Hilbert space.
However, almost all the theory leading to initial values problems may be read without
reference to differential quadruplets. It comprises Sects. 7.2.1-7.2.5 and 7.3, 7.4.

(ii) To get a comprehensive overview of the unified theory and its applications, we suggest
to read Chaps. 5-8. Notice, however, that the underlying ideas of Chap.4 are not
repeated in Chap. 5. Also the latter contains less examples.
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1.5 Notation and Conventions

1.5.1 Sets of Numbers
The set
{0,1,2,3,...}

of non negative integers is denoted by N. An index is a non-negative integer. For all integers
i and j, the Kronecker symbol is

P 1 ifi=j
ij = ) (1.5.1)
0  otherwise.

The convention of repeated indexes means that Z?: | Xiyi is abbreviate by x;y;. That is to
say, we set

d
Xiyi =Y Xiyi-
i=1

The fields of real and complex numbers are denoted by R and C, respectively. Real
constants whose value is irrelevant for our purpose are generically denoted by C. Any
complex number z may be written under the form z = a + ib where a, b lie in R, and
i2=—1.

The symbol K denotes any element of the set {R, C}, that-is-to-say K is equal to R
or C.

Let m and n be integers. If n < m then any sum of the form

n

)

1=m

is set to zero.

1.5.2 Miscellaneous Notation

Let b be a positive real number and X be a set. For any function f : (0,b) — X, we
denote by f (b — -) the function

©0,b) - X, x = f(b—x).
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The symbols := are used to introduce an affectation or a notation. For instance, if x is
any number in K, then x := 1 means that the value of x is set to 1. Also

Ei={xeR|x+3>0l,

means that the latter set is denoted by E.

1.5.3 Matrices

Let m and n be a positive integers. For each index i in [1, m] and j in [1, n], let a; ; belong
to K. By

(@i, j)1<i<m, 1<j<n»
we mean the matrix with m lines and n columns, whose entry located at the intersection of
the i™ line and j™ column is a;, j. The space of such matrices is denoted by M (m x n, K).

We abbreviate M(n x n, K) by M(n, K), and (a; j)1<i<n, 1<j<n by (@i, )i, j=1,..n-
If

M = (a;,j)1<i<m, 1<j<n
is any element of M (m x n, K) then its transpose denoted by M’ is the matrix

(@ji<i<n, 1<j<m-

Notice that M! lies in M(n x m, K). Moreover, K" is identified with M(n x 1, K).

1.5.4 Spaces
If X is a vector space and x1, ..., x, lie in X then
X1y .00y Xn)
denotes the subspace of X generated by x1, ..., x;.
Let (X, || - ||) be a normed space over K. If (x,,),eN is a sequence in X and x lies in X

then the notation

Xp —> X
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means that (x,),cN converges toward x in X, that-is-to-say
lx, — x|| —— O.
n—o0

If no confusion may occur, we will write simply x, — x.
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2.1 Vector Spaces

Let X, ), and Z be three sets. In general, a map defined on X x ) with values in Z is
denominated by a letter, let us say, f. The image of any ordered pair (x, y) of X x Y is
denoted by f(x, y). However, in some situations, this image is designated by (x, y) or by
(x, y). For the basic maps on vector spaces, the image of (x, y) is x + y or xy. These
maps, which we will call operations, are denoted by + and . (i.e. the dot symbol). Let K
be equal to R or C.

2.1.1 Basic Definitions

Definition 2.1.1 Being given aset X, let4+ : X x X - X and.: Kx X — X be
two maps. The triplet (X, +, .) is called a vector space over K provided the following
properties hold true.

(1) (X, +) is an Abelian group. That is to say, the map + is commutative, associative and
possesses an identity element denoted by 0y or simply be 0 if no confusion may occur.
Moreover, for each x in X, there exists an element x’ in X such that x + x" = 0.

(ii) For each (A, i) in K x K and each x in X, one has (Au)x = A(ux). Moreover,
Ix = x.

(iii) For each (1, u) in K x K and each (x,y) in X x X, the following distributivity
properties hold:

A4+ w)x = Ax + pux, Ax +y)=Ax 4+ Ay.
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A vector space over K is also called a K-vector space. If (X, +, .) is K-vector space then
the operations + and . are called (vector) addition and scalar multiplication. O

It is customary to skip the dot symbol for scalar multiplication, that is, we have written
and we will write Ax instead of A.x. Also, the identity element, which we will call the zero
vector of X, is unique. Most of the time, a K-vector space (X, +,.) will be designated
simply by X.

Definition 2.1.2 Let X be a K-vector space. A subset M of X is called a subspace of X
if M is non-empty and M is closed under addition and scalar multiplication. That is,

x+yeM, AxeM,
foreach (A, x,y)inK x M x M. |

A subspace of a vector space is a vector space. More precisely, if (X, +, .) is a K-vector
space and M is a subspace of X, then the restriction of the addition + to the set M x M
induces a map, still labeled +, from M x M into M. Similarly, the restriction of the scalar
multiplication to K x M induces an operation, still labeled . with values into M. With these
notations, (M, +, .) is a K-vector space.

By restricting the scalar multiplication of a complex vector space, we may pass easily
from a complex space to a real space.

Definition 2.1.3 Let (X, +, .) be a complex vector space. Denoting by o the restriction of
the scalar multiplication to R x X, the triplet (X, +,0) is a real vector space, which will
be designated by Ar. We will call it the real space associated to X. O

Let us notice that A contains the same vectors than X. In particular, ix lies in Xr for
each x in X'. However, if x # 0, then ix and x are linearly independent in Ag.

The power set of a set E is the set of all subsets of E. The power set of E is denoted by
‘P(E). The empty set is an element of P(E). If we want to remove this set from the power
set, we will consider the set P(E) \ {#} instead of P(E).

Starting from a K-vector space X', operations on P(&X) \ {} may be inferred from
vector addition and scalar multiplication.

Definition 2.1.4 Let X be a K-vector space. The addition of sets denoted again by + and
defined on P(X) \ {#} x P(X) \ {@} with values in P(X) \ {#} maps any ordered pair
(U, V) of non-empty subsets of X’ into the set

U+V ={u+v|iuelU,veV}
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The image U + V is called the sum of U and V. If U is a singleton, namely if U = {x} for
some x in X, then we will write x + U instead of {x} + U.

In a same way, the operation . defined on K x P(X) \ {#} with values in P(X) \ {0}
maps any ordered pair (A, U) into the set

AU :={u|ueU)}. O

By using commutativity and associativity of the vector addition, and the stability of
subspaces with respect to addition, this proposition is easily proved.

Proposition 2.1.1 Let X' be a K-vector space, and U, V, W be non-empty subsets of X.
Then,

HWU+V=V+U;

() (U+V)+W=U+(V+W),

(i) IfU SV thenU+W CV +W;

@iv) If M is a subspace of X then M + M = M.

In the same way, by using properties of scalar multiplication, the following results are
easily proved.

Proposition 2.1.2 Being given a K-vector space X, let U, V be non-empty subsets of X,
and M\, |4 belong to K. Then,

O AU +V)=rU+AV;
(i) A+ mw)U =AU + pU;
(iii) If M is a subspace of X, then AM = M.

2.1.2 Quotient Spaces

Quotient space is a important tool is this chapter since it will be useful for studying the
product of operators (see Sect. 2.4.3). Let X be a K-vector space.

Definition 2.1.5 Let M be a subspace of X. The quotient space of X by M is the set of

all elements A of P(X) satisfying A = x + M for some x in X'. Denoting by X' /M this
quotient space, we have in symbol

X/M={AePWX)|IxeX, A=x+ M) -

Clearly, X /M is a subset of P(X). If M := X, then X¥/M = X /X = {X}, hence X'/ X
contains only one element. On the other hand, if M = {0y}, then
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X/{0x} = {{x} e P(X) | x € X}.

Let us observe that there are one-to-one correspondences between X'/X and {0y}, and
between X' /{0y} and X. Since {Ox} and X are vector spaces, we may equip X' /X and
X /{0x} with a vector space structure. More generally, we will see in Theorem 2.1.5 that
every quotient space may be turned into a vector space.

Proposition 2.1.3 Let M be a subspace of a vector space X, and let x, x' be any vectors
of X. Then, the following assertions hold.

D x'ex+Meex'+M=x+M.

(ii) For each x in X, there exists a unique A in X /M such that x lies in A. This unique
element A in X /M, denoted by [x]xm or simply by [x], is called the class of X in
X/M.

(iii) Foreach x in X, [x] =x + M.

(iv) Let A belong to X /M. Then for each x in A, one has [x] = A.

Proof In order to prove (i), let us assume that x’ € x + M. Thus, Proposition 2.1.1 (iii)
yields that x’ + M C (x + M) + M. By Proposition 2.1.1 (ii) and (iv), we have (x +
M)+ M = x + M. Then, x’ + M C x + M. By the definition of x + M, we infer that
x € x' + M, thus we have also x + M C x’ + M, so that x’ + M = x + M. Conversely,
since x’ = x’ + Oy, we derive that x” € x’ + M. Assuming x’ + M = x + M, we deduce
x" € x + M, which proves (i).

Since x € x + M, we get the existence part for Item (ii) by choosing A := x + M. If
B € X/M contains also x, then writing 5 under the form y + M for some y € X, we get
that x € y + M. Thus A = B by (i). That shows the uniqueness of A.

Item (iii) follows from the existence part in the proof of (ii). Finally, we write any .4 in
X /M under the form x’ + M for some x’ in X, and consider any element x of .A. Then
x €x'+ M. Thus x + M = x’ + M by (i), and [x] = A due to Item (iii). O

Notice that Proposition 2.1.3 may be proved by using the equivalence relation:
XAEx = x' ex+ M.

Let us now equip X' /M with a vector space structure. For each A, B in X/M and A
in K, A + B and LA are defined through Definition 2.1.4. A priori, these sets belong to
P(X) \ {4}, hence we have to check more specifically that they live in X'/ M.

Proposition 2.1.4 Let M be a subspace of a vector space X. Then, for each A, Bin X /M
and ) € K, the sets A+ B and LA belong to X /M. Moreover,

A+B=[x+x"l, rA=][rx],

for each (x, x") belonging to A x B.
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Proof 1t is enough to prove the two equalities stated in the proposition. In order to establish
the first one, let us consider any x in A, and any x’ in B. By Proposition 2.1.3 (iv) and (iii),
onehasx + M = A, x’ + M = B. Whence

A+B=x+x'+M (by Proposition 2.1.1)
=[x +x'] (by Proposition 2.1.3 (iii)).

In the same way, Propositions 2.1.2 and 2.1.3 entail
MM =Ax +AM = x + M = [Ax]. O

Proposition 2.1.4 yields that the restriction of the addition to the set X/M x X/M
induces a map, still labeled +, from X' /M x X /M into X' /M. Similarly, the restriction of
the scalar multiplication to K x X' /M induces an operation, still labeled . with values in
X /M. This construction leads to the following result.

Theorem 2.1.5 Let M be a subspace of a K-vector space X. Then with the above
mentioned operations on X /M, (X /M, +, .) is a K-vector space. Besides, Oy jy = M.

Proof By Proposition 2.1.1, the addition is commutative and associative on X /M.
Moreover, for each A in X/M, one has A = x + M for some x in A. Thus,
Proposition 2.1.1 yields

A+M=x+M)+M=x+M=A.

Whence M is the identity element, that is Oy, = M. Besides, A = [x] by
Proposition 2.1.3 (iii), and —A = [—x] by Proposition 2.1.4. Thus

A+ (—A) =[0x] (by Proposition 2.1.4)
=M (by Proposition 2.1.3 (iii)).

There results that (X /M, +) is an Abelian group. Finally, the Items (ii) and (iii) in
Definition 2.1.1 are easily obtained from Proposition 2.1.2. O

Example 2.1.6 Let Q be a non-empty set, .% be a o-algebra on , and u : % — [0, o]
be a measure on .%. We denote by X := f} (2, K) the K-vector space of all measurable
functions f : Q@ — K. By measurable, we mean that f~!(U) lies in .%, for each open
subset U of K.

For any f, g in Z%(Q, K), we recall that f = g almost everywhere on Q2 (and
abbreviate f = g a.e. on Q) provided there exists some N in .% such that u(N) = 0
and
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f=g on Q\N.
Let us now consider the following subset of DZ%(Q, K)
M:={feZ%QK)|f=0 ae onQ}

We claim that M is a subspace of .,ZSZ(Q, K). Indeed, it is clear that M is non-empty and
stable under scalar multiplication. In order to check the stability under addition, we notice
that for each f, g in X}(Q, K), there exist Ny and Ny in ZF of zero measure and such
that

f=0 on Q\ Ny, g=0 on £\ Ng.
Thus,
f+g=0 on Q\(NsUN,).
Since
u(NyUNg) < u(Ny) + (Ng),

we deduce that f 4 g lies in M, which completes the proof of the claim.
We put

L%(Q.K) := 2%, K)/M.

Proposition 2.1.3 entails that [ f] = [g] if and only if f = g a.eon . It is customary to
write f instead of [ f]. Beside, by Theorem 2.1.5, Lg(Q, K) is a K-vector space.

In the sequel, we will only consider the case where €2 is an open subset of the Euclidean
space RY (where d is a positive integer), .F := .ZL q is the o-algebra of Lebesgue
measurable subsets of 2, and p := uy, q is the Lebesgue measure on 2 (see, for instance,
[Rud87] for more details). Then, the space L?LL‘ (€2, K) will be denoted by LO(2). In the
particular case where d = 1 and € is the interval (a, b) of R, we will write L°(£2) under
the simplified form L%(a, b). O

Theorem 2.1.5 allows linear algebra between quotient spaces. We will give now a basic
example of a linear map between some quotient spaces.

Proposition 2.1.6 Let M and V be subspaces of a K-vector space X. For each </ in
V/(V N M), there exists a unique A in X /M such that o/ C A. Also, A = [x]x/u for
each x in <.
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Proof Let o/ bein V/(V N M) and xg be in 7. In order to show uniqueness, let A, 5 be
elements of X'/ M containing .27 Then, x lies in ANB, so that A = B by Proposition 2.1.3
(i1). The existence goes as follows: using Proposition 2.1.3 once again, we get

A = [xolvyvamy =x0+V NM Cxo+M = [xolx/m. o
Under the assumptions and notation of Proposition 2.1.6, we define the map iy by
iy:V/VNM) - X/M, o A, (2.1.1)
where A is the unique element of X'/ M containing .<7. Then, one has
iv(Ixlv,vom) = [xlx/m.  YxeV. (2.1.2)
Let us notice that (2.1.2) could be used for the definition of iy. However, this mapping
is a priory multivalued. Thus, we would have to prove a posteriori that iy is univoque,
i.e., that [x]x/uy is independent of the choice of x in [x]v/vnu). In general, we prefer to
avoid, if possible, such reasoning and thus, define maps in a direct way.

Let us now give some properties of iy .

Proposition 2.1.7 Let M and V be subspaces of a vector space X. Then, the map iy
defined by (2.1.1) is linear and injective.

Proof Let us start to show that iy is additive. For each x and x" in V,

iv([X]V/(VmM) + [X/]V/(VﬁM))

= iv([x + x/]V/(VﬂM))

=[x +x"lx/m (by (2.1.2))
=[xy + X 1x M
=iv([xlv,vom) + iv(IXTvyvam) (by (2.1.2)).

The identity for the scalar multiplication goes in a same way, so its proof is skipped.
Finally, let x belong to V and satisfy

iv(Ixlvyovom) = Ox m-

Since Oy = M by Theorem 2.1.5, we deduce with (2.1.2) that x lies in M. Since x
belongs to V as well, we derive
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[x1v,cvomy = Ovycvnmy-
Hence iy is injective. O

Theorem 2.1.5 allows us to introduce the notion of co-dimension of a subspace, which
turns out to be a purely algebraic object.

Definition 2.1.7 Let X be a K-vector space. We say that a subspace M of X has finite
co-dimension in X if the dimension of X'/ M is finite. In that case, the dimension of X'/ M
is called the co-dimension of M in X and is denoted by codimy M. O

Proposition 2.1.8 Let X’ be a K-vector space, and M, V be subspaces of X. We assume
that M is contained in V, and that M has finite co-dimension in X. Then, V has also finite
co-dimension in X.

Proof Any A in X/V reads A = x + V for some x in X. By considering a basis
(letx/ms - - - lenlxym) of X'/ M, there exist Ay, ..., A, in K such that

n
(Xl =Y hileilaym
i=1
Since M C V,
n
X € Z)\iei +V,
i=1
so that Proposition 2.1.3 (iv) entails that
n
XLy =Y hileilayv.
i=1

Recalling that A = [x]y /v» we deduce that the vectors [ei]x,v, ..., len]x v generate
X/V. O

2.1.3 Direct Sums

Direct sum is a fundamental tool in the analysis of differential triplets and quadruplets. A
direct sum decomposition generalizes the notion of basis and works in infinite dimensional
spaces.
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Definition 2.1.8 Let X be a K-vector space, n be a positive integer, and My, ..., M, be
subspaces of X. If

M,-ﬂ(ZM,-):{O}, Vi=1,...,n,

J#i

then, M1, ..., M, are said to be in direct sum, and the set
n
M @ ---®&M, ::{Zmi|(mlv--~amn)EM1 X"'XMn}
i=1

is called the direct sum of the M;’s. In the particular case where n = 2, M and M> are in
direct sum if M; N M, = {0}. O

Proposition 2.1.9 Let X be a K-vector space, n be a positive integer, and M1, ..., My,
be subspaces of X. Then, the following assertions are equivalent.

(1) My, ..., M, are in direct sum.
(ii) Foreach x in Z?:] M;, there exists a unique n-tuple (my, ..., my)in My X --- x M,
such that

n
X = E m;.
i=1

(i) If (my, ..., my) liesin My x --- x M,, and

n
D_mi =0,
i=1

thenmi =---=m, = 0.

Proof By linearity, (ii) and (iii) are equivalent. Let us prove that (i) implies (iii). For, let
(my,...,m,) belong to My x --- x M, and satisfy

Xn:mi =0.
i=1

Then foreachi = 1, ..., n, one has
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m; = Z(—m]‘).
J#

Thus m; = 0 since the M;’s are in direct sum. Hence (iii) holds true. Conversely let i be
any index in {1, ..., n}. Any vector m; in

Mi () (D_M,))

J#i
reads
m; = Z(_mj)s
J#
where m ; lies in M for each j # i. By (iii), there results that m; = 0. O

Proposition 2.1.10 Let X be a K-vector space, and V, M1, and M> be subspaces of X.
We assume that

(i) My, M, are in direct sum;
(1) V and M| & M are in direct sum.

Then V, M|, M are in direct sum.
Proof Let (v,my,my) in V x M| x M be such that
v+mp+mo=0.

By Assumption (ii), v = m| 4+ m = 0. Next, (i) implies that m| = m, = 0. We conclude
thanks Proposition 2.1.9. O

Of course, the direct sum of subspaces is commutative, thatis, M @ V =V & M. An
useful situation is when M is given and we can find a subspace V for which V & M is
equal to the whole space X. In that case, V is called a complementary subspace of M.
More precisely, we give the following definition.

Definition 2.1.9 Let M be a subspace of a vector space X. A subspace V of X is a
complementary subspace of M in X if M and V are in direct sum and X = M @ V.
Besides, M and V are said to be complementary subspaces in X if V is a complementary
subspace of M in X. O

The next result gives a sufficient condition for the existence of a complementary subspace.



