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Preface 

Dear reader, we present to you our original research from the past seven years. It is a 
groundbreaking new mathematical paradigm and system (which includes the inven-
tion of a new number) that enables a new approach to advancing the foundations of 
science and technology. 

We develop new approaches to connecting subjective and objective points of 
view that do not rely solely on the classical deductive approach. There is no need to 
fear paradoxical situations because it is precisely in them that lies the key to a new 
understanding that is more connected to life itself. 

We wrote this book with the understanding that, in our times, there is a great need 
to develop a new approach for advancing science in the face of new challenges, 
including consciousness research. Our experience in the fields of robotics, computer 
science, and artificial intelligence has led us to the conclusion that the real challenge 
today is not only to make machines intelligent but also to develop and refine 
intelligence in human beings. 

We would like to acknowledge and thank our friends who were involved in the 
research and assisted us in bringing it to the state of a complete book: to Yale 
Landsberg for the conversations that helped develop the Soft coordinate system 
(Chap. 5), to Prof. Kevin Vixie for the important contribution in linking the Soft 
numbers to the Möbius strip, to Prof. Alla Shmukler for the significant assistance in 
developing Soft analysis (Chaps. 9 and 10), to Oren Fivel for the significant 
contribution in developing Soft probability and Soft analysis (Chaps. 12 and 14), 
and to Dr. Ron Hirschprung for developing the research and implementation in the 
field of privacy paradox (Chaps. 13 and 14). Thanks also to Avishay Galili for the 
connection of Soft logic to Salomon Maimon and the Theory of Infinitesimals 
(Chap. 2), to Omer Cantor for his contribution to the understanding of the connection 
between Soft Möbius function and the Riemann hypothesis (Chap. 11), to Sigal 
Kordova for the correlation to System thinking (Chap. 14), John Torday for the 
connection to biology and the origin of life (Chap. 14), and to Idan Sagiv for his 
professional editing.
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vi Preface

We thank the Koret Foundation Grant for Smart Cities and Digital Living 2030, 
bestowed upon the universities of Stanford and Tel Aviv, and especially Prof. Nick 
Bambos and Prof. Irad Ben-Gal. 

Tel Aviv, Israel Moshe Klein 
Oded Maimon
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List of Symbols, Signs, and Terms of Soft Logic 

Symbol/Sign/Term Definition 

0 The special object of the infinitesimal type with the fundamental 

property �02 = 0, the generator of the zero axis 

a0 (a ℝ) A zero axis number, a Soft zero

- 0= - 10 The negative zero 

+0=10 The positive zero 

0=00 The absolute zero 

0-axis, a zero axis, a 
zero line 

A vertical line presenting a continuum of Soft zeros 

1 The number 1 when it is used to present a real number as a multiple of 1 

b1 b ℝ A real number b presented as a multiple of 1 

1 –axis, a real axis, a 
real line 

A vertical line presenting a continuum of real numbers 

⊥ The bridge sign 

a0⊥b1 (a, b ℝ) A bridge number of the right type (a real number is to the right of the 
bridge sign) 

b1⊥a0 (a, b ℝ) A bridge number of the left type (a real number is to the left of the 
bridge sign). We tend to omit writing the one axis, so the regular 
notation of soft numbers is of the form a0 _ b 

BN The set of all bridge numbers. a0⊥b1, b1⊥a0 : a,b ℝ } 

a + bε (a, 
b ℝ, ε2 = 0) 

A dual number 

_ Soft number sign 

a0 _ b (a, b ℝ) A Soft number in the right appearance (a real number is on the right side 
of the Soft number sign) 

b _ a0 a, b ℝ A Soft number in the left appearance (a real number is on the left side of 
the Soft number sign) 

SN The set of all Soft numbers { a0 _ b : a, b ℝ } 

c=X0⊥Y A bridge number of the right type in the pair of bridge numbers defining 
a Soft number X0 _ Y 
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xii List of Symbols, Signs, and Terms of Soft Logic

Symbol/Sign/Term Definition 

c0 =Y⊥X0 A bridge number of the left type in the pair of bridge numbers defining a 
Soft number X0 _ Y 

SNS A Soft number strip with a central zero axis and two bounding, real axes 

A (- < A < ) The height of a point on an SNS 

B (0 ≤ B ≤ 1) The width of a point on an SNS 

c= 1-B A0⊥BA1 A bridge number of the right type corresponds to a point C that is 
located in the right part of an SNS with a height A and a width B 

c0 =BA1⊥ 1-B A0 A bridge number of the left type corresponds to a point C′ that is located 
in the left part of an SNS with a height A and a width B 

SN(+) The group of Soft numbers under addition 

SN(+, ) The ring of Soft numbers under the operations of addition and 
multiplication 

SN�(Ø0 ) The set of invertible Soft numbers 

SN�(1) The set a0 _ ± 1 : a is any real number 

SQ�(Ø0 ) The set q0 _ r : q, r are rational numbers, r ≠ 0 

f : SN→SN The Soft function of a Soft variable, an extension of a differentiable real 
function f(x) 

f : R→SN The Soft function of a real variable, enabling a graphic presentation by a 
curve on an SNS
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Chapter 1 
Introduction 

Soft logic is a mathematical language that facilitates richer and more diverse 
situations than the regular logical distinction between right and wrong. For this 
purpose, we have developed a rigorous mathematical theory that includes the 
invention of a new type of number called a “Soft number.” This theory will be the 
foundation for scientific development and inventions in various new directions. 

1.1 The Essence of Soft Logic 

Our times fundamentally require a new mathematical language that is Soft and 
dialogical, a language that is based on the interaction between human beings and 
the world. The ability of Soft logic to contain contradictory and opposing situations 
may assist in situations of human conflict and dispute. This language enables each 
party to the conflict to develop a new point of view that sees and contains the point of 
view of the other party. This will make it possible to discover the common denom-
inator between the two parties and resolve the conflict or disagreement. 

Life is richer and more varied and colorful than the two extremities of right and 
wrong. To use the color analogy, one can say that this mathematical language is 
more colorful; it has more colors and shades than just black and white. Regular 
mathematics avoids paradoxical situations that contain internal contradictions. On 
the other hand, Soft logic by definition combines logical and linear thinking with a 
type of thinking based on the mathematical exercise of dividing zero by itself, an 
exercise with infinitely correct results, or, in other words, the type of thinking in 
which a thing and its opposite can be simultaneously correct. 

Soft logic is based on a new perspective on the number zero, which was invented 
in India in the seventh century. This invention is relatively modern, compared to the 
invention of all the natural numbers tens of thousands of years ago. The invention of 
the zero was revolutionary since it gave a special sign to an amount that is nothing at 
all. This invention enabled the development of the decimal system of writing
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numbers, which was then used to write large numbers with a relatively small amount 
of digits. Soft logic expands the effect of the location of the number zero as it 
assumes a continuum of zeros rather than a discrete location of zeroes.

2 1 Introduction

The mathematician Leibnitz developed the binary system based on two 
numbers only: one and zero; later it became the mathematical infrastructure for the 
development of the computer. Leibnitz himself strove to develop a new mathemat-
ical language that would be at the same time rational and softer than the dichotomy 
of right and wrong; the term “Soft logic” was inspired by him. 

The novel distinction of Soft logic is that zero is not, in fact, nothing. To describe 
nothing, a blank sheet of paper would suffice. The very act of writing down the 
number zero shows that there is something that can be distinguished. This leads to 
the possibility that zero is both negative and positive. A similar distinction already 
exists in differential and integral calculus, which refers to the direction in which a 
series of points tends to zero. Contrary to this, Soft logic distinguishes between the 
various multiples of the number zero (Klein and Maimon 2021; Fivel et al. 2023; 
Hirschprung et al. 2023). 

Soft logic has a zero axis, upon which lie the various multiples of the number 
zero. Soft logic offers a new set of coordinates that is non-Cartesian. This system has 
a zero axis facing the axis of real numbers. The Soft system of coordinates includes a 
twist and therefore constitutes a simple model for an infinite Möbius strip. Locally, a 
Möbius strip has two sides, but globally, it has only one side. This paradox is 
demonstrated and realized geometrically with Soft logic. 

Using the zero axis, we define a new type of number called “Soft numbers.” The 
following operations can be applied to them: addition, subtraction, multiplication, 
division, exponentiation, and extraction of roots. Soft numbers have an algebraic 
structure very similar to the structure of an algebraic field. 

Complex numbers, which include the root of minus one (i= - 1 ), were 
invented 500 years ago by the Italian mathematician, Gerolamo Cardano. The 
mathematicians of his time found it very difficult to accept this concept, but after 
400 years, it was put into extensive use in the mathematical development of the 
theory of electricity and alternate current. 

Without the invention of complex numbers, the Internet could not have been 
invented. Complex numbers are also useful for the description of periodic waves in 
optical physics as well as quantum theory. In Soft logic, instead of the imaginary 
number i, we use the number 0. The laws of addition for Soft numbers are similar to 
those for complex numbers, but the laws of multiplication are different. Eventually, a 
use was found for complex numbers; similarly, we aim to develop and discover 
scientific and technological applications for Soft logic. 

The relationship between mathematics and physics is one of the most challenging 
issues facing science today. It is one of the open problems (Problem no. 6) posed by 
the mathematician David Hilbert at the International Conference of Mathematics that 
took place in Paris in the year 1900. In 1905, Albert Einstein published the special 
theory of relativity, whose main idea is the constancy of the speed of light in a 
vacuum. Two sources of light that are moving toward each other do so at the relative


