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Introduction

Writing long books is a laborious and impoverishing act of foolishness:
expanding in five hundred pages an idea that could be perfectly explained
in a few minutes. A better procedure is to pretend that those books already
exist and to offer a summary, a commentary.

JorGE Luis BORGES

It was at the beginning of 1970s when Lieven Vanhecke gave a talk in Iasi (Ro-
mania) about conformal Kéhler manifolds. Izu Vaisman, a member of the Faculty
of Mathematics of the University of lasi at that time, asked what can be said about
the local situation. Vanhecke replied: “That’s for you to find out”. And it is exactly
what Vaisman did. In 1976, he published the paper [Val] in which he introduced
the “locally conformal (almost) Kihler manifolds”. It was the birth of LCK geome-
try. In a long series of papers, Vaisman clarified the notion by comparing it with the
Kahler manifolds, gave the first examples, and introduced the class of “LCK man-
ifolds with parallel Lee form” (which now bears his name). Other examples were
given at the beginning of the 1980s by Franco Tricerri, [Tr]. Starting in 1980, the
notion was also considered by several Japanese mathematicians, important results
being obtained by Toyoko Kashiwada, Yoshinobu Kamishima, Kazumi Tsukada,
etc.

In the first 20 years, this new kind of Hermitian geometry was studied mainly
using differential geometry methods. The focus was on Riemannian and conformal
properties. For example, a great deal of work was dedicated to isometric submani-
folds (totally geodesic, totally umbilical, minimal, totally real, CR etc.). The excep-
tion was the paper [Tr] in which the blow-up at points was proved to preserve the
LCK class.

Most of these findings were gathered in the monograph [DO] written by Sorin
Dragomir and the first author. The present book starts from where the previous
one ends.

In our book we combine the methods of algebraic geometry, functional anal-
ysis and complex analysis to study the LCK manifolds, which properly belong to
differential geometry. Similar to Kéhler geometry, the subject often transcends the
boundary of its domain, and we arrive at the point when no differential geome-
try is involved. Still, the background is always differential geometric: we men-
tion several works where the authors study the p-adic versions of LCK manifolds
([Mus, Vos, Schol]), but we never pursue this direction.

We tried to be accessible to beginner students; this is one of the reasons why

Xix



INTRODUCTION

we cover several preliminary topics, such as foliations, Frobenius theorem, and
Ehresmann connections.

We start with the definition of complex and Kéahler manifolds, mainly to fix
the notation. For an introduction to complex geometry, see [Dem4, GriHa, Mor2,
Voi, Huy]. Note that the notation, especially the signs, vary from one author to
another. Within this book, we try to be consistent, sometimes without success.

The preliminary requirements for this book vary from part to part. The first
part, expanded from several lecture courses, is oriented toward advanced under-
graduate and master students. We assume a working knowledge of differential
geometry (Riemannian structures, connections, principal bundles, de Rham alge-
bra), topology (de Rham cohomology, Poincaré duality, fundamental groups, local
systems), Lie groups and algebras, basic algebraic geometry, basic complex analysis
and basic functional analysis. We use Hodge theory, citing, without proof, several
key results, such as the Hodge decomposition. We also use, without proofs, ele-
ments of the theory of Stein manifolds; Demailly in [Dem4] gives all the tools that
are necessary for our use.

The second part treats more advanced subjects and the requirements are much
higher. We try to give a basic introduction to several key notions, such as derived
functors and the Grothendieck spectral sequence, but a working knowledge of al-
gebraic geometry (in the scope of Demailly’s textbook [Dem4]) and homological
algebra (Grothendieck’s Tohdku paper [Gro3]) is necessary. A graduate student
studying algebraic geometry won’t find it too specialized, and we tried to lower
the requirements by introducing each subject within the text.

The third part is a survey of current research on LCK geometry. We give new
proofs of most results, using the methods developed earlier in this book. The third
part is oriented towards the researchers who operate with the knowledge of dif-
ferential geometry required for the subject.

In the first two parts of this book, every chapter is augmented by a sequence
of exercises. Originally, the exercises were used in the lecture courses, but we
expanded them to include the whole new series, giving an introduction to some
subjects (such as elliptic curves and Galois theory). Near the end of the writing,
we put a moratorium on adding new chapters; at that moment, all new results we
got went to the exercises. This is why some of the exercises are difficult theorems
in themselves. There is little consistency or system in the exercises, but we hope
that every reader would find something interesting to herself or himself.

The last chapter (“Open questions”) is a logical conclusion of the same ap-
proach: some of the questions we mention are pretty much impossible to solve,
but most of them could be used by an early or advanced graduate student as a part
of her or his diploma work. We avoided using general ideas such as “develop a geo-
metric flow” in favour of concrete conjectures, and described the context whenever
possible.

Every chapter of the first two parts starts with an introduction, which is more or
less independent of the body of the chapter. Its purpose is to set forth the narrative
of the main body, explain the history, and place the subject in a wider mathemati-
cal context; often, it tells the same story, with more flourish and less mathematical
rigour. Most of the definitions given in the introductions are repeated in the re-
spective chapters, in more formal fashion.
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INTRODUCTION

With painful trepidation, we avoid several important subjects, most notably,
stable bundles, stable coherent sheaves, and Yang—Mills connections: the book is
too big as it is. For an introduction to Yang-Mills geometry, see [LT]. Also, most of
the concepts relating hyperkéhler and hypercomplex geometry to LCK geometry
is relegated to “open questions”. Finally, we did little justice to Sasakian geometry,
which we view as an integral part of our subject. Almost everything related to
things Sasakian is beautifully explained in the book [BoG1], by Charles P. Boyer
and Krzysztof Galicki, and we did not want to repeat their work.

Thanks

In many of the tight places, we were helped by F. Ambro, E. Amerik, D. Angella,
M. Aprodu, R. Bryant, M. Entov, P. Gauduchon, N. Istrati, D. Kaledin, A. Moroianu,
S. Nemirovski, A. Otiman, J. V. Pereira, Yu. Prokhorov, K. Shramov and M. Toma.

Victor Vuletescu was almost a bona fide coauthor of this book, with his con-
stant attention, encouragement and many beautiful ideas.

M. Verbitsky is grateful to all his students, who helped and inspired him during
the lecture courses on LCK geometry and related subjects: A. Abasheva, R. Deev, V.
Gizatulin, Iu. Gorginian, N. Klemyatin, D. Korshunov, N. Kurnosov, S. Makarova, P.
Osipov, G. Papayanov, V. Rogov, A. Soldatenkov, L. Soukhanov, A. Viktorova. Their
ideas and questions enriched the narrative and were often incorporated here.

Many thanks to the colleagues and students who read the first draft of the book
and corrected some of our errors: C. P. Boyer, K. Broder, C. Ciulic3, N. Istrati, T.
Orban, A. Otiman, M. Stanciu, and V. Vuletescu.

Bucharest — Rio de Janeiro, August 2022.

We thank the referees and editors of Birkhéuser for improving the content and
the layout of the manuscript.
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Part 1

Lectures in locally
conformally Kihler
geometry

The Dao gives birth to unity,

Unity gives birth to duality,

Duality gives birth to trinity,

Trinity gives birth to a myriad of things.

Tao Te CHING, BY LAoz1
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Chapter 1 S

Kahler manifolds

The shift penetrates verses throughout (especially contemporary verses); it is
one of the most important parts of the verse. It modifies the word, the stanza, the
sounds.

One must establish a special "shift police force" for the prompt capture of shifts,
which would leave their authors gaping in amazement.

The shift conveys movement and space.

The shift conveys multiplicity of meanings and images.
The shift is the style of our contemporary life.

The shift is a new discovery of America!..

SHIFTOLOGY OF RUSSIAN VERSE: AN OFFENSIVE AND EDUCATIONAL TREATISE, BY A. KRUCHENYKH

1.1 Complex manifolds

Definition 1.1: Let M be a smooth manifold. An almost complex structure is
a section I € End(T'M) that satisfies I? = — Idz .
The couple (M, I) is called an almost complex manifold.

Slightly abusing the language, we denote the extension of I to T'M¢ by I as
well. The eigenvalues of this operator are ++/—1. Let TM¢ = T%'M @ TYOM
be the corresponding eigenvalue decomposition.

Remark 1.2: In algebraic geometry, one should always make clear that the vector
bundle is distinct from its space of sections. One usually uses the notation I'( B) or
H°(M, B) for the space of sections of a vector bundle B. However, in differential
geometry one could avoid this distinction (see Section 2.1). Throughout this book,
we often use the same letter for the bundle over a smooth manifold and its space
of sections.

Definition 1.3: An almost complex structure is integrable if [ X, Y] € T1°M for
all X,Y € TYOM. In this case, [ is called a complex structure.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 3
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1. KAHLER MANIFOLDS

A manifold with an integrable almost complex structure is called a complex
manifold.

Theorem 1.4: (Newlander—Nirenberg)

An almost complex structure is integrable if and only if the manifold admits an at-
las with charts taking values in C", n = dim¢ M, and with holomorphic changes
of coordinates.

Remark 1.5: The C°°(M)-linear map N : A%(T1OM) — T M defined by
the commutator is called the Nijenhuis tensor of I. One can represent IV as a
section of A29M @ T M.

1.2 Holomorphic vector fields

Definition 1.6: A real vector field Z € T'M is called real holomorphic if Z(f) is
holomorphic for any holomorphic function f defined on some open subset of M.

Remark 1.7: Let X € T M be a real vector field. Then
1 1
X = i(X —v-1IX)+ §(X +vV-1IX).
Clearly, X — /—11X € TY'°M (and is called the (1,0) part of X), whereas X +
V—11IX € T%'M (and is called the (0,1) part of X).

Definition 1.8: A (1,0)-vector field X € T1°M is called holomorphic if its real
part is real holomorphic in the sense of Definition 1.6.

Remark 1.9: A (1,0)-vector field X € T°M is holomorphic if and only if Z( f) is
holomorphic for any local holomorphic function f defined on some open subset of
M. Moreover, taking the (1,0)-part gives a bijective correspondence between real
holomorphic vector fields and (1,0)-holomorphic vector fields.

The next proposition is clear.

Proposition 1.10: Let X be a real vector field. The following are equivalent:
(i) X is real holomorphic.
(if) Liex I = 0, where Liex denotes the Lie derivative along X.
(iii) The flow generated by X consists in biholomorphic transformations.

Remark 1.11: Let (M, I) be a compact complex manifold. Then the group of
biholomorphisms of M, Aut(M, I), is a Lie group whose Lie algebra is the space
of real holomorphic vector fields. See also Exercise 1.2.

Remark 1.12: For any holomorphic vector field X, the fields X and X := I(X)
commute. Indeed,

[X, X¢] = Liex(X¢) = Liex(IX) = Liex (I)(X) + I (Liex (X)) = 0.
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1.3. HERMITIAN MANIFOLDS

1.3 Hermitian manifolds

Definition 1.13: A Riemannian metric g on an almost complex manifold (M, I)
is called Hermitian if g(I X, 1Y) = ¢g(X,Y). In this case

and hence w(X,Y) := ¢g(IX,Y) is skew-symmetric.

Definition 1.14: The differential form w € A%(M) is called the Hermitian form
of (M, 1,g).

Remark 1.15: w is U(1)-invariant, and hence of Hodge type (1,1).

Definition 1.16: Let g, ¢’ be two Riemannian metrics on the same manifold M.
They are said conformal if there exists f € C°(M) such that g’ = efg. The
set [g] = {efg; f € C>(M)} is called the conformal class of g. If (M, I) is a
complex manifold and one metric in a conformal class is Hermitian with respect
to I, then all metrics in the conformal class are so.

1.4 Kahler manifolds

Definition 1.17: A Hermitian manifold (M, I, g,w) is called Kéhler if dw = 0. w
is then called the Kihler form, and its cohomology class [w] € H?(M,R) is called
the Kihler class.

1.4.1 Examples of Kihler manifolds

Example 1.18: C" with the flat metric ¢ = Re (}_ dz; ® dz;), and with Kahler
formw =+/—1 > dz; Adz;.

Example 1.19: The complex projective space. Let CP"™ be the complex projec-
tive space, and g a U(n + 1)-invariant Riemannian metric. It is called the Fubini—
Study metric on CP". Note that the Fubini-Study metric is defined up to a con-
stant factor. In some textbooks this constant is fixed by requiring that the Hopf
fibration h S2"*T! — CP™ takes a tangent vector v € T,,S?" "1 orthogonal to a
fibre of h to a vector dh(v) € Tj(;)CP™ of the same length.!

The Fubini-Study metric can be obtained by taking an arbitrary Riemannian
metric, then averaging it with U(n + 1) using the Haar measure on U(n + 1).

Remark 1.20: For any 2 € CP", the stabilizer for the U(n + 1) action St(x) is
isomorphic to U(n). The Fubini-Study metric on T, CP™ = C" is U(n)-invariant,
and hence unique up to a constant. As dw’x is a U(n)-invariant 3-form on C", it
has to vanish, because — Id € U(n), and hence dw = 0.

I This is equivalent to asking that the sectional curvature K (z, y) of the Fubini-Study metric satis-
fies 1 < K(z,y) < 4 for any pair of orthogonal unit tangent vectors; see [Bes].
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1. KAHLER MANIFOLDS

Remark 1.21: With the same argument, Hermitian symmetric spaces are Kéahler.

Example 1.22: The product of two Kéhler manifolds is Kéhler with respect to the
product metric.

Example 1.23: The blow-up at points and along submanifolds of a Kéhler manifold
is again Kahler.

Example 1.24: Complex submanifolds.

Definition 1.25: An almost complex submanifold X C M of an almost com-
plex manifold (M, I) is a smooth submanifold that satisfies I(TX) = T'X.
If ] is integrable, then X is called a complex submanifold of M.

Remark 1.26: Let X C M be an almost complex submanifold of (M, I'), where [
is integrable. Then (X, I ’TX ) is a complex manifold.

Since exterior differentiation commutes with pullback, the restriction of the
Kahler form is closed on each complex submanifold of a Kéhler manifold.
In particular, every projective manifold (complex submanifold of CP™ ) is Kdhler.

1.4.2 Menagerie of complex geometry

Usually, in algebraic geometry one deals with projective manifolds. There are two
wider classes one should consider when studying projective ones.

Example 1.27: A complex manifold that is birational to a projective manifold is
called Moishezon.

The transcendence degree a(M) of the field k(M) of global meromorphic func-
tions on a compact complex manifold M satisfies a(M) < dimg¢ M, as shown by
Moishezon, [Moi]; equality here means that M is Moishezon. The number a(M)
is also called the algebraic dimension of M.

Theorem 1.28: (Moishezon, [Moi]) Any Kéhler Moishezon manifold is projective.

Example 1.29: Small deformations of Kihler manifolds often result in non-
projective Kahler ones (even for a torus and a K3 surface).

The class That includes Moishezon and Kéhler manifolds is called Fujiki class
C, [Fuj]. A manifold is of Fujiki class C if it is bimeromorphic to a K&hler mani-
fold. As shown in loc. cit., Fujiki class C is closed under all natural operations that
occur in algebraic geometry (such as taking moduli spaces or images).

Remark 1.30: The Kéhler minimal model program [HoPe], [CDV], would imply
that any Kahler manifold admits a sequence of bimeromorphic fibrations with fi-

bres that are either projective, hyperkahler or tori, and hence the class of Kéhler
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manifolds is probably very restricted. By contrast, the class of complex manifolds

is huge.
The fundamental group of a Kéhler manifold is very special. On the other hand:

Theorem 1.31: (Taubes [Taul], Panov—Petrunin [PP]) For any finitely gener-
ated, finitely presented group I', there exists a compact, complex 3-dimensional
manifold M with 7wy (M) =T.

Conjecture 1.32: ( Yau [Yau2]) Let (M, I) be a compact almost complex manifold,
dimc M > 3. Then I can be deformed to a complex structure.

Remark 1.33: The following important result of Gromov ([Gr2, p. 103]) can be
cited to support this conjecture. Let M be a non-compact almost complex manifold,
dimg M > 3. Then M admits a complex structure.

Remark 1.34: The (non-)existence of a complex structure is highly non-trivial
even in the simplest cases, such as S°. See [HKP], [CDV]. On the other hand, S°
has a natural almost complex structure constructed out of octonions, see [Bal] for
example, that admits a compatible nearly-Kiahler metric, which means that VI
is antisymmetric, see [BFGK], [Bry].

Remark 1.35: It is known that non-Kéhler complex manifolds are much more
abundant than Kihler ones, except in complex dimension 2, where non-Kahler
manifolds are few and much better understood than projective ones. However,
it is very hard to come up with new examples of compact, non-Kéhler complex
manifolds.

1.5 Exercises

1.5.1 Kaihler geometry and holomorphic vector fields

1.1. Let G be a compact, complex, connected Lie group. Prove that G is abelian.

1.2. Let X be a holomorphic vector field on a complex manifold, that is, one that
satisfies Liex I = 0. Prove that I X is also holomorphic.

Hint: Liex I = A(I), where A = V(X) acts by the formula A(I)(v) =
A(Iv) — T A(v). Therefore, X is holomorphic if and only if V(X) is complex
linear. Since V(I) = 0, one has V(IX) = I(V(X)), and hence V(X)) is
complex linear, implying that V(I .X) is complex linear.

1.3. Let (M, 1, g,w) be an almost complex Hermitian manifold, V a torsion-free
connection. Assume Vw = 0 and VI = 0. Then (M, I, g,w) is Kéhler.
Hint: Use [X,Y] = VxY — Vy X, to show that T is involutive, then use
dw = Alt(Vw), which holds for torsion-free connections.
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1. KAHLER MANIFOLDS

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

Let (M, I) be an almost complex manifold, and d° := IdI~!. Prove that [
is integrable if and only if dd® = —d“d.

Let w be anon-degenerate 2-form on a Riemannian manifold, and V its Levi-
Civita connection. Assume that V(w) = 0. Prove that M admits a complex

structure I such that V(I) = 0.

Let (M, I) be an almost complex manifold, dim¢ M = n, U C M a dense,
open subset, and € A™°(U) a non-degenerate (n,0)-form. Assume that
d€) = 0. Prove that the almost complex structure I is integrable.

A holomorphic differential on an almost complex manifold is a closed
(1,0)-form. Let G be a finite group acting on M = C" by holomorphic
maps. Prove that M admits a non-zero G-invariant holomorphic differential.

Let M = CP?™ x CP?", for some m,n € 7>0. Prove that M does not
admit a Kahler structure with non-standard orientation.

Hint: Prove that all complex manifolds have a canonical orientation. Prove

that this orientation can be given by the top power of the Kahler form, if the
manifold is Kahler.

Let M := % be the so-called linear Hopf manifold, with A an invert-

ible linear operator with operator norm ||A|| < 1. Prove that M admits no
symplectic structures.

Let M be a complex manifold, admitting a non-zero holomorphic vector field
& with zero set Z. Suppose that Z is non-empty and zero-dimensional. Prove
that the topological Euler characteristic of M is non-negative.

Let M be a compact Kihler manifold, and Alb(M) := w, where
H(QY(M)) is the space of holomorphic differentials, and A the group gen-
erated by all integrals over integer homology classes. The group Alb(M) is
called the Albanese variety of M, denoted by Alb(M). Prove that:

(@) The lattice A C HO(Q(M))* is discrete and cocompact, and hence
Alb(M) is a compact complex torus.

(b) Fix m € M. Consider the map ¥ : M — Alb(M), taking z € M to
the map 6 — [ 6, where 7 is any path-connecting m to z. Prove that
U is defined unambiguously and is holomorphic.

1.5.2 The Lie algebra of holomorphic Hamiltonian Killing

fields

The following exercises are not elementary; we advise the less prepared reader to
skip them. We will sometimes refer to these statements later in this book. The
reader can find these results in [Bes, Chapter 2.H].

1.12.

Let (M, w) be a compact Kihler manifold, G(M) the group of its holomor-
phic diffeomorphisms, g C T'M the Lie algebra of vector fields satisfying
V(X) = 0, where V is the Levi-Civita connection, and G its Lie group.
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1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

(a) Prove that G C G(M).

(b) Prove that all its orbits are compact complex tori in M.

(c) Prove that i xw is the real part of a holomorphic 1-form for any X € g.
(d) Let G; C G(M) be the group of holomorphic diffeomorphisms acting

trivially on Alb(M). Prove that for X € g there is a holomorphic
1-form 7 such that (n, X) # 0. Use this to prove that G; NG = {Id}.

Let X be a vector field on a Riemannian manifold (M, g). Prove that X is
Killing if and only if the operator A := V(X) € End(T'M) taking Y to
Vy (X) is antisymmetric: g(A(z),y) = —g(z, A(y)) for all z,y € T,,, M.
Consider the standard Euclidean form ¢ and the Hermitian form w on a
vector space V = R?" = C". Let A € Endg(V) be a matrix that satis-
fies w(Az,y) = —w(z, Ay) and g(Azx,y) = —g(z, Ay), and w(lAzx,y) =
—w(x, I Ay) for all z,y € V. Prove that A = 0.

Let X,Y € TM be holomorphic vector fields on a Kéhler manifold, and V
the Levi-Civita connection.
(a) Provethat V;xY =IVxY.
(b) Let A(:) := Vx-. Assume that Vxw = Vixw = 0. Prove that
w(lA-,-) = —w(-,TA") is equivalent to Lie;x w = 0.

Hint: Prove that V;x — Lie;x = I A, and show that Vyxw — Liefy w =
w(IA )+ w(-, TA).

Let (M, I, w) be aKéhler manifold andlet g C 7'M be the subalgebra formed
by vector fields X € T'M such that Liex I = 0, and Liex w = Lie;x w = 0.

(a) Prove that for all X € g, one has V(X) = 0.

(b) LetY be a holomorphic vector field that satisfies V(Y") = 0. Prove that
Y eg.

(c) Prove that g is abelian, if M is compact.
Hint: Use Exercise 1.13, Exercise 1.15 and Exercise 1.14 for the first part.

Let V be a torsion-free connection on a complex manifold (M, I), satisfying
V(I) = 0. Prove that a vector field V' is holomorphic if and only if V(V') €
End(TM) commutes with I € End(T'M).

Hint: Prove that V;z(V) = I(Vv(Z)) + [V, IZ] for any vector fields Z,V
onM.Use Vy(Z)+[V,Z] =V V.

Let v be a vector field on a Kahler manifold (M, I, w), satisfying Lie, w = 0,
and 7 := i, (w) the corresponding 1-form, that is closed by Cartan formula.
Let V be the Levi-Civita connection. Prove that Vy € Sym?(T*M) for
any closed 1-form 7. Prove that v is holomorphic if and only if the 1-form
n = i,(w) satisfies Vi) € Sym™!(T*M), that is, V7 is of type (1,1) with
respect to the Hodge decomposition on Sym™ (T M).

Hint: Use the previous exercise.
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1.19.

1.20.

1.21.

1.22.

1.23.

Let 7 be a closed real 1-form on a compact Kéhler manifold that satisfies
Vn € Sym"“*(T*M). Consider the decomposition 7 = o + 7/ where 7/
is exact and « the real part of a holomorphic 1-form. Prove that Vo €
Sym"!(T*M) and Va = 0.

Hint: Prove that the harmonic decomposition commutes with the connec-
tion and use this to show that Vo € Sym"!(T*M). Show that Va €
Sym?Y(T* M) when o is a closed holomorphic 1-form.

Definition 1.36: Let (M, w) be a symplectic manifold. We denote the con-
traction of a differential form 1 with a vector field v by 7, (). A vector field
v on M is called Hamiltonian if Lie, w = 0 and the 1-form i, (w) is exact.?

Let v be a holomorphic Killing vector field on a compact Kéhler manifold
M. Prove that there exists a unique Hamiltonian holomorphic vector field
v’ such that & := 4,4, (w) is the real part of a holomorphic 1-form. Prove
that v is Hamiltonian if and only if o = 0.

Hint: Use the previous exercise.

Let s be the space of closed 1-forms on a compact Kahler manifold that satisfy
Vn € Sym™(T*M), g C s the space of parallel 1-forms in 5, and b the space
of all exact 1-forms in s.

(a) Show that any exact 1-form on a compact manifold M vanishes some-
where in M.

(b) Prove thatgNh = 0.
(c) Use Exercise 1.20 to show that g ® h = s.

Denote by §j the algebra of Hamiltonian holomorphic vector fields (they are a
posteriori Killing) on a compact Kihler manifold (M, I,w), and by s the Lie
algebra of holomorphic Killing vector fields. Prove that b is normal in s, and
the quotient s/l is isomorphic to the Lie algebra g of holomorphic parallel
vector fields (Exercise 1.16). Prove that s can be obtained as a semi-direct
product of g and b.

Prove that a holomorphic Killing vector field on a compact Kéhler manifold
is Hamiltonian if and only if it has a fixed point.

Hint: Use the decomposition g ® h = s.

2The form i, (w) is closed, because Lie, w = d(iy(w)) = 0.
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