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Preface

This book is the result of our work during the last 25 years, dedicated to the
modeling and optimization of risk in various contexts. Much of its content is
based on our research during this period, and some results or entire sections
are original. Our intention was to present a unified and cohesive theory—a very
challenging task given the rapid and vigorous development of the field. As a
result, the outcome is certainly far from perfect.

With the idea of reaching a broad audience, we have presented some of the
results at a level of generality which is sufficient to cover major applications,
but not necessarily in the most general versions. We hope that the book will be
useful for both advanced graduate students and researchers in the areas such as
optimization under uncertainty, statistics, data science, and other fields where
risk and stochastic optimization are relevant.

We would like to express our gratitude for the support of the National Science
Foundation, Air Force Office of Scientific Research, and the Office of Naval
Research through research grants for various topics covered in this book.

Hoboken, NJ, USA Darinka Dentcheva
Piscataway, NJ, USA Andrzej Ruszczyniski
January 2024



Introduction

Optimization is an established area of applied mathematics that plays a signif-
icant role in engineering, economics, statistics, business, and many other ar-
eas. In the simplest possible formulation, an optimization problem is to find an
element X in some subset X of a space ¥, such that the value of a function
f X — R at the point X is the smallest (or the largest) among all possible
values of f(x) at points x € X. For different classes of spaces X, sets X, and
functions f(-), the theory provides us with the characterizations of the optimal
solutions and numerical methods for their identification.

The fundamental assumption behind the theory and methods of optimization
is the existence of the function f(-), called the objective function, that allows
us to compare the decisions and choose the best one. Such functions are evi-
dent when the optimization problem has a clear mathematical or physical na-
ture, such as finding the shortest path, the minimum mass, the lowest energy,
etc. However, in many applications, the determination of such a function is not
straightforward. This is especially challenging when the outcomes of decisions
are uncertain. Such situations arise in most decision problems in which antici-
pation of future events is essential.

Several ways of modeling uncertain outcomes exist, such as stochastic mod-
els, set-valued operators, scenario representations, etc. In this book, we focus
exclusively on stochastic models of uncertainty. We assume, in the simplest
case, that a decision x € X results in a random outcome Z(x) which is an
element of a space Z of random variables or random vectors, such as the space
of random variables having a finite expected value, or the space of random vari-
ables with a finite variance, or higher moments. In such situations, it is difficult
to directly compare decisions. For example, in an investment portfolio problem,
the decision x may be a finite-dimensional vector representing the investments
in various assets, and Z(x) may represent the random profit or return rate in
a fixed period following the investment. In this situation, when making the de-
cision, we cannot directly compare Z(x) and Z(y) for two different values (x

vii



viii Introduction

and y) of the decision vector, because this would require the anticipation of the
future returns. Likewise, if x represents the resources deployed in various oil
exploration projects, and Z(x) is the vector of values of the projects a year from
now, it is extremely difficult to rank different investment strategies involving
many locations with various prospects, and many currencies. Similar difficul-
ties arise in public health decisions, logistics, marketing campaigns, and many
other applications.

A branch of the optimization theory, known as stochastic optimization or
stochastic programming, studies problems involving random outcomes, such as
the examples mentioned above. A large portion of the theory and methods de-
veloped in this area are concerned with the optimization of the expected values
of the random outcomes. However, in many problems of practical relevance,
the use of the expected value as the major measure guiding our decisions may
not be appropriate and would not be accepted by the practitioners in the cor-
responding fields. For example, in the portfolio problem mentioned above, the
expected value criterion would suggest concentrating all investments on the one
or few assets that have the best prospects. In public health policy problems, the
use of the expected value may lead to neglecting the needs of a particular group
of patients, or to the promotion of actions involving a significant probability of
highly undesirable effects. In oil exploration, all funds would go to one project.
In these and other applications, an additional aspect must be considered: risk.

The concept of risk arises in most decision problems under uncertainty. In
the simplest form, it is reflected by the first question of a person offered an
investment opportunity: “How much can be lost?” The Latin proverb “Venture
not all in one ship”’ already contained a recipe for risk control. Today, we can
go much further than that in the description, analysis, and optimization of risk.
Specific application areas developed their own methods to formalize and treat
risk. For example, finance uses the concept of the value at risk, a refined version
of the amount that can be lost, involving a low probability level. In the portfolio
theory, the variance of the outcome is used as the second measure, in addition to
the expected value, of the quality of the decision. This has further been extended
to other mean-risk models and led to the introduction of the theory of measures
of risk. In engineering, the reliability theory provides tools to control the risk of
construction. In economics, the theory of utility and stochastic dominance are
recognized methods to model risk-averse preferences.

In this book, we aim to provide a unified view on the ways to model, analyze,
and optimize risk.

We start from the utility theory in Chap. 1 with the goal of presenting a con-
cise and unified view on the classical expected utility and dual utility models.
We also introduce the concept of risk aversion in this context.

T Uni navi ne committas omnia.
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In Chap. 2, we present the modern theory of measures of risk, provide their
main theoretical properties, and discuss many examples. In this chapter, we also
present the theory of systemic risk, which is essential for the operation of dis-
tributed complex systems. Our treatment is based on the understanding that we
address the risk associated with vector-valued outcomes. An essential part of
this chapter is the theory of risk forms, which are risk measures associated with
a variable probability measure.

Chapter 3 develops the theoretical foundation of optimization problems in-
volving measures of risk. We provide a thorough analysis of the compositions
of measures of risk with various classes of stochastic operators, involving non-
convex and non-differentiable operators. This is followed by the derivation of
the optimality conditions and duality theory. Finally, we present new stochas-
tic subgradient methods with special attention to non-convex and non-smooth
problems arising in modern applications.

Chapter 4 discusses dynamic risk models and dynamic risk optimization.
When our decisions are made in successive periods and random outcomes are
observed in these periods, the question of evaluating the risk of a sequence of
outcomes becomes relevant. Subtle issues of time consistency of such an evalu-
ation led to the theory of dynamic measures of risk. We provide a modern view
on this theory, use it to construct risk-averse dynamic optimization problems,
and develop optimality conditions for these problems. Our techniques lead to
new results even in the expected-value case. Finally, we present specialized de-
composition methods for dynamic risk optimization.

In Chap. 5, we present another approach to the risk control in decision prob-
lems, which is based on stochastic orders. For a major part of it, we focus on the
notion of stochastic dominance of general order, presenting its properties that
are essential to risk-averse optimization. The main portion of the chapter con-
tains an analysis of optimization problems using stochastic dominance relations
as constraints. We present optimality conditions and duality theory in various
forms for convex and non-convex forms of several problem formulations. These
results elucidate deeper relations of stochastic dominance to utility functions,
distortions (or rank-dependent utility), and risk measures.

Chapter 6 addresses the comparison of random vectors and finite sequences
which can be integrated into risk-averse decision problems. Vector-valued out-
comes arise in the context of systemic risk, multi-objective optimization under
uncertainty, or in any problem involving high-dimensional risks. The question
of constraints of distributions in a sequential decision problem is an important
one as already mentioned as the decision maker needs to mind the time con-
sistency of the model. This chapter introduces the notion of a time-consistent
stochastic order for sequences and provides a theoretical foundation for con-
structing time-consistent multistage stochastic programming problems with se-
quential stochastic dominance constraints.
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In Chap. 7, we present numerical methods for solving optimization problems
with stochastic order constraints with a focus on the second-order stochastic
dominance relation in both univariate and multivariate settings. We start with
reformulations of the static problems that allow the application of available
commercial solvers for optimization problems. This approach is suitable for rel-
atively small problems, in which the probability space consists of a small num-
ber of simple events. The main focus of the chapter is on methods for solving the
respective optimization problems when dealing with general probability spaces.
In this case, we construct sequential approximations of the stochastic dominance
constraints by inequalities, which we call event cuts. Several approximations are
presented for the problems formulated in Chaps. 5 and 6 and their convergence
is analyzed. Methods for evaluation of the quality of the approximation and the
validity of the dominance relation at the iterates are presented as well.

Finally, Chap. 8 considers risk models for Markov dynamical systems and
risk-averse control of such systems. This is a very special class of dynamic
models where a deep theory and dedicated methods can be developed, which
fully exploit the Markovian structure of the system. The key concept is that of
a Markov risk measure, which allows us to reduce the dynamic risk evaluation
into a sequence of static evaluations with transition risk mappings. This leads
to specialized dynamic programming equations in the finite-horizon, infinite-
horizon, absorbing, and partially observable cases.

Most of the book contains the results of our own research conducted over a
period of 25 years, and several parts of the book are entirely new. We discuss the
relation to earlier research and point to relevant reading in the Bibliographical
Remarks at the end of the book.
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Chapter 1 )
Elements of the Utility Theory ki

The utility theory is concerned with analyzing the existence and the forms of
numerical representations of preference relations. We start our presentation from
abstract preference relations in a space X, which we call the prospect space. Our
considerations in this section are rather abstract, but in the applications to risk-
averse decision-making that we discuss in this book, three special cases of X are
particularly important.

The first case is the space & (S) of probability measures on a Polish space §
equipped with the o -algebra 8 of Borel sets (frequently, § = R™). We will also
consider its subspaces of measures satisfying additional integrability conditions:
the existence of finite moments or order p € [1,oc]. In this context, we are
interested in the following question: can we derive a functional U : P(S) — R
such that we prefer u € P(S) over v € L(§) if and only if U(u) < U(v).
Here, and later in this chapter, we adopt the convention that smaller values of
U(-) are associated with preferred prospects, and thus U(u) can be interpreted
as the “fair price” of u.

The second case of X is the space of random vectors. For a probability space
(82,5, P), we consider the space Lo(£2, F, P; R™) of random vectors in R”,
or its subspaces L£,(§2, ¥, P; R") of random vectors having finite moments of
order p € [1, o0]. Again, can we construct U(-) such that Zs “better than” Vi
(both in X) if and only if U(Z) < U(V)?

The third case is the space @y, of the quantile functions of scalar and bounded
random variables. While one might reduce it to the first case with § = R, it is
convenient to consider it separately, because of future applications to measures
of risk.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
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2 1 Elements of the Utility Theory

1.1 Preference Relations

We assume that a preference relation in the prospect space X is defined by a
certain fotal preorder, that is, a binary relation < on X satisfying the following
two conditions:

Transitivity: Forall z,v,w € X,if z < v and v < w, then z < w; and
Completeness: Forall z,v € X, either z < v, or v < Z, or both are true.

It follows from the completeness condition that the preorder is reflexive, that is,
z 2 z for all z € X. The corresponding indifference relation ~ is defined in a
usual way: z ~ v, if z < v and v < z. It is an equivalence relation. We say that
z1s strictly preferred over vand write it z < v,if z S v,and v # z.

In decision problems, it is convenient to represent prospects by numbers,
which summarize their usefulness.

Definition 1.1. A functional U : X — R is a numerical representation of the
preference relation < on X, if

z2<v = U(z) < U(v).

In our presentation, continuous representations play a fundamental role. To
speak about continuity, we need to assume that the space of prospects X is a
topological space.

The special cases of X mentioned at the beginning of this chapter can be
equipped with appropriate topologies. The space #(S8) of probability mea-
sures on ($, B) can be equipped with the topology of weak convergence. In
Lo($2,F, P; R™) we may consider the topology of almost sure convergence,
or the topology of convergence in probability. The spaces £,($2, ¥, P; R"),
for p € [1,00], as Banach spaces, may be equipped with the strong (norm)
topology or the weak topology. The space @ can be considered as a subspace
of the space of bounded functions and equipped with the topology of uniform
convergence.

To guarantee the existence of a continuous numerical representation, we need
to make additional assumptions about the preference relation and the space it-
self. The first one is a fundamental condition, which we use many times in our
considerations.

Definition 1.2. The preference relation < on X is continuous, if for every z € X
thesets {v € X : v <z} and {v € X : Z < v} are closed.

A classical result in topology states that a continuous total preorder on a
separable and connected topological space has a continuous numerical repre-
sentation.

Furthermore, if U : ¥ — R is a numerical representation of a preorder <,
then for any strictly increasing function ¢ : R — R the functional ¢(U(-)) is
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also a numerical representation of the preorder <. If ¢(-) and U(-) are continu-
ous, so is their composition. Conversely, for any two numerical representations
U(-) and U(-) of <, a strictly increasing function ¢ : U(X) — R exists, such
that U(-) = ¢(U(+)).

For specific prospect spaces and under additional conditions, we can say
more about the structure of a numerical representation of a preorder <. This
is our main objective in this chapter.

1.2 Expected Utility Theory

The expected utility theory is concerned with comparing probability measures.

1.2.1 The Prospect Space of Probability Measures

Given a Polish space §, equipped with its o-algebra B of Borel sets, we con-
sider the prospect space X = £ (S) of probability measures on §. For most
applications discussed in this book, the finite-dimensional space § = R is
sufficient, but we present the theory in more general settings because they does
not require much additional effort and broaden the scope of applications.

We assume that the preference relation < satisfies two additional conditions:

Independence Axiom: For all u, v, and A in & (§) one has
u<v = au+({1—-a)d<av+ (1 —a)r, Vae(0,1l);
Archimedean Axiom: For all u, v, and A in P (§), satisfying the relations
U<y <A,
there exist a, B € (0, 1) such that
o+ (1—a)A <v < Bu—+(1-p)A7.

We can derive the following properties of a preorder satisfying these axioms.

Lemma 1.3. Suppose a total preorder < on P (S) satisfies the independence
axiom. Then for every . € P(8) the indifference set {v € P(S) : v ~ u}is
convex.

Proof. Letv ~ wand A ~ p. Suppose (1 —a)v + aA < v for some « € (0, 1).
Then also (1 — a)v + aA < A. Using the independence axiom with these two
relations, we obtain a contradiction as follows:
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1—a)y+ar =(1 —(x)[(l —a)v + al] + a[(l —a)v + ak]
<(1—a) +a[(1 —a)v +oc/\] <(l—a)v+al.

The case when v < (1 — «a)v 4+ aA is excluded similarly. We conclude that
(1—a)v+ar ~ pu,forallx € (0,1). 0

Lemma 1.4. Suppose a total preorder < on P(S) satisfies the independence
and Archimedean axioms. Then for all w,v € P(S), satisfying the relation
W < v, and for all A € P(S), there exists & > 0 such that

l—a)p+ar<v and p<(l—a)v+ar, Vace]l0,al (1.1)

Proof. We focus on the left relation in (1.1) and consider three cases.

Case 1: v < A. The left relation in (1.1) is true for some & € (0, 1), owing to the
Archimedean axiom. If ¢ € (0, @) then for 8 = «/& € (0, 1) the independence
axiom yields

(I—ap+ar=1=Bp+p[(l-a)p+ar] < (1 —pu+pv <.
Case 2: A < v. Applying the independence axiom twice, we obtain
l-o)p4+aer<(l—a)v+ar<v, Vae(01).

Case 3: A ~ v. By virtue of Lemma 1.3, (1 —a)v + oA ~ v forall @ € (0, 1),
and the left relation in (1.1) follows from the independence axiom.
The right relation in (1.1) is proved analogously. 0

1.2.2 Affine Numerical Representation

The set #(S) is a convex subset of the vector space M(S) of signed regular
finite measures on §. It is also convenient for our derivations to consider the
linear subspace Mo(S) of measures i € M(S) such that u(S) = 0.

Theorem 1.5. Suppose the total preorder < on P (S) satisfies the independence
and Archimedean axioms. Then an affine numerical representation of < on
P(S) exists.

Proof. In the space My (S), define the set
Co={u—v:ueP@),veP(S), uav}

Consider two arbitrary points ¥ and x in Cy, that is,
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19:“_]}? ", (S)’ Mmoo,
A )

ve P
x =A—o0, ,o0 € P(S), A <o.

For every o € (0, 1), using the independence axiom twice, we obtain
ap+(l—a)h<av+(1—o)d <av + (1 —a)o.

Then,
ad + (1 —a)x = [oeu + (1 —a)/\] — [ow + (1 —a)a]

is an element of Cy, which proves that Cy is convex.

Define C = {y?¥ : ¥ € Cy, y > 0}. Itis evident that Cifs a convex cone, that
is, forall ¥, € C,and all @ > 0 and 8 > 0 we have ot} 4+ Bx € C. Moreover,
C C My.

We shall prove that the algebraic interior of Cyin My, denoted cor(C), is
nonempty and that in fact C = cor(C). Consider any # € C, an arbitrary
nonzero measure A € My, and the ray

zZ(t)=9+ 1A, T>0.

Our objective is to show that z(7) € C for a sufficiently small T > 0. Let A =
At — A~ be the Jordan decomposition of A. With no loss of generality, we may
assume that the direction A is normalized so that |[A| = AT (8) +17(8) = 2. As
A € My, we have then AT (S) = A7(S) = 1. Let y > 0 be such that the point
o = YU € Cy. Since Chfis a cone, z(t) € C if and only if yz(7) € C. Setting
t = yt, we reformulate our question as follows:

Does g + tA belong to C for sufficiently small ¢ > 0?

Since 99 € Cy, we can represent it as a difference 99 = p — v, with u,v €
P(S8), and u < v. Then

Yo +1A =[(1—0)pu+1AT]=[(1—t)v + A7 ] + 1. (1.2)

Both expressions in brackets are probability measures for ¢ € [0, 1]. By the

independence axiom,
1 1
n < 5 n+ EV <.

According to Lemma 1.4, there exists ty > 0, such that for all ¢ € [0, #] we also
have

1 1
(1—t)u+tl+<1§;L+Ev<1(1—t)v+t)u_.

This proves that

[(I=Dpu+2T]—[(1—t)v+117] € Co. Vi €[0,10].
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For these values of ¢, the right hand side of (1.2) is a sum of two elements of C.
As the set Cifis a convex cone, this sum is an element of Cyas well. Consequently,
U+ tAeC forallzte|0,t/al

Summing up, Cyis convex, C = cor(C), and @ ¢ C, where @ denotes the
zero element in Mo(S). By virtue of the separation theorem for a convex set
with a nonempty algebraic interior, the point @ and the set Ciycan be separated
strictly: a linear functional Uy on Mq(S) exists, such that

Up(®) <0, Vo eC. (1.3)

We can extend the linear functional Uy to the whole space M (S) by choosing a
measure A € P(§) and setting

U(p) = Uo(it — n($)2). 1w & M(5).

It is linear and coincides with Uy on Mq(S). The relation (1.3) is equivalent to
the following statement: for all w, v € #(8§) such that u < v, we have

Uo(u—v) =U(p—v)=Uw) —U) <0.

It follows that Uyrestricted to & (8) is the postulated numerical representation
of the preorder <. It is affine on £ (S). 0

1.2.3 Integral Representation. Utility Functions

To prove the main result of this section, we assume that the space M(S) is
equipped with the topology of weak convergence of measures. This makes it
a complete topological vector space. Recall that the topology of weak conver-
gence is metrizable and M (S$) is a Polish space itself.

Theorem 1.6. Suppose the total preorder < on P (8) is continuous and satisfies
the independence axiom. Then a continuous and bounded functionu : § — R
exists, such that the functional

U) = /S u(z) u(dz) (1.4)

is a numerical representation of < on P(S).

Proof. The continuity of the preorder < implies the Archimedean axiom. In-
deed, the sets {w € P(S) : # <v}and {w € P(S) : u < 7} are open, and the
mapping o — ar + (1 —a)A, a € [0, 1], is continuous for any A € P(S).

By virtue of Theorem 1.5, an affine numerical representation U : (S) — R
of < exists.
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We shall prove that the functional U(-) is continuous on & (§), that is, for
every o the sets

A={pueP U <a} and B={ue® UWw) =>a}

are closed. Since J(S) is convex and U(-) is affine, the set U(J) is convex.
Therefore, for every o one of three cases may occur:

(1) U(n) < aforall u € P(S);
(i) U(u) > aforall u € P(S);
(iii) & € U(P(S)).
In cases (i) and (ii) there is nothing to prove. In case (iii), let v € (§) be such
that U(v) = «. Since U(-) is a numerical representation of the preorder, we

have
A={ueP uav} and B={ue®:vaul

Both sets are closed due to the continuity of the preorder <. Thus, U(+) in con-
tinuous on & (S).

For z € §, let 6, denote the Dirac measure supported at z. Define a function
u:8 — R as follows:

u(z) =U@6;), z€S.

The function u(-) is continuous, because z, — z implies §;, —» §,, and
thus u(z,) — u(z). Suppose u(-) is not bounded from above. Then we can
find a sequence {z,} such that u(z,) > n for all n. Consider the sequence of
probability measures

1 1
)+ b

Then p, = 8z,, but U(un) — 400, as n — oo. This contradicts the conti-
nuity of U(+). The unboundedness from below is excluded in a similar way, and
thus u(-) is bounded.

We now verify the representation (1.4). For a discrete distribution

Mn=<1—

N N
M= an5zn, an =1, Pn = 0, (1.5)
n=1 n=1

the affinity of U(-) yields

N
Up) = Z Puti(2n),
n=1
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which is exactly (1.4). Furthermore, the set of discrete distributions of form
(1.5) is dense in £ (§), in the topology of weak convergence. By the continuity
of U(-), the formula (1.4) is true at all u € P. 0

The formula (1.4) is referred to as the expected utility representation, and
u(-) is called the utility function.

The utility function in Theorem 1.6 is bounded. If we restrict the prospect
space to include only measures satisfying additional integrability conditions,
representations with unbounded utility functions may occur.

Let ¢ : § — [l,00) be a continuous function (called the gauge function
in this context), and let Cb'/’ (S) be the set of functions f : § — R, such that
f/¥ € Cu(S), where Cy(8) is the space of continuous and bounded functions
on §. We can define the space MY (§) of regular signed measures /i, such that

| /S @) (@) <o, Vel

Similar to the topology of weak convergence, we can define the topology of /-
weak convergence on MY (8): {itn}nen ¥ w if and only if [¢ f(z) ua(dz) —
/. s f(2) u(dz) forall f € Cg” (8). All continuity statements will be now made

for this topology. We use the symbol PY (S) to denote the set of probability
measures in MY ($).

Theorem 1.7. Suppose the total preorder < on PV (S) is continuous and satis-
fies the independence axiom. Then a function u € C;” (S) exists such that the
functional

U) = /S u(z) u(dz) (1.6)

is a numerical representation of < on PV (S).

Proof. The proof is almost identical to the proof of Theorem 1.6, except that
we use the continuity with respect to the yr-weak convergence. To verify that
u € C,;” (8), we argue by contradiction again. Suppose u /v is not bounded
from above. Then we can find a sequence {z,} such that u(z,) > ny(z,) for
all n. Consider the sequence of probability measures

1 1
n=1-—- 811 ——=0z,.
= w(znw) ARERW

Then u, converges y-weakly to 8, but U(u,) — +o00, as n — oo. This
contradicts the continuity of U(-). The unboundedness of u /v from below is
excluded in a similar way and thus u € C,;p (8). 0
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1.2.4 Monotonicity and Risk Aversion

Suppose a partial order relation < on § is defined (our notation is motivated by
the applications in which § is a finite-dimensional vector space). In this case, it
makes sense to define the monotonicity of a preference relation <.

Monotonicity Axiom: Forall z,v € § one has
z2<v = §; <6y.

Theorem 1.8. Suppose the total preorder < on P (8) is monotonic, continuous,
and satisfies the independence axiom. Then a nondecreasing, continuous and
bounded functionu : § — R exists, such that the functional (1.4) is a numerical
representation of < on P(S).

Proof. In view of Theorem 1.6, it is sufficient to verify that the function u(-) in
(1.4) is monotonic with respect to <. To this end, we consider z, v € § such that
z < v. By the monotonicity of the order, u(z) = U(8;) < U(8y) = u(v). 0

We now focus on the case with the gauge function ¥,(z) = 1 + ||z]|?,
where p > 1. Then for every i € Y7 (§) and for every o-subalgebra § of B
the conditional expectation &g : § — S is well-defined, as a §-measurable
function satisfying the equation

/ €,1¢(z) n(dz) = / zu(dz), Geé§. (1.7)
G G

The conditional expectation &,,¢ induces a probability measure on (S, B) as
follows

s (A) = pi€ s (D}, A€ 8.

Definition 1.9. A preference relation < on PY7(§) is risk-averse, if g < i,
for every i € £¥7(S) and every o-subalgebra § of B.

By choosing § = {§, 0}, we observe that Definition 1.9 implies that §g,, < p,
where &, = |, s Z (dz) is the expected value of the measure u.

Theorem 1.10. Suppose a total preorder < on PY7(8) is continuous, risk-

averse, and satisfies the independence axiom. Then a convex function u €

Ct:// ?(8) exists such that the functional (1.6) is a numerical representation of
<on PY(S).
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Proof. In view of Theorem 1.7, we only need to prove the convexity of u(-). By
the risk aversion, for every i € P¥7(S) we have

u(fsz M(dZ)) S/Su(z) pu(dz).

This is Jensen’s inequality, which is equivalent to the convexity of u(-). 0

Remark 1.11. It is clear from the proof that the convexity of u(-) could have
been obtained by simply assuming that dg,, < u. The convexity of u(-) would
imply risk aversion in the sense of Definition 1.9, by virtue of Jensen’s inequal-
ity for conditional expectations. Therefore, Definition 1.9 and the requirement
that §g,, < p are equivalent within the framework of the expected utility theory.
Nonetheless, we prefer to leave Definition 1.9 in its full form, because we shall
use the concept of risk aversion in connection with other axioms, where such
equivalence cannot be derived. 0

1.3 Dual Utility Theory

The dual utility theory is formulated in a more restrictive setting: for the proba-
bility distributions on the real line.

1.3.1 The Prospect Space of Quantile Functions

With every probability measure u € £ (R) we associate the distribution func-
tion: Fy(n) £ p((=o0,7]). It is nondecreasing and right-continuous. We can,
therefore, define its inverse

F,'(p) & infine R: Fu) = p}. pe©.1).

By definition, F,’ (p) is the smallest p-quantile of 1. We call F, " 1(-) the quan-
tile function associated with the probability measure . Every quantile function
is nondecreasing and left-continuous on the open interval (0, 1). On the other
hand, every nondecreasing and left-continuous function @(-) on (0, 1) uniquely
defines the following distribution function:
_ A
Fu(m) =9~ () =
It is nondecreasing, right-continuous, and thus corresponds to a certain proba-
bility measure u € £ (R).

sup{p € (0,1): d(p) <n}, neR.
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The set @ of all nondecreasing and left-continuous functions on the inter-
val (0, 1) will be our prospect space. It is evident that @ is a convex cone in
the vector space £ (0, 1) of all Lebesgue measurable functions on the interval
0,1).

We assume that the preference relation < on @ is a total preorder and satisfies
the following two conditions.

Dual Independence Axiom: For all @, ¥, and 7" in @ one has
P<aV¥ — a®+(1—-a)Y <a¥+(1—a)Y, VYae(0,1);
Dual Archimedean Axiom: Forall ®@,¥,and 7 in @, satisfying the relations
DV «?,
there exist o, B € (0, 1) such that
ad+(1—-a)T <¥ <D+ (1-p)7T.

Similar to Lemmas 1.3 and 1.4, we can easily derive the following properties
of a preorder satisfying the dual axioms.

Lemma 1.12. Suppose a total preorder < on @ satisfies the dual independence
axiom. Then for every @ € @ the indifference set {¥ € @ : ¥ ~ @} is convex.

Lemma 1.13. Suppose a total preorder < on @ satisfies the dual independence
and Archimedean axioms. Then for all @, ¥ € @, satisfying the relation ® < W,
and forall T € @, there exists & > 0 such that

l1-a)®+aY <¥ and @<(l—a)¥+a?, VYael[0a]l. (1.8)

The proofs of both these facts are virtually the same as the proofs of Lemmas 1.3
and 1.4.

1.3.2 Affine Numerical Representation

It is convenient for our derivations to consider the linear span of @ defined as
follows:

k
lin((,‘2)={2ai¢i:aie]]\?,@iGCQ,i:l,...,k,keN =Q—@,

i=1

where @ — @ is the Minkowski sum of the sets @ and —@. The last equality
follows from the fact that @ is a convex cone.
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Theorem 1.14. If a total preorder < on @ satisfies the dual independence and
Archimedean axioms, then a linear functional on 1in(@) exists, whose restriction
to @ is a numerical representation of <.

Proof. Define in the space lin(@) the set
C={d-V:0ec@, Ve, @<V}

Exactly as in the proof of Theorem 1.5 on page 4, we can prove that Ciis convex.
We shall prove that it is a cone. Suppose @ < ¥ and let o > 0. If & € (0, 1),
then the independence axiom implies that"

e =a®+ (1—a)0 <a¥ + (1 —a)0 = aW.

Consider ¢ > 1, and suppose ¥ < a®. If a¥ < a®P, then, owing to the
independence axiom, we obtain a contradiction: ¥ = é(a ¥) < 5(05(15) = .
Consider the case when o ~ a®. By virtue of Lemma 1.12 and the indepen-
dence axiom, for any 8 € (0, 1/a) we obtain a contradiction in the following
way:

a¥ ~ B(a®) + (1 — B)(a¥) = (Ba)® + (1 — ,305)[(1 — B lp]

1 - Bo
< (B + (1 - B)(a¥) = aW.

Therefore, «® < oW for all @ > 0. We conclude that for every > 0 the
element (@ — ¥) € C. Consequently, Cifis a convex cone.

We shall prove that the algebraic interior of C, denoted cor(C), is nonempty,
and that, in fact, C = cor(C). Consider any I" € C, a function 7 € lin(@),
and the ray

Zt)y=I+1tY, t>0.

Our objective is to show that Z(t) € C for a sufficiently small £ > 0. By the
definition of 1in(@), we canrepresent” = ¥t — T ~, with T+, 7~ € Q.

Since I' € C, we can represent it as a difference I’ = @ -, with @, ¥ € @,
and @ < V. Then

F+:r =[1-0@+:7" |- [0 =¥ +:T" |+t (1.9

Both expressions in brackets are elements of €@. By the dual independence ax-
iom,

1 1
D <a-P+ Y aVY,
2 +2

T We use the symbol @ to denote the quantile function identically equal to 0.
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According to Lemma 1.13, there exists #y > 0 such that for all ¢ € [0, z5] we
also have

1 1
(1—t)<15+t'f+<1§q§+§l1/<1(1—t)llf+t'f_.

This proves that
[(I-=D® +:YT]—[1-0)¥ +1T 7] eC,

provided that ¢ € [0, tp]. Thus relation (1.9) implies that for every ¢ € [0, #o] the
point I" + 7 is a sum of two elements of C. Since the set Ciis a convex cone,
this point is also an element of C.

As Culis convex, C = cor(C), and @ ¢ C, the point @ and the set Ciycan be
separated strictly: a linear functional Uyon lin(@) exists, such that

Uiry<o, vrI eCcC.

Thus,
U@)—-UW) <0, whenever @ <V,

as required. 0

1.3.3 Integral Representation with Rank Dependent Utility
Functions

In order to derive an integral representation of the numerical representation
U(-) of the preorder <, we need much stronger conditions, than those of Theo-
rem 1.14. Two issues are important in this respect:

e Continuity of U(-) on an appropriate complete topological vector space
containing the set @ of quantile functions; and
o Integral representation of a continuous linear functional on this space.

To address the first issue, we recall the construction of the space of bounded
functions from classical functional analysis. Consider the algebra X' of all sets
obtained by finite unions and intersections of intervals of the form (a, b] in
(0,1], where 0 < a < b < 1. With § = (0, 1] and with X', we can define
simple functions on (0, 1] as follows:

f(p) =) el (p). peS. (1.10)

i=1

where o; € R fori = 1,...,n,and A;,i = 1,...,n, are disjoint elements of
the algebra X'. In the formula above, 14(-) denotes the characteristic function
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of a set A. Next, we define the space B ((0, 1], X ) of all bounded functions on
(0, 1] that can be obtained as uniform limits of sequences of simple functions.
The space B((0, 1], X') equipped with the supremum norm:

[@]l = sup @(p),
0<p<l1

is a Banach space.

From now on, we shall consider only compactly supported distributions
on R. The corresponding quantile functions form the prospect space @y, of all
bounded, nondecreasing, and left-continuous functions on (0, 1]. The set @,
is contained in B ((0, 11, ¥ ) Indeed, every monotonic function may have only
countably many jumps and their sizes are summable due to the boundedness of
the function. Owing to the left-continuity, it can be represented as a uniform
limit of simple functions.

We make the following assumption:

Monotonicity Axiom: For all @, ¥ € @, one has

where the inequality between the functions is understood pointwise.

Theorem 1.15. If a total preorder < on Qy, is continuous and satisfies the dual
independence and monotonicity axioms, then a linear continuous functional on
B ((0, 1], % ) exists, whose restriction to @y, is a numerical representation of <.

Proof. Since the continuity axiom implies the Archimedean axiom, Theorem
1.14 implies the existence of a linear functional U : lin(&,) — R whose re-
striction to @}, is a numerical representation of <. The continuity axiom implies
the continuity of the functional U(-) on @y. We shall extend U(-) to a continu-
ous functional on the entire space B((0, 1], X).

Every simple function can be expressed as

n
¢ = Z“iﬂ(pi,pi+1]

i=1

= Y il =T+ Y el — Lpa)-

ita;>0 ito; <0

with 0 = p; < p» < -+ < pp+1 = 1. Rearranging terms, we observe that
every simple function is a difference of two simple functions in @, and is thus

T Bounded nondecreasing functions on (0, 1) can be extended to (0, 1] by assigning their left
limits as values at 1.
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an element of lin(@,). Consequently, the linear functional U(-) is well-defined
on the space of simple functions.

Since the preorder < satisfies the monotonicity axiom, the linear functional
U(-) is monotonic on @,. We shall prove that it is also monotonic on the set of
simple functions in B((0, 1], X'). Let @ and ¥ be two simple functions, and let
(o) < Y. Then @ = <1§1 — @2, v = ‘1/1 — Wz, where <p1, <p2, lpl, 1112 € (Qb, and

D1+, < Dy + Y.

As both sides are elements of @, and U(-) is nondecreasing in @ and linear,
regrouping the terms we obtain

U@)-UW)=U(@1— D =¥ +¥2) = U@ +¥,) —U(P2 + ¥) <0.

This proves the monotonicity of U(-) on the linear subspace of simple functions.
For any function I' € B((0,1], X'), we construct two sequences of simple
functions: {®,} and {¥,} such that &, < I" < ¥,,forn =1,2,...,and

= lim &, = lim ¥,.
n—0o0 n—oo
The sequence {U(®,)} is bounded from above by U(¥) for any k, due to the
monotonicity of U(-). Similar, the sequence {U(¥},)} is bounded from below
by U(®y) for any k. Moreover,

0 < UW¥) — U(Py) = Uy — Pp)
< U(I1¥ = Pull10,11) = U 0,1)) [[¥n — Pull — 0.

Therefore, both sequences {U(®;)} and {U(¥,)} have the same limit and we
can define
U(r)= lim U(®,) = lim UW,).
n—>oo n—->oo

We may use any sequence of simple functions I;, — I to calculate U(I").
Indeed, setting @, = I, — ||I;, — '|| and ¥, = I}, + ||, — I'||, we obtain
&, < T <¥,and &, < I, < ¥,. Consequently, U(®,) < U(I) < UW¥,)
and

lim U(l) =U(T).
n—>oo

The functional U : B ((0, 1], Z‘) — R defined in this way is linear on the set
of simple functions, which is a subspace of lin @. Consider two elements ¢ and
¥ of B((0,1], X'), and two sequences {®,} and {¥,} of simple functions such
that @, — @ and ¥, — ¥. Forany a,b € R, we obtain



