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Preface 

C’est un chemin fâcheux borné de peu d’espace, 
Tracé de peu de gens que la ronce pava, 
Où le chardon poignant ses testes esleva, 
Pren courage pourtant, et ne quitte la place. 

The aim of this book is to introduce some basic objects and properties related to 
random walks on graphs and to present some fundamental relations between these 
objects and random fields used in mathematical physics. 

These objects include Markov loops, spanning forests, random holonomies and 
covers. 

Those random fields arise in mathematical models of statistical physics (e.g. Ising 
model, percolation) and in constructive quantum field theory. 

Quantum field theory (particle physics) uses three kinds of fields: Bose fields, 
Fermi fields and Gauge fields which are operator-valued fields indexed by space-
time and satisfying Poincaré invariance. Performing a “Wick rotation”, i.e. consider-
ing a purely imaginary time, produces a set of fields satisfying Euclidean invariance 
in which Bose fields and gauge fields commute and can be viewed as random fields 
while Fermi fields anticommute as 1-forms or Grassmann variables. Besides, this set 
of fields satisfies a reflection positivity (or Osterwalder-Schrader positivity) property 
that allows reconstruction of the quantum fields. 

However, interactions between the fields and the subsequent renormalization 
are sources of great mathematical difficulties, especially in dimension higher than 
two. These difficulties have been overcome, to a certain extent, in dimension two 
and three only. One easy way to overcome them, at least from a practical point 
of view, is to replace the continuous space-time by a discrete lattice. This has 
been used extensively in physics as a non-perturbative approach to quantum field 
theory. The lecture notes of Ehrard Seiler [72] are representative of the mathematical 
background of this approach. It was suggested there that the construction of 
a continuum limit might appear more feasible if one considers the extended 
objects, such as loop holonomies, associated with the fields, rather than the fields
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themselves. In particular, random loops and bridges had been introduced as useful 
tools in constructive field theory and statistical physics models (e.g. in [81] and [6]). 

One purpose of this book is to develop this idea, taking into account more 
recent developments within probability theory. These fields and the random objects 
mentioned hereinabove are indeed related: random loops to Bose fields, spanning 
forests to Fermi fields, holonomies and covers to gauge fields. 

We will introduce Poissonian ensembles of Markov loops, their occupation fields 
and their holonomies, uniform spanning trees, Fermi fields and gauge fields, i.e. 
connections. Some important properties of these objects will be derived, as well as 
the relations of Markov loop ensembles with other statistical models such as Ising 
model, random flows, configuration models and combinatorial maps. The ambition 
here is not to propose an encyclopedia on these topics (it would require several 
volumes) but to introduce them as aspects of the same mathematical scenery. An 
interesting feature is that interactions with gauge fields, in the case of discrete 
gauge groups, are interpreted in terms of lift to cover spaces. However, many 
essential aspects of lattice field theory are not mentioned here and have still to be 
interpreted in this context (e.g. the use of different fermionic actions, confinement 
properties, thermodynamic limit and phase transition, renormalization and scaling 
limits of correlation functions etc.). This work remains in many respects woefully 
incomplete. Nevertheless, one can hope this introduction may encourage those 
with a sense of adventure and an interest in mathematical physics to follow this 
demanding path. 

Several sections propose an improved presentation of a large part of the results 
published in [34, 35] where the main emphasis was put on the study of occupation 
fields defined by Poissonian ensembles of Markov loops. These ensembles appeared 
informally already in [81], and were defined in [29] for planar Brownian motion 
in relation with SLE processes. Note however that topics related to the Brownian 
case, in particular renormalization results given in Chapter 10 of [35] for two-
dimensional Brownian loops and in [45] for Lévy processes, are not included here. 
Our framework is essentially discrete, which allows to avoid heavy technicalities. 

New material includes results published in [37–39, 41, 44] [5, 40, 48, 50] and 
[42]. A mini course on this topic was given at NYU-Shanghai in 2018. 

The text is essentially self-contained, but the reader is assumed to be familiar with 
basic notions of probability, Poisson point processes and discrete Markov chains. 

Sections marked by a star * are not referred to in the subsequent sections. 
Let us give an overview of the most notable results presented in the book. 
In the first chapter, we review some basic notions of Markovian potential theory 

in the simple context of a finite or countable graph .G = (X,E), equipped with 
conductances C and killing rates . κ . These notions include the energy, the Green 
function, the heat semigroup, the continuous time Markov chain and Feynman-Kac 
formula. They are the discrete analogues of classical potential theoretical notions 
whose probabilistic interpretations involve Brownian motion. 

The next six chapters are dedicated to the study of loop ensembles and some 
related statistical physical models. The second chapter introduces the Markov loop 
measure . μ and the related Poisson processes of loops .Lα of intensity . αμ, often
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referred to as loop soups. The third chapter deals with decompositions induced 
by splitting the set X of graph vertices in two parts, D and F , the energy and 
the Markov chain being decomposed into its restriction to D and its trace on F . 
Excursion decomposition is applied to loop ensembles. In Chap. 4, occupation fields 
for vertices and oriented edges are introduced and their distributions are computed. 
Chapter 5 focuses on loop clusters distribution and the related notion of Markovian 
percolation, which generalizes the well-known i.i.d. percolation. The Gaussian free 
field . φ is defined in Chap. 6, and the identity in law between the vertex occupation 
field of the loop ensemble .L 1

2
and . 12φ2 is proved . This formula, which appeared 

in [43] and [34], is related to an identity combining bridge local times with the 
Gaussian free field which is known as Dynkin’s (or BFS Dynkin’s) isomorphism 
(cf [6, 13, 32]). In Chap. 7, we show that edge occupation fields have remarkable 
distributions for intensity 1 ( considering oriented edges) and .1/2 (considering 
non-oriented edges). Moreover, after conditioning by the vertex occupation field, 
the loop ensemble of intensity 1 defines a remarkable distribution on flows with 
integral intensity defined on the graph. We also show, following [48] and [50], that 
after conditioning by the vertex occupation field, the clusters of the loop ensemble 
of intensity .1/2 can be used to construct the F-K Ising model, which provides 
a coupling between this loop ensemble and the real free field. A relation is also 
established between these loops ensembles and a configuration model. 

Chapters 8 and 9 focus on spanning trees and Fermi fields. In Chap. 8, we  
introduce loop-erased random walks and present an extended version of Wilson’s 
algorithm which yields a loop ensemble of intensity 1 and a spanning forest of 
the graph. They are independent. We then show how a remarkable distribution on 
combinatorial maps can be derived from the configuration model. Discrete loops 
of . L1 can be constructed as face contours of this random combinatorial map. In 
Chap. 9, we define fermionic fields from creation and annihilation operators on skew 
symmetric Fock space, and show how they can be used to prove two versions of the 
transfer current theorem for spanning trees. We then apply these results to complete 
graphs and get some asymptotic results for their spanning forests as the number of 
vertices increases to infinity. We also establish the supersymmetry relation with the 
corresponding bosonic fields, which are identified to the Gaussian free fields. We 
finally give an example of an interaction between trees and loops, which can be 
represented by a local interaction between bosonic and fermionic fields. 

Chapter 10 focuses on topological properties of loops and graphs. Notions of 
universal cover and fundamental group are introduced. We show there is a one-to-
one correspondence between geodesic (i.e. non-backtracking) loops and conjugacy 
classes of the fundamental groups. Distributions of loop homotopy classes and of 
homologies are studied. Galois covers, which are intermediate between the graph 
and its universal cover, are introduced. 

In Chap. 11, given a group N , we introduce N -connections on a graph, loop 
holonomies and associated bosonic and fermionic field. When the group is discrete, 
connections induce Galois covers. Loops on the cover correspond to loops with 
trivial holonomy. Loops and spanning forests on the cover are related to bosonic
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and fermionic fields which can be decomposed using group representation theory 
into fields interacting with the connection. 

We introduce Yang–Mills measure on discrete tori and, on any graph, the measure 
on connections given by the expectation of the product of holonomies of a loop 
ensemble. We observe that for high intensity and high killing rate this measure can 
approximate the Yang–Mills measure. 

Then we prove that trace of holonomies determine an intertwining relation 
between merge-and-split generators on loop ensembles (which were introduced in 
Chap. 7) and Casimir operators on connections. By adding a deformation part to the 
generator on loops, this result is extended to the Casimir operator modified in order 
to be self-adjoint with respect to Yang-Mills measure. This relation contains the 
Schwinger-Dyson equation previously obtained as an essential step in the proof of 
the t‘Hooft expansion for large .d = n. In continuous spaces, such equations, which 
originate from physics, are often referred to as Markeenko-Migdal equations. 

We conclude with Chap. 12 in which reflection positivity properties are estab-
lished for all these fields, allowing to construct a physical Hilbert space, on which 
quantum observables can operate. 

The (short) list of citations is mostly a list of works from which we remember 
that we collected some elements presented in this text. It is certainly very imperfect 
and does not pretend to be exhaustive, nor to describe the “history” of the different 
topics introduced in this book. 

Orsay, France Yves Le Jan 
January 15, 2024 
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Chapter 1 
Markov Chains and Potential Theory 
on Graphs 

In this first chapter, we review briefly the basic notions of Markovian potential 
theory in the context of a countable graph .G = (X,E), equipped with conductances 
C and damping (or killing) rates . κ . These notions include the energy, the Green 
function, the Dirichlet space, capacitary potentials, the heat semigroup, Fokker– 
Planck equations, the continuous time Markov chain and Feynman–Kac formula. 
They are the discrete analogues of classical potential theoretical notions whose 
probabilistic interpretations involve Brownian motion (see for example [3, 11, 12, 
17, 68]). 

1.1 Graphs and Markov Chains 

Our basic object will be a finite or countable space X and a set of nonnegative 
conductances .Cx,y = Cy,x , indexed by pairs of distinct points of X. We say that 
.{x, y}, for .x /= y belonging to X, is an edge iff .Cx,y > 0. The points of X together 
with the set of non oriented edges E define a graph .G = (X,E). We say that X is 
the set of vertices of . G. 

An oriented edge .(x, y) is defined by the choice of an ordering in an edge. We set 
.−(x, y) = (y, x) and if .e = (x, y), we denote it also by .(e−, e+). The edge . {x, y}
is also denoted by .±(x, y). The degree . dx of a vertex x is by definition the number 
of edges incident at x. 

Given two graphs . G1 and . G2 of , a bijection j from . X1 onto . X2 is a graph 
isomorphism iff .j × j maps . E1 onto . E2. 
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2 1 Markov Chains and Potential Theory on Graphs

We Generally Assume this Graph Is Connected The set of oriented edges is denoted 
by . Eo. It will always be viewed as a subset of . X2, without reference to any 
imbedding. We say the graph is regular if all vertices have the same degree. 

An important example is the case in which the conductances of the edges are 
equal to 1. Then the conductance matrix is the adjacency matrix of the graph: . Ax,y =
1{x,y}∈E . 

If a graph is finite, its characteristic polynomial, eigenvalues and eigenspaces are 
the ones associated with its adjacency matrix. 

A complete graph is defined by taking all conductances equal to one. 
The complete graph with n vertices is denoted by . Kn. The complete graph . K4 is 

the graph defined by the tetrahedron. . K4 is planar (i.e. can be imbedded in a plane), 
but . K5 is not. 

Other common examples are, for .d > 2 the d-regular tree, the lattice . Zd and the 
discrete tori .(Z/pZ)d , for .p > 2. 

Together with the conductances, we suppose given a damping (or killing) rate, 
i.e. a nonnegative function . κ on X. Define .λx = κx + ∑

y Cx,y . We will assume . λ
everywhere finite. 

The standard examples are the cases where .(X,E) is a regular graph with 
uniform degree d, and we have unit conductances and . κ a nonnegative constant. 

Setting .Px,y = Cx,y

λx
we associate to the pair .(C, κ) a stochastic or substochastic 

transition matrix P which is .λ-symmetric i.e. such that 

. λxPx,y = λyPy,x

(this property is also referred to as detailed balance) with .Px,x = 0 for all x in X. 
It defines an irreducible discrete time Markov chain on X. If  . κ does not vanish 

we add as usual an extra point . Δ in which the chain is absorbed. We set . Px,Δ = κx

λx

and .PΔ,Δ = 1. The graph can be extended into the graph . GΔ obtained by adding to 
. G the vertex . Δ and edges .{x,Δ} for vertices such that .κx > 0. 

In the standard examples, .Px,y = 1
d+κ

Ax,y . 
In what follows, unless the converse is explicitly mentioned, we will assume 

that the transience property holds. It is well known it can be formulated in three 
equivalent ways: 

(a) The Markov chain defined by P visits every vertex at most finitely many times. 
(b) For any .x ∈ X, . 

∑∞
n=0[P n]x,x < ∞.

(c) For any .x, y ∈ X, . 
∑∞

n=0[P n]x,y < ∞.

Note that when the graph is finite and connected, this transience hypothesis is 
equivalent to assuming that . κ does not vanish everywhere.
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1.2 Green Matrices and Hitting Distributions 

With this transience assumption, we can now define the Green matrix (or Green 
function) G on . X2: 

. Gx,y = Gy,x = 1

λy

∞∑

n=0

[P n]x,y .

Note that setting .M(λ)x,y = λxδx,y , we have .M(λ)P = C and therefore: 

.M(λ)G = CG + I. (1.1) 

The diagonal matrix .M(λ) will sometimes be denoted by . Mλ. Sometimes, it can be 
convenient to denote the Green matrix as a function: .Gx,y = G(x, y). 

The Green matrices defined by conductances equal to 1 and all positive constants 
.κ = u define the resolvent of the graph. 

Example 1.1 The Green matrix of the complete graph . Kn with unit conductances 
and uniform killing measure of intensity .κ > 0 is given by the matrix 

. 
1

n + κ
(I + 1

κ
J )

where J denotes the .(n, n) matrix with all entries equal to 1. 

Proof Note first that .[λI − C]G = I , and that .λI − C = (n + κ)I − J . Hence 
. G = [(n + κ)I − J ]−1. ⨅⨆
Example 1.2 The Green matrix of the d-regular tree with uniform killing measure 

of intensity .κ > 0 is .
ud(x,y)

κ+d(1−u)
, with .u =

(
d+κ−

√
(d+κ)2−4(d−1)
2(d−1)

)

, .d(x, y) denoting 

the graph distance between x and y. 

Proof From its definition, .Gx,y is clearly bounded by . 1
d+κ

1
1− d

d+κ

= 1
κ
. It depends 

only on .d(x, y), so we can set .Gx,y = gk if .d(x, y) = k. For  .k ≥ 1, . gk solves 
the equation: .(d + κ)gk = (d − 1)gk+1 + gk−1 so that .gk = ukg0. Moreover, 
. (d + κ)g0 = dg1 + 1 = dug0 + 1. ⨅⨆

We denote by . Px or by .P( . |ξ0 = x) the law of the Markov chain . ξn defined by P 
starting at x, and for any subset F of X, by . TF , the first hitting time of F by the path. 
Set .D = Fc. .P D = P |D×D is the transition matrix of the Markov chain killed at 
. TF . It is defined on the restricted graph .(D,E ∩ (D ×D) by the same conductances 
and by the killing rate .κD

x = κx + ∑
y∈F Cx,y . . λD is the restriction of . λ to D.
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We denote by .GD the associated Green matrix. The hitting distributions define a 
submarkovian matrix . HF : 

. [HF ]x,y = Px(ξTF
= y)

(.HF is called the balayage or Poisson matrix in potential theory). 
Hitting distributions can be expressed in terms of Green matrices. The following 

proposition follows directly from these definitions. 

Proposition 1.1 

(a) For .y ∈ F and .x ∈ X, we have 

. [HF ]x,y = 1{x=y} + 1{x∈D}
∑

z∈D

GD
x,zCz,y .

(b) The Green matrix admits the following decomposition 

. G = GD + HF G.

(c) Denoting by .G|F×F the restriction of the Green matrix to .F × F and by . H̃F

the transposed of . HF , we have 

. G = GD + HF G|F×F H̃F .

Note that as G and .GD are symmetric, it follows from (b) that 

. [HF G]x,y = [HF G]y,x .

1.3 Energy 

Definition 1.1 For any complex function z on X, its energy is defined as: 

. e(z) = 1

2

∑

x,y

Cx,y(z(x) − z(y))(z(x) − z(y)) +
∑

x

κxz(x)z(x).

The space of functions of finite energy is equipped with the scalar product: 

. e(f, g) = 1

2

∑

x,y

Cx,y(f (x) − f (y))(g(x) − g(y)) +
∑

x

κxf (x)g(x).

It contains finitely supported functions.
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Note that e(z) will also be denoted by e(z, z). These definitions hold in all cases. 
From now on, we assume transience holds. 

Theorem 1.1 

(a) For any vertex x0, define the function Gx0 by Gx0(x) = Gx,x0 . G
x0 has finite 

energy and for any x, y ∈ X, e(Gx ,Gy ) = Gx,y . 
(b) For any finitely supported function f , e(f, Gx0) = f (x0). 

Proof If X is finite, every function has finite energy. (a) and (b) follow directly from 
the fact that 

. e(f, g) =
∑

x

λxf (x)g(x) −
∑

x,y

Cx,yf (x)g(y)

(we can simply write e(f, g) = 〈(Mλ − C)f, g〉) and use the expression of G as 
[M(λ) − C]−1. We get in the same way that e(f, Gx0) = f (x0) which implies 
the positive definiteness of e. Note also that e(Gf, g) = ∑

x f (x)g(x), denoted by
〈f, g〉. 

If X is infinite, any function with finite support has finite energy. Letting a 
finite set D increase to X, then, as P D increases to P and λD = λ on D, 
GD increases to G. By Fatou’s lemma, e(Gx0) ≤ lim inf e([GD]x0). But  for any  
function f supported in D, the definition of κD implies that e(f ) = eD (f ), 
hence, e([GD]x0) = GD 

x0,x0 
if x0 ∈ D, and therefore if D large enough. Hence 

e(Gx0) ≤ Gx0,x0 . 
To prove the reverse inequality note that: 
e(Gx 

0) = e([GD]x0) + e(Gx0 − [GD]x0)) + 2e([GD]x0,Gx0 − [GD]x0) 
≥ GD 

x0,x0 
+ 2e([GD]x0,HF Gx0). We conclude the proof of by checking that for 

any function f supported by D, e(f, HF Gx0) vanishes. This expression is given by 
a countable absolutely converging sum:∑

x∈D λxf (x)HF Gx0(x) − ∑
x∈D

∑
y Cx,yf (x)Gx0(y) 

= ∑
x∈D λxf (x)(HF Gx0(x) − ∑

y Px,yH
F Gx0(y)). Note finally that for any 

(x, y) ∈ D × F,  HF 
x,y =

∑
z Px,zH

F 
z,y . Hence, e(G

x0) = Gx0,x0 . 
The same argument works for Gx + Gy so we can conclude the proof of (a). We 

then get that for any finitely supported function f , taking D large enough to include 
its support, e(f, Gx0) = e(f, [GD]x0) + e(f, HF Gx0) = eD (f, [GD]x0) = f (x0). 

⨅⨆
The Dirichlet space D (also known as the extended Dirichlet space (Cf [17])) is 

defined as the closure of the space D0 of finitely supported real functions equipped 
with the energy scalar product. It is clear from the above that Gx0 belongs toD. The  
following theorem identifies it with a space of functions. 

Theorem 1.2 Let fn be a Cauchy sequence in D0. Then fn converges pointwise 
towards a function of finite energy f∞ and e(f∞ − fn) converges to 0. Moreover 
Gx0 belongs to D and for any f in D, e(f, Gx0) = f (x0).


