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1Introduction 

Writing systems emerged simultaneously and independently in many ancient civilizations 
across the globe, including Mesopotamia, Egypt, China, India, and Mesoamerica. The inven-
tion of writing and scripts has had a tremendous impact on the trajectory of human civi-
lization. Archaeological findings suggest the existence of much older proto-writing. Upper 
Paleolithic cave paintings in Europe contain dots and “Y” shaped symbols alongside paint-
ings of animals and are conjectured to indicate the lunar mating cycle of animals—these 
markings are 20,000 years old and predate any other known writing or proto-writing sys-
tems [ 1]. The Vinca symbols (in present-day Balkans) are untranslated symbols that have 
been dated to be as old as the 7th millennium BCE—these symbols have been conjectured 
to contain information about who owned property, numerical symbols, emblems denoting 
communal identity or religious objects [ 2]. The Sumerian epic poem “Enmerkar and the Lord 
of Arrata” from around 1800 BCE describes a poetic version of the story of the invention 
of clay tablet writing systems [ 3]: 

Because the messenger’s mouth was heavy and he couldn’t repeat (the message), the Lord of 
Kulaba patted some clay and put words on it, like a tablet. Until then, there had been no putting 
words on clay. 

Information storage and retrieval as concepts date back to early collections of clay tablets 
at Ebla (2900 BC, in contemporary Syria) and Nineveh (in present-day northern Iraq, near 
Mosul) which consisted of clay tablets inscribed with cuneiform writings. The Nineveh 
tablets, assembled by Ashurbanipal, King of the Assyrians (668–631 BC), is a collection that 
went beyond materials relevant to running a kingdom or a state, and the Epic of Gilgamesh 
was part of that collection [ 4]. The content of the clay tablets was multimodal in the sense that 
besides having graphic text (pictograms), and maps, they had physical tokens representing 
numbers, and also such tokens placed on clay envelops to describe the content of the envelop 
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2 1 Introduction

in a meta-data sense. The clay tablets in Ashurbanipal’s collection had meta-data information 
recording their number in a series, filing method, and identification stamps. Multiple copies 
of various works in that collection suggest its simultaneous use by multiple people. 

The library of Alexandria (285–145 BC) is considered perhaps the first library that used 
an indexing mechanism where books were sorted by alphabetical order of the first letter of 
the author’s name. In the modern era, the Dewey Decimal Classification (DDC) debuted in 
1876 and is widely used in libraries around the world. In the twentieth century, as libraries 
began to digitize their collections, digital library indexing systems were developed. These 
systems allowed for keyword searches, numeric or symbol tagging, and the use of Boolean 
operators. They also have made library collections accessible from any location with an 
internet connection. In the 21st century, there’s a move towards linked data and Semantic 
Web technologies for libraries, enabling a higher level of interoperability and data sharing 
among different information systems. From ancient scroll repositories to digital databases, 
the history of library indexing systems shows the ever-increasing complexity of organizing 
and efficiently accessing information. 

In the digital era, the term “information retrieval” was coined by Mooers in 1950 [ 5] 
and popularized by Fairthorne [ 6]. Some of the key developments in the early years of 
information retrieval (IR) in the digital era include development of indexing languages and 
their evaluations (such as the Cranfield experiments—1967), the first interactive retrieval 
systems such as DIALOG and MEDLINE [ 7], the Boolean model [ 8] of searching during 
retrieval, the formulation of “most closely match” and ranked-output [ 9], and the initial 
studies on user behavior to ground the concepts of “information need” and “relevance”. 
The invention of the World in 1989 and DARPA’s major evaluation exercises through the 
Text Retrieval Conferences (TRECs) that started in 1992 [ 10] had a huge impact on the 
subsequent development in the field of IR. For example, Google’s early use of automated 
link analysis [ 11] to measure the relative importance of webpages and automated approaches 
to recognize spam, won over alternative approaches used by its competitors. 

The use of machine learning methods in IR was another key landmark in the research 
evolution of IR. The implementation of machine learning algorithms for text classification 
laid the groundwork for their subsequent utilization in document ranking. Google’s reverse 
image search, and content-based image retrieval methods in general use computer vision 
techniques, which now are mostly based on neural machine learning methods [ 12]. IR using 
neural methods was influenced by the vector representation of text and documents and was 
motivated by the need to address semantic understanding. Subsequent IR methods aimed at 
combining the semantic understanding and vocabulary mismatch aspect of neural IR with 
traditional IR challenges such as rare terms and intents [ 13]. 

Question answering (QA) is a closely related notion to IR where the query is formulated 
as a question in natural language, the retrieved information is answered, and the corpora 
(concerning which the question is answered) is often confined [ 14, 15]. In visual ques-
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tion answering (VQA), the question is asked concerning visual objects [ 16], and in visual-
linguistic QA (VLQA) [ 17] and multimodal QA [ 18] the question is asked concerning mul-
timodal objects. QA, IR, and prompt-based language generation [ 19] are getting integrated 
as users now expect aggregated information from multiple documents in response to their 
queries. This now involves the generation of text as well as images, and transformer-based 
large language models (LLMs) are now the key technology used for this [ 20, 21]. 

In this book, our emphasis is on multimodal information retrieval, specifically concen-
trating on text and image data. The traditional unimodal systems, limited to a single type of 
data, often fall short of capturing the complexity and richness of human communication and 
experience. In contrast, multimodal retrieval systems leverage the complementary nature of 
different data types to provide more accurate, context-aware, and user-centric search results. 
Text can provide specific details and context that images alone cannot convey. Conversely, 
images can instantly show concepts that might take longer to explain in words. Therefore, 
multimodal retrieval has wider applications in real world. For instance, consider you’ve 
previously visited a memorable location in New York City and captured a photo filled with 
landmarks and people. If you can’t recall the place’s name later, a multimodal system allows 
you to query “where is this place” along with the photo for identification. Healthcare is 
another domain where multimodal retrieval can be invaluable. Imagine a diagnostic support 
system that analyzes patients’ electronic health records, which contain a mix of textual data 
(like doctor’s notes), visual data (such as X-ray or MRI images), and even auditory data 
(like heart or lung sounds). A multimodal retrieval system can integrate these diverse data 
types to assist medical professionals in diagnosing complex conditions more accurately and 
swiftly. 

In this book, we use the word “retrieval” in a broader sense to include the process 
of outputting aggregated information concerning prompted search queries to current-day 
generative AI models. In the rest of this chapter, we give a brief overview of the various 
aspects related to this. In Chap. 2, we discuss transformer-driven models for language, vision, 
and multimodal inputs; as transformers are key components of current-day generative AI 
models. In Chap. 3, we present various multimodal retrieval methods in the traditional sense 
of retrieval. In Chap. 4, we present generative AI models that generate multimodal content. 
In Chap. 5, we present how traditional retrieval can be used to augment generative models 
so that the resulting output is up-to-date and non-hallucinating. 

1.1 Transformer-Driven Models for Language,Vision, 
and Multimodal Learning 

This chapter focuses on the pivotal domains of artificial intelligence: language and vision, 
tracing their transformation through deep neural networks. The inception of convolutional 
neural networks (CNNs) revolutionized computer vision [ 22], while recurrent neural net-
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works (RNNs) [ 23] marked a significant leap in natural language processing (NLP). Initially, 
in the early 2000s, the impact of neural networks was constrained by limited computational 
power and the scarcity of large-scale annotated datasets. However, this changed dramatically 
in 2016. Advancements in hardware enabled the training of complex models like ResNET, 
and the availability of datasets like ImageNet [ 24] showcased the true potential of deep neu-
ral networks. These advancements brought practical applications into everyday life, such as 
facial recognition technologies enhancing daily human interactions. 

The year 2017 was a landmark in natural language processing with the introduction of 
the Transformer model [ 25]. Characterized by its self-attention, multi-head attention, and 
cross-attention mechanisms, the Transformer fundamentally altered the landscape of NLP. 
Following this, in 2018, the BERT model [ 26] emerged as the first language model based on 
the Transformer architecture, propelling NLP research to new heights. The success of BERT 
was underpinned by its self-supervised learning approach and deep contextual understanding 
of language. At its time, BERT was considered a large model, but in the context of 2023, it 
pales in comparison to state-of-the-art models like ChatGPT [ 27], which boast upwards of 
175 billion parameters. 

Transformers have since become the cornerstone of most cutting-edge models, not just 
in NLP but also in computer vision. This transition to vision was marked by the advent of 
the Vision Transformer (ViT) in 2020 [ 28]. The next frontier in AI research and application 
development is multimodal models. Given the multimodal nature of our world, understand-
ing and integrating multiple forms of data is crucial for a more comprehensive understanding 
of our environment. 

In this chapter, we will explore the evolution of both language and vision models, from 
their early development in the nascent years of deep learning to the contemporary era dom-
inated by Transformer-based models. We will also discuss the most influential multimodal 
models that have laid the groundwork for many of the developments discussed throughout 
this book. 

1.2 Multimodal Information Retrieval 

In today’s digital world, where data presents itself in myriad forms—be it text, images, 
videos, or a combination of these—there’s an increasing need for systems that can effectively 
and efficiently retrieve the desired information. Multimodal Information Retrieval (MMIR) 
is a field that tackles the challenge of accurately retrieving specific information from a 
complex array of data types, including text, images, and videos, by developing systems that 
can efficiently search across these varied formats. In this chapter, we’ll take a comprehensive 
journey through the landscape of MMIR, especially focusing on its applications in text-image 
settings.



1.2 Multimodal Information Retrieval 5 

Initially, this chapter will outline the concepts of multimodal data and multimodal rep-
resentation learning. Next, we will illuminate four key elements of Information Retrieval 
(IR), detailing their definitions and forms. Then we will categorize retrieval methods into 
two main approaches: text retrieval and multimodal retrieval. While text retrieval remains 
prevalent, our focus here leans more towards the dynamic field of multimodal retrieval, espe-
cially multimodal-queries retrieval, where queries seamlessly integrate components like text 
and images. In such systems, combining image and text information is crucial to compre-
hend queries and retrieve relevant documents. We will then discuss advanced multimodal 
transformer-based models, which transcend basic language and vision transformers. This 
includes a deep dive into the most exemplary models for handling multimodal queries. 
Following the exploration of MMIR methods, the chapter addresses their importance in 
key downstream applications such as question-answering and enhancing dialogue systems. 
Subsequent sections will investigate the evaluation metrics for IR systems, ranging from 
traditional metrics like precision and recall to more sophisticated measures. Finally, the 
chapter concludes by discussing the broader impacts of MMIR. 

1.3 Multimodal Content Generation 

Humans, since ancient times have observed the universe and tried to replicate it visually—in 
doing so, we have developed methods to create visual content. For example, cave paintings 
of hand prints or scenes depicting collaborative hunting tell us a story of a human com-
munity living together thousands of years ago. These images have allowed our ancestors 
to communicate what they saw- the environment, other creatures, other humans, and their 
interactions with them. Content creation, storage, and dissemination are thus an integral part 
of the history of our civilization. 

In Chap. 4, we will learn about the research area of content generation, with special 
emphasis on vision-language content generation. This chapter sets up fundamental con-
cepts in this domain such as conditional generative models and discusses several modeling 
techniques that use generative adversarial networks or diffusion models. We will also set 
up a taxonomy for conditional image generation which includes categorical conditions (e.g. 
using class labels as inputs to content generation models), visual conditions (such as sketches 
or semantic label maps), and the recent explosion of text-to-image generation (generating 
images directly from natural language descriptions). We will discuss text-to-image (T2I) 
generation in detail, by focusing on the two dominating models for T2I: GANs and diffu-
sion models. We will learn how recent developments have resulted in many applications of 
T2I models in image editing, compositional generation, and iterative generation. We will 
also discuss several applications of text-guided generative models, for instance in generating 
audio, video, three-dimensional structures and assets, and other applications. We will also 
discuss the task of image and video captioning.
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Over the last decade, sophisticated modeling strategies have emerged for image gener-
ation, language generation, audio generation, and many other forms of content generation. 
The models have leveraged the availability of web-scale datasets to develop training proto-
cols that have resulted in highly realistic content generation. This is quickly creating a new 
wave in the digital media industry. This excitement in both academic and industrial circles 
has also been accompanied by challenges related to the robustness, reliability, and risks of 
using content-generation models. We will discuss some of the recent efforts of developing 
evaluation strategies and benchmarks that could potentially address some of the challenges 
by providing quantifiable and grounder insights about the capabilities of content generation 
models and their failure modes to better inform users of these technologies. 

1.4 Retrieval Augmented Modeling 

The previous chapters cover the motivations behind information retrieval, its fundamen-
tal principles, core components, and the various strategies employed to achieve effective 
retrieval. These include multimodal retrieval and generative retrieval, each with its motiva-
tions for study. Moving forward, we’ll place a special emphasis on the integration of retrieval 
techniques with language models, a concept known as retrieval-augmented modeling. 

The motivation behind studying retrieval augmented modeling is to create language 
models that not only understand the given input but also tap into external knowledge sources 
for more comprehensive and precise responses. In Sect. 5.1, we’ll elaborate on the diverse 
ways in which language models can harness retrieved information to enhance their responses. 
This encompasses enriching the input to provide context, refining intermediate layers to 
improve comprehension, and augmenting the output for more informed responses. 

The crucial aspect of retrieval-augmented modeling lies in the training of both the retriever 
and language models. In Sect. 5.2, we’ll discuss three distinct strategies for training these 
models: independent training, sequential training, and joint training. In Sect. 5.3, we’ll  
outline the various types of information that can be harnessed, such as knowledge, similar 
examples, and generated context, to produce informed responses. The significance here is to 
understand the diverse sources of information that can contribute to more accurate outputs 
from the model. 

Shifting our focus to practical applications, Sect. 5.4 will examine the real-world impact 
of retrieval augmented language models. We’ll explore their applications, including fact-
checking and addressing the issue of factual ’hallucinations’ that sometimes occur with large 
language models. Finally, in Sect. 5.5, we will shift our focus to leveraging the generation 
ability of large language models to improve retrieval performance.
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1.5 Target Audience 

This book covers inter-disciplinary topics, spanning information retrieval, computer vision, 
natural language processing, machine learning, and others. The book is intended to be a 
resource for advanced undergraduates, graduate students, faculty, and researchers working 
in these fields, adjacent areas, or those seeking an introduction to frontier research in this 
area. We intend to make this book accessible to readers from all of these communities to 
foster active dialog and exchange of ideas. Frontiers of academic research in this domain 
are closely connected with potential applications, such as search engines, chat-bots, AI 
assistants, etc. This makes the book a resource for practitioners, engineers, and designers 
working towards the development of such products. 

In addition to this book, we have also been involved in building a community of 
researchers interested in adjacent topics. We were invited to organize a workshop on multi-
modal information retrieval at the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) in June 2022. This workshop, titled “Open Domain Retrieval under 
Multimodal Settings” (or ODRUM for short) was designed to bring together prominent 
researchers from multiple research fields and perspectives such as information retrieval, 
natural language processing (NLP), computer vision (CV), and knowledge representation 
and reasoning (KRR). This workshop aimed to address the relatively nascent direction 
of information retrieval with queries that may come from multiple modalities (such as text, 
images, videos, audio, etc.), or multiple formats (paragraphs, tables, charts, etc.). The reader 
is encouraged to avail of the publicly available video recordings, slides, accepted papers, 
additional reading materials, and discussion directions that could spark open research ques-
tions in multimodal information retrieval. More details can be found at the workshop website 
https://asu-apg.github.io/odrum/archive_2022.html. 
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