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Preface

Chemical transformations mediated by ultrasound (US) and microwaves (MW)
benefit different chemical processes. The following are some of the main advan-
tages of each approach: Green chemistry principles are often employed in assessing
the environmental impact of chemical reactions, particularly those facilitated
by ultrasound and microwave radiation. Green chemistry aims to create and
construct procedures that use less energy, produce fewer dangerous compounds,
and are as efficient as possible. Reaction mixtures can be heated quickly and
precisely using microwave heating, as is well known. Comparing this to traditional
heating techniques can result in quicker reaction times and lower energy usage.
Through the acceleration of chemical reactions and the promotion of effective
mass transfer, ultrasonic waves can also increase reaction rates. This may lead
to lower energy needs and more general efficiency. The use of large volumes of
solvents is frequently reduced or eliminated when reactions may be conducted
under milder circumstances, thanks to the capabilities of both microwave and
ultrasonic technologies. This is consistent with the green chemistry idea of reducing
the amount of hazardous or environmentally damaging solvents used. Specific reac-
tions can be more selective than others due to the cavitation effects of ultrasound
and the selective heating created by microwaves. Doing so can decrease waste
and byproduct production, making the process more environmentally friendly.
Reaction times are frequently shortened by the faster reaction rates associated with
ultrasound and microwave techniques. This can save time and energy in producing
a given amount of goods, positively affecting the environment and the economy. By
reducing the possibility of thermal runaway or adverse reactions, the mechanical
impacts of ultrasonic waves and the regulated and targeted heating offered by
microwaves can help provide safer reaction conditions. Specific reactions mediated
by microwaves and ultrasonography might be readily scaled up, enabling more
significant, environmentally friendly operations.

This book explores the fundamentals, contemporary trends, obstacles, and
potential future applications of microwave- and ultrasound-assisted chemical
transformation irradiations, demonstrating their worth and range. Each of the 12
chapters in this book covers a distinct facet of nonconventional chemical reactions.
The fundamental theories and principles of ultrasound-mediated reactions are
covered in Chapter 1, along with the opportunities and problems that exist today.
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The theory and fundamentals of microwave-mediated reactions are covered in
Chapter 2. Chapter 3 compares the challenges and prospects of conventional
and MW-/US-mediated chemical transformation. Metal-catalyzed and coupling
processes under MW and US irradiation are covered in Chapters 4 and 5, respec-
tively. The synthesis of bioactive heterocycles, enzymatic processes, polymers,
and nanomaterials under MW and US irradiation are covered in Chapters 6,
7, 8, and 9, respectively. The synthesis of covalent organic frameworks (COFs)
and metal–organic frameworks (MOFs) mediated by MW and US is covered in
Chapter 10. The benefits of MW and US irradiation in solid-phase syntheses are
discussed in Chapter 11. Chapter 12 concludes with a comparison of chemical
changes facilitated by thermal, microwave, and ultrasonic heating.

We are very thankful to the authors of all chapters for their outstanding and
passionate efforts in making this book. Special thanks to the Wiley staff Dr. Sakeena
Quraishi (Commissioning Editor), Judit Anbu Hena (Content Refinement Spe-
cialist), Shwathi Srinivasan (Managing Editor, Advanced Chemistry and Chemical
Engineering), and Tanya Domeier for their dedicated support and help during this
project. In the end, all thanks to Wiley for publishing the book.
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Ultrasound Irradiation: Fundamental Theory,
Electromagnetic Spectrum, Important Properties,
and Physical Principles
Sumit Kumar1, Amrutlal Prajapat2, Sumit K. Panja2, and Madhulata Shukla3

1Magadh University, Department of Chemistry, Bodh Gaya 824234, Bihar, India
2Uka Tarsadia University, Tarsadia Institute of Chemical Science, Maliba Campus, Gopal Vidyanagar, Bardoli,
Mahuva Road, Surat 394350, Gujarat, India
3Veer Kunwar Singh University, Gram Bharti College, Department of Chemistry, Ramgarh, Kaimur 821110,
Bihar, India

1.1 Introduction

US, also referred to as ultrasonic treatment or sonication, employs high frequency
sound waves to agitate particles in a liquid or solid medium [1]. This process relies
on the phenomenon of cavitation, which happens when high-intensity sound
waves create small bubbles in a liquid. These bubbles rapidly expand and collapse,
producing pressure and temperature gradients that can break down particles and
disrupt chemical bonds. This is known as acoustic cavitation, and it can be utilized
for various purposes, including emulsification, dispersion, mixing, and extraction.
Additionally, US can increase the surface area of reactants and enhance chemical
reactions by promoting mass transfer between phases. It can also induce the forma-
tion of free radicals, which can react with target compounds and break them down.
US is widely used in a range of fields, such as wastewater treatment, food processing,
pharmaceuticals, and materials science [2–4]. The effectiveness of US depends on
several factors, such as the frequency and intensity of the sound waves, the duration
of exposure, and the characteristics of the medium being treated. Cavitation can be
generated either by passing ultrasonic energy in the liquid medium or by utilizing
alterations in the velocity/pressure in hydraulic systems. The intensity of cavitation,
and hence the net chemical/physical effects, relies heavily on the operating and
design parameters, including reaction temperature, hydrostatic pressure, irradiation
frequency, acoustic power, and ultrasonic intensity. To increase the extent or rate
of reaction, cavitation can be combined with one or more irradiations or some
additives can be utilized, which can be solids or gases and can sometimes have
catalytic effects. The free radicals generated during the oxidation process consist
of hydroxyl (•OH), hydrogen (•H), and hydroperoxyl (HO2

•) radicals. Overall, the
theory behind US is based on the principles of acoustic cavitation, which can be
harnessed to achieve a variety of physical, chemical, and biological effects.

Green Chemical Synthesis with Microwaves and Ultrasound, First Edition.
Edited by Dakeshwar Kumar Verma, Chandrabhan Verma, and Paz Otero Fuertes.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.



2 1 Ultrasound Irradiation

US refers to the application of high-frequency sound waves to a target material or
medium. Here are some properties of US:

Frequency: Ultrasound waves have frequencies above the upper limit of human
hearing, typically between 20 kHz and several MHz (megahertz). The frequency
determines the energy and penetration depth of the ultrasound waves.

Wavelength: The wavelength of ultrasound waves is inversely proportional to the
frequency. Higher frequencies result in shorter wavelengths. This property allows
ultrasound waves to interact with small-scale structures and particles.

Intensity: Ultrasound intensity refers to the amount of energy carried by the sound
waves per unit area. It determines the strength of the ultrasound waves and their
effect on the target material. Ultrasound intensity is typically measured in units
of watts per square centimeter (W/cm2).

Propagation: Ultrasound waves propagate through materials as longitudinal
waves, causing the particles of the medium to vibrate in the direction of wave
propagation. This enables the transmission of energy and information through
the medium.

Absorption: Ultrasound waves can be absorbed by materials they pass through. The
extent of absorption depends on the properties of the material, such as its den-
sity, viscosity, and composition. Absorption leads to the conversion of ultrasound
energy into heat, which can be utilized in various applications.

Reflection and refraction: When ultrasound waves encounter an interface
between two different media, such as air and a solid object, some of the waves
are reflected back and some are transmitted into the new medium. The angles of
reflection and refraction obey the laws of physics similar to those governing light
waves.

Cavitation: US can induce a phenomenon known as cavitation, where the rapid
changes in pressure cause the formation and implosion of tiny bubbles in a liq-
uid medium. Cavitation can generate localized high temperatures and pressures,
which can be utilized in processes like sonochemistry and ultrasonic cleaning.

Noninvasiveness: Ultrasound waves can be transmitted through the body noninva-
sively, making them useful in medical imaging techniques like ultrasound scans
and sonograms. They provide real-time visualization of internal organs, tissues,
and structures without the need for surgery or ionizing radiation.

Doppler effect: The Doppler effect occurs when there is relative motion between
the source of ultrasound waves and the target. This effect causes a shift in the fre-
quency of the reflected waves, enabling the measurement of blood flow, velocity,
and direction in medical applications like Doppler ultrasound [5, 6].

Safety: US is generally considered safe for medical and industrial applications,
as it does not involve ionizing radiation like X-rays or gamma rays. However,
high-intensity ultrasound can cause thermal effects, and prolonged exposure to
certain intensities may have biological effects. Safety guidelines and standards
are in place to ensure the safe use of ultrasound in different applications.
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1.2 Cavitation History

The phenomenon of cavitation was first observed by Thornycroft and Barnaby in
1895 when the propeller of their submarine became pitted and eroded over a short
operating period. This was due to collapsing bubbles caused by hydrodynamic cavi-
tation, which generated intense pressure and temperature gradients in the surround-
ing area [7]. In 1917, Rayleigh published the first mathematical model describing a
cavitation event in an incompressible fluid [8]. It was not until 1927, when Loomis
reported the first chemical and biological effects of ultrasound, that researchers real-
ized the potential of cavitation as a useful tool in chemical reaction processes [9]. One
of the earliest applications of ultrasound-induced cavitation was the degradation
of a biological polymer [10]. Since then, the use of acoustic cavitation has become
increasingly popular, particularly as a novel alternative to traditional methods for
polymer production, enhancing chemical reactions, emulsifying oils, and degrading
chemical or biological pollutants [11]. The advantage of utilizing acoustic cavita-
tion for these applications is that it allows for much milder operating conditions
compared to conventional techniques, and many reactions that may require toxic
reagents or solvents are not necessary.

1.2.1 Basics of Cavitation

Ultrasound is a type of sound wave with a frequency above 20 kHz, and when
it propagates through a liquid medium, it can create conditions for cavitation.
Ultrasound has been extensively used as an intensifying approach in various fields,
including chemical synthesis, electrochemistry, food technology, environmental
engineering, materials, and nanomaterial science, biomedical engineering, biotech-
nology, sonocrystallization, and atomization [2, 12–21]. The use of ultrasound can
lead to greener intensified processing with significant economic savings [22, 23].
Ultrasound-induced cavitation, also known as acoustic cavitation, is mainly due
to the alternate compression and rarefaction cycles that drive the various stages of
cavity inception, growth, and final collapse, as shown in Figure 1.1 [12].

When cavities collapse, a significant amount of energy is released, leading to the
formation of acoustic streaming associated with turbulence resulting from the con-
tinuous generation and collapse of cavities in the system. Moreover, chemical effects,
such as the occurrence of local hotspots in the interfacial region between the bub-
ble and adjacent liquid, can generate free radicals [24]. The primary reactions that
occur during sonication can be considered the initiator of a series of radical reactions
depending on the species:

H2O ↔ •OH + •H (1.1)

H• + H• ↔ H2 (1.2)
•OH + •OH ↔ H2O2 (1.3)

H• + O2 ↔ HO2
• (1.4)



4 1 Ultrasound Irradiation

Expansion

+

–

Compression

Implosion

Shockwave

Rapid

quenchingFormation

0
0

50

100

B
u
b
b
le

 r
a

d
iu

s
 (

μm
)

150

100 200 300 400 500

Time (μs)

Growth

Hot
spot

A
c
o
u
s
ti
c

p
re

s
s
u
re

Figure 1.1 Schematic representation of the mechanism of generation of acoustic
cavitation. Source: Reproduced from Gogate et al. [12]/John Wiley & Sons.

H• + HO2
• ↔ H2O2 (1.5)

HO2
• + HO2

• ↔ H2O2 + O2 (1.6)

When ultrasound is applied to water, it causes the generation of •OH and H• radi-
cals, which subsequently leads to the production of hydrogen peroxide (H2O2). Both
of these agents are strong oxidizing agents. As the cavitation bubble collapses, it gen-
erates tremendous local pressure gradients, temperature, and microjets in the liquid
at the collapse point [25]. The release of the accumulated energy during bubble col-
lapse in the form of shock waves and hot spots can significantly enhance the reaction
rate [26]. In large-scale sonochemical reactors, the two most important features of
cavity dynamics are the maximum size reached before the violent collapse and the
intensity of the collapse. Maximizing both of these effects in large-scale designs is
necessary to achieve the desired processing efficacy.

The chemical changes associated with cavitation induced by the passage of sound
waves are referred to as sonochemistry [1]. Ultrasound’s chemical effects do not arise
from direct interaction with molecular species but rather from acoustic cavitation,
which involves the formation, growth, and implosive collapse of bubbles in a liquid,
resulting in very high energy densities of 1–1018 kW/m3 [1, 27]. Figure 1.2 depicts
the mechanism of cavitation growth and collapse in liquid. The collapse takes place
in microseconds and can be considered adiabatic. Cavitation can occur at millions of
locations in a reactor simultaneously and generate conditions of very high temper-
atures and pressures (a few thousand atmospheres of pressure and a few thousand
Kelvin of temperature) locally, while the overall environment remains at ambient
conditions. As a result, chemical reactions that require stringent conditions can be
effectively carried out using cavitation at ambient conditions.
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Figure 1.2 Mechanism of cavitation growth and collapse in liquid medium.

Acoustic cavitation is the process of nucleus growth and collapse of micro-gas bub-
bles or cavities in a liquid. This occurs rapidly, releasing large amounts of energy over
a small area and creating extreme temperature and pressure gradients [23, 28, 29].
Cavitation generates high temperatures (between 1000 and 15 000 K) and pressures
(between 500 and 5000 bar) locally and can occur at millions of locations within the
reactor. Additionally, cavitation leads to acoustic streaming, intense shear stress near
the collapsing bubble, and the formation of micro-jets. The local effects of cavitation
are advantageous for reactions, including the generation of free radicals due to the
dissociation of vapors trapped in the cavitating bubbles, which can intensify chem-
ical reactions or cause unexpected reactions. The collapse of cavities also creates
acoustic streaming and turbulence, promoting reaction rates [1, 13, 30]. Therefore,
cavitation is useful for generating local turbulence and liquid micro-circulation and
enhancing transport processes.

1.2.2 Types of Cavitation

Cavitation is a physical process that can happen when ultrasound is applied to a
liquid medium, causing the formation, growth, and subsequent collapse of bubbles
or voids in the liquid. The effects of ultrasound on the liquid medium can either be
beneficial or detrimental, depending on the type of cavitation. Ultrasound radiation
can stimulate various types of cavitation, such as stable cavitation, transient cavi-
tation, inertial cavitation, and acoustic cavitation, depending on the properties of
the liquid medium and the intensity and frequency of the ultrasound. To optimize
ultrasound-based processes and minimize potential harmful effects, it is crucial to
understand the different types of cavitation that can occur during US. The following
are the various types of cavitation that can occur during US:

Stable cavitation: Stable cavitation occurs when bubbles are formed and oscillate
in a liquid medium under the influence of ultrasound. Unlike other types of
cavitation, the bubbles in stable cavitation do not collapse completely but rather
oscillate at a specific frequency. The oscillation of these bubbles can generate
acoustic streaming and microstreaming, which can enhance the mixing and
mass transfer of the liquid medium. Stable cavitation has been utilized in several
applications such as ultrasound-assisted emulsification, sonochemistry, and
ultrasound-assisted extraction [31, 32].
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Transient cavitation: Transient cavitation occurs when bubbles are formed, grow,
and rapidly collapse in a liquid medium under the influence of ultrasound [33].
The collapse of these bubbles can produce high-pressure waves and shock waves,
which can cause mechanical damage to cells and tissues. Although transient cavi-
tation can be useful in applications such as sonoporation, which involves the tem-
porary formation of pores in cell membranes to enhance drug delivery, excessive
or prolonged exposure to it can result in tissue damage and cell death.

Inertial cavitation: Inertial cavitation occurs when bubbles in a liquid medium
grow and collapse violently due to ultrasound exposure. The collapse of the bub-
bles produces high-pressure waves and shock waves that may result in mechanical
damage to cells and tissues. Inertial cavitation can also create high temperatures
and pressures that can trigger chemical reactions in the liquid medium [34]. This
type of cavitation is usually unwanted in many applications due to the risk of
tissue damage and chemical degradation.

Acoustic cavitation: Acoustic cavitation is a physical phenomenon that involves
the formation and collapse of bubbles in a liquid medium under the influence
of ultrasound. The type of cavitation can either be stable or transient, depending
on the intensity of the ultrasound. Acoustic cavitation can produce high temper-
atures and pressures that can induce chemical reactions in the liquid medium, as
well as generate free radicals and other reactive species that can cause chemical
degradation.

Furthermore, cavitation can be categorized into four principal types, which are
acoustic, hydrodynamic, optic, and particle cavitation, as illustrated in Figure 1.3.
Acoustic and hydrodynamic cavitation is the result of tensions that exist in a liq-
uid, while optic and particle cavitation arise from the local deposition of energy. The
classification of cavitation based on the method of technique used and the process
of cavity generation is important for understanding the effects of ultrasound on a
liquid medium and for optimizing ultrasound-based processes.

Acoustic cavitation: Acoustic cavitation is the process of forming and collapsing
bubbles in a liquid medium through the use of sound waves, particularly
ultrasound with frequencies ranging from 16 kHz to 100 MHz. The phenomenon
of chemical changes induced by acoustic cavitation is commonly known as
sonochemistry [35]. It involves the combination of ultrasound and chemistry.

Cavitation

Acoustic
cavitation

Hydrodynamic
cavitation

Optic
cavitation

Particle
cavitation

Figure 1.3 Types of cavitation based on technique used.
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Hydrodynamic cavitation: Hydrodynamic cavitation is a type of cavitation that
is produced by pressure variations created through the geometry of the system,
which creates velocity variation. For instance, by leveraging the system’s geome-
try, the interchange of pressure and kinetic energy can be achieved, leading to the
formation of cavities, as seen in the case of flow through an orifice, venturi, and
other similar systems.

Optic cavitation: Optic cavitation involves the use of high-intensity light, typically
from a laser, to create cavitation in a liquid medium. The photons of the light can
rupture the liquid continuum and generate bubbles or voids.

Particle cavitation: Particle cavitation is induced by a stream of elementary parti-
cles, such as a neutron beam, disrupting a liquid medium. This type of cavitation
is commonly observed in devices like bubble chambers.

When it comes to cavitation, two types are frequently employed due to their
efficacy in generating the necessary intensities for chemical or physical transfor-
mations: acoustic and hydrodynamic cavitation. The extent of cavitational impact
hinges on both the turbulence intensity and the number of cavities formed. In
essence, ultrasound wave propagation through medium results in acoustic cavita-
tion, whereas hydrodynamic cavitation occurs as the flow’s velocity changes due to
alterations in the flow path geometry.

1.3 Application of Ultrasound Irradiation

US has a wide range of applications across various fields. Here are some notable
applications of US:

Medical sciences: Ultrasound imaging is commonly used in medical diagnostics to
visualize internal organs, tissues, and structures in real-time [36]. It is a noninva-
sive and radiation-free imaging technique that is particularly useful for examining
the abdomen, pelvis, heart, blood vessels, and developing fetus during pregnancy
(see Figure 1.4). There are some other applications, which are explained below.

Diagnostic imaging: One of the most common uses of ultrasound in medicine
is diagnostic imaging. Ultrasound imaging allows noninvasive visualization of
internal organs, tissues, and structures in real-time. It is used to examine various
body parts, including the abdomen, pelvis, heart, blood vessels, musculoskeletal
system, and the developing fetus during pregnancy [38, 39].

Obstetrics and gynecology: Ultrasound is extensively used in obstetrics and gyne-
cology to monitor the progress of pregnancy, assess fetal development, determine
the position of the fetus, and detect any abnormalities. It is also used for evalu-
ating the female reproductive system, such as examining the uterus, ovaries, and
fallopian tubes.

Cardiology: Ultrasound plays a crucial role in cardiology for evaluating the struc-
ture and function of the heart. Echocardiography, a type of ultrasound imaging,
allows visualization of the heart’s chambers, valves, and blood flow patterns.
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Figure 1.4 The abdominal sonography of the brain of a 21-week-old fetus.
Source: Reproduced with permission from Pilu et al. [37]/John Wiley & Sons.

It helps in diagnosing and monitoring various heart conditions, such as heart
valve disorders, congenital heart defects, and heart muscle abnormalities.

Vascular imaging: Ultrasound is used to examine blood vessels and assess blood
flow patterns. Doppler ultrasound is particularly valuable in measuring the veloc-
ity and direction of blood flow, detecting blockages, or narrowing of vessels (such
as in cases of deep vein thrombosis or arterial stenosis), and evaluating vascular
abnormalities.

Interventional procedures: Ultrasound guidance is employed during certain min-
imally invasive procedures to enhance accuracy and safety. For example, ultra-
sound can be used to guide the insertion of needles for biopsies, aspirations, or
injections. It helps in precisely targeting the intended area and avoiding damage
to surrounding structures.

Sonography-guided therapies: Ultrasound is utilized in various therapeutic pro-
cedures. High-intensity focused ultrasound (HIFU) is used to precisely deliver
focused energy to treat tumors or ablate abnormal tissues, such as uterine fibroids
or prostate tumors, without the need for surgery. Additionally, ultrasound can be
used for targeted drug delivery or gene therapy by utilizing microbubbles that
enhance the permeability of cell membranes.

Guidance for minimally invasive surgeries: During minimally invasive
surgeries, such as laparoscopic or robotic procedures, ultrasound can be used
to provide real-time imaging guidance. It helps surgeons visualize and navi-
gate internal structures, locate tumors or lesions, and ensure precise surgical
instrument placement.

Therapeutic treatments: HIFU is utilized for therapeutic purposes. It involves
focusing ultrasound waves on specific target tissues to generate heat or mechan-
ical effects, leading to tissue ablation, tumor destruction, and targeted drug
delivery. HIFU is used in the treatment of various conditions, including uterine
fibroids, prostate cancer, liver tumors, and pain management.
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Physiotherapy and rehabilitation: Ultrasound therapy is used in physiotherapy
to provide deep tissue heating and promote healing. It is employed to treat con-
ditions like muscle strains, sprains, joint inflammation, and sports injuries. The
thermal effects of ultrasound can increase blood flow, relax muscles, and alleviate
pain.

Dental applications: Ultrasound is utilized in dentistry for various procedures. It
is commonly used for dental imaging, such as imaging the teeth and support-
ing structures. Ultrasonic scalers are also employed for dental cleanings and the
removal of plaque and tartar from teeth.

Scaling and root planning, endodontic treatment, periodontal treatment, implan-
tology, restorative dentistry, and dental prosthetics are important procedures to
employ the ultrasonic iterations. Ultrasonic scalers are commonly used in dental
hygiene for scaling and root planning procedures. These devices use ultrasonic
vibrations to remove tartar, plaque, and bacterial deposits from the teeth and gums.
The high-frequency vibrations generated by the ultrasonic scaler help to break
down and dislodge the deposits, making the cleaning process more efficient and
comfortable for the patient.

Ultrasonic instruments are utilized in endodontics, which involves the treatment
of the tooth’s pulp and root canal system. Ultrasonic tips, such as ultrasonic files
or ultrasonic irrigators, are employed to remove infected or necrotic pulp tissue,
clean and shape the root canals, and facilitate the irrigation of disinfectants or irri-
gation solutions. Ultrasonic vibrations aid in the removal of debris, disinfection of
the canals, and better penetration of irrigants into complex root canal anatomy.

Ultrasonic devices are utilized in periodontal therapy to treat gum diseases and
perform various procedures. Ultrasonic scalers and tips are used for subgingival
debridement, which involves removing calculus and bacteria from below the gum
line. The ultrasonic vibrations help to disrupt and remove the biofilm and tartar from
periodontal pockets, promoting better healing and reduced pocket depths. Ultra-
sonic instruments are also employed in implant dentistry for the placement and
maintenance of dental implants. During implant surgery, ultrasonic tips can be used
for site preparation, osteotomy, and socket cleaning. Ultrasonic instruments are also
useful for implant maintenance and cleaning around implant surfaces, removing
plaque and calculus without damaging the implant or surrounding tissues.

The applications of ultrasonic irradiation in restorative dentistry procedures are as
well. Ultrasonic instruments can be used for the removal of old restorative materials,
such as amalgam or composite fillings, by gently vibrating and loosening the mate-
rial for easier removal. Ultrasonic tips can also aid in the cleaning and preparation
of the tooth structure before placing restorations like dental crowns or veneers.

1.3.1 Sonoluminescence and Sonophotocatalysis

Sonoluminescence refers to the emission of light from collapsing bubbles in a
liquid medium under the influence of ultrasound. It is a fascinating phenomenon
with potential applications in fields such as chemistry, physics, and materials
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Figure 1.5 Schematic illustration for sonophotocatalytic mechanism. Source: Reproduced
with permission from Wang and Cheng [40]/MDPI/Licensed under CC BY 4.0.

science. Sonophotocatalysis (see Figure 1.5) involves combining ultrasound with
photocatalytic reactions to enhance the efficiency of photocatalysts for water
treatment, pollution remediation, and energy production.

When used in conjunction with light and a photocatalyst, the sonophotocatalytic
process can have a synergistic impact that speeds up the breakdown of organic con-
taminants in wastewater. The increased generation of reactive free radicals as well
as the enhanced mass transfer of the contaminants to the photocatalyst surface are
two reasons for the synergistic impact [40]. The enhanced creation of reactive radi-
cals like •OH (see Figure 1.5), which are particularly effective at destroying organic
pollutants, is one of the main benefits of sonophotocatalysis. Ultrasonic waves have
the ability to cause cavitation, which produces high-energy bubbles that burst and
emit shockwaves and heat, leading reactive radicals to develop.

Yun et al. [41] have developed an efficient catalyst that can produce H2O2 and
destroy refractory pollutants. This study uses an in situ precipitation technique to
rationally construct a number of new Ag6Si2O7/SmFeO3 (ASF) heterojunction cat-
alysts. Several characterization procedures were used to confirm the characteris-
tics of the manufactured ASF nanocomposites. With an adequate concentration of
ciprofloxacin (CIP) of 10 mg/l at 400 W US power, 0.6 g/l catalyst dosage, pH of 5.0,
as well as 40 kHz US frequency during irradiation time of 60 minutes, the ASF-1.5
sample in particular displays high efficiency (94.9%) of sonophotocatalytic.

1.3.2 Industrial Cleaning

US is applied in industrial cleaning processes such as ultrasonic cleaning [42, 43].
It involves immersing objects in a cleaning solution and subjecting them to
high-frequency sound waves. The cavitation effect generated by ultrasound helps
remove dirt, contaminants, and deposits from the surfaces of objects, making it
useful for cleaning delicate or intricate items.
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Ultrasonic cleaning systems consist of a cleaning tank filled with a suitable clean-
ing solution or solvent. The object to be cleaned is immersed in the liquid, and
ultrasonic transducers located in the tank generate high-frequency sound waves.
These sound waves create alternating high- and low-pressure zones in the liquid,
leading to the formation and collapse of cavitation bubbles near the object’s surface.
The collapse of these bubbles generates intense local energy, effectively scrubbing
away contaminants.

Ultrasonic cleaning is highly effective in removing a wide range of contaminants,
including oils, grease, dirt, rust, scale, and other residues [43]. The cavitation action
reaches into complex geometries and crevices that are difficult to access using
other cleaning methods. This makes it particularly useful for cleaning intricate
parts, such as machine components, automotive parts, electronics, jewelry, medical
instruments, and precision equipment.

One typical aspect of dairy processing is the ultrafiltration of whey solutions. The
economics of such a process are, however, greatly impacted by the regular fouling of
ultrafiltration membranes and the following cleaning cycle. In this study performed
by Muthukumaran et al. [44], it is monitored into how ultrasonics affect the cleans-
ing of whey-fouled membranes and what factors affect this result. A tiny single-sheet
membrane unit that was completely submerged in an ultrasonic bath was used for
the experiments.

An earlier solution to the problems produced by the acidic ammonium salt
crystallization of vanadium was the ultrasound crystallization (UC) technique
[45]. This study looked closely at how several parameters affected the properties of
vanadium crystallization [45]. The results demonstrated that using ultrasonic power
of 600 W, a baseline pH value of 2.0, ambient temperature of 95 ∘C, ammonium salt
addition coefficient of 0.5, period of five minutes, excessive vanadium precipitation
ratio (99.67%), and vanadium level of 20 g/l, along with V2O5 purity (99.50%) of the
outcomes of the reaction can be achieved.

1.3.3 Material Processing

Ultrasound is used in various material processing applications. It can be employed
for emulsification, dispersion, and homogenization of liquids, as well as particle size
reduction. Ultrasonic devices are also used for degassing, degreasing, and defoaming
processes in industries like food and beverage, pharmaceuticals, and cosmetics.

Ji et al. have studied the crystalline structures of Sn–Ag–Cu alloy ingots formed
through ultrasound-assisted solidification, with an emphasis on the restrictions on
ultrasonic processing depth and time imposed by the melt solidification’s cooling
rate [46]. Raising the ultrasonic power during cooling by air caused the –Sn phase
to split from a dendritic structure into a circle-like equiaxed shape by lowering the
undercooling temperature and lengthening the process of the solidification period.
The grain size was reduced from 300 to 20 mm.

Using Y2O3, CuCl2 as well as BaCl2 as the starting components for the
co-precipitation process, Jian-feng et al. [47] have produced Y2BaCuO5 nanocrystal-
lites with the aid of ultrasonic irradiation. Transmission electron microscopy (TEM)
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and X-ray diffraction (XRD) were used to characterize the crystallization and mor-
phologies of nanoparticles as prepared. Results demonstrate that using a mixture
of NaOH and Na2CO3 as a precipitator, Y2BaCuO5 monophase can be produced
at calcining temperatures up to 900 ∘C. With a rise in sonicating power, Y2BaCuO5
crystallites’ particle size reduces. When the sonicating power is increased to 300 W,
it is possible to produce Y2BaCuO5 crystallites that are around 30 nm in size.

In order to establish an affordable method for producing bioethanol, the effort
focuses on intensifying delignification and subsequent enzymatic-hydrolysis of
sustainable biomass such as coconut coir groundnut shells, and pistachio shells
utilizing an ultrasound-aided methodology [48]. The obtained results for deligni-
fication of biomass showed that the extent of delignification for groundnut shells,
coconut coir, and pistachio shells under conventional alkaline treatment was 41.8%,
45.9%, and 38%, respectively, while it raised to 71.1%, 89.5%, and 78.9%, providing
a nearly 80–100% boost under the ultrasound supported technique. The traditional
technique produced reducing sugar yields of 10.2, 12.1, and 8.1 g/l for groundnut
shells, coconut coir, and pistachio shells, respectively, under optimal conditions. In
contrast, the yields from ultrasound-assisted enzymatic hydrolysis were 21.3, 23.9,
and 18.4 g/l in the identical amount of biomass.

1.3.4 Chemical and Biological Reactions

US is employed in chemical and biological reactions to enhance reaction rates, pro-
mote mixing, and improve mass transfer. It is used for various processes such as
the synthesis of nanoparticles, extraction of bioactive compounds from plants, sono-
chemistry, and sono-organic reactions.

Although the use of ultrasound in biotechnology is still relatively recent, it has
been found to trigger a number of mechanisms that happen when cells or enzymes
are present [49]. The enzymes are denaturized, and the cells are broken by intense
ultrasonic vibrations. Low-intensity ultrasonic waves have the ability to alter
cellular metabolism or enhance the mass transfer of substances via the boundary
layer, cellular membrane, or wall. The most significant aspect in the case of enzymes
appears to be an increase in the mass transfer rate of the reagents to the active site.
Native enzymes are more susceptible to the heat deactivation caused by ultrasound
than immobilized enzymes. Enzymes can perform synthesis using reverse micelles.
The use of ultrasound in biotechnology is considered in a number of applications.
Molecular complexes stabilized by hydrogen bonding and dispersion interaction
can also be studied [50–52]. Ngoc and colleagues conducted a study on the impact of
ultrasound stimulation on hydrogen bonding within a composite slurry comprising
networked alumina and polyacrylic acid.

Underwater communication and sensing: Ultrasound waves can travel long
distances in water with minimal attenuation. This property makes ultrasound
suitable for underwater communication and sensing applications [53, 54]. It is
used for underwater navigation, fish finding, underwater imaging, and marine
research. As a result of the Internet of Underwater Things (IoUT), new maritime


