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Preface

Rapid economic development has increased the demand for traditional fossil energy
sources (e.g. coal, oil, and natural gas), which has induced a series of serious global
problems such as acid rain pollution, greenhouse effect, and land desertification.
Fossil energy is formed by the natural deposition of ancient organisms over billions
of years and cannot be recovered in the short term. To escape from the dilemma
of energy depletion, sustainable and environmentally friendly renewable energy
sources (e.g. solar, wind, and tidal) have attracted widespread attention in the
past two decades. However, there is a critical scientific problem that needs to be
solved in practical applications; that is, renewable energy is susceptible to weather
and seasonal influences, and its power generation process is discontinuous and
uncontrollable. Therefore, an effective energy storage system is needed as a medium
device to coordinate the power input and output in the grid, thus improving the
tolerance of the grid to renewable energy generation.

In recent years, electrochemical energy storage technology has developed rapidly
and is evolving from a miniaturized application for portable electronic devices
to an integrated application for large-scale energy storage systems and smart
grids. Electrochemical energy storage is less affected by terrain and can store or
release electrical energy directly through reversible chemical reactions, which is
a very promising energy storage technology with the advantages of high energy
density and high energy conversion efficiency. Lithium-ion batteries using organic
electrolytes are one of the most widely used electrochemical energy storage systems.
However, lithium-ion batteries have met big challenges in large-scale energy storage
systems that are more focused on low cost, high stability, and high safety due to the
limited lithium resources and the use of unsafe organic solvents. Compared with
organic electrolytes, aqueous electrolytes are inexpensive and safe, and their ionic
conductivity is greater, enabling the operation of batteries with large loads and
high power. Aqueous batteries can completely meet the requirements of large-scale
energy storage systems. In recent years, aqueous zinc-ion batteries have developed
rapidly due to their high theoretical capacity (820 mAh g), low electrochemical
potential (—0.76 V vs. standard hydrogen electrodes), and high natural abundance
of zinc resources, which are currently a research hotspot for the application of
large-scale energy storage systems.

Xi
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Preface

This book systematically illustrates the basic theory and frontier development
of electrochemical theory, key materials, and battery devices for aqueous zinc-ion
batteries. Chapter 1 provides a general review of the history of zinc-ion batteries and
also provides an overview of the main challenges of cathodes, anodes, separators,
electrolytes, and battery devices. Chapter 2 discusses the theoretical fundamentals
of aqueous zinc-ion batteries, including the electrochemical reaction mechanism of
cathodes and the deposition/dissolution mechanism of zinc anodes. Chapter 3 lists
all the promising cathode materials and summarizes their current problems and
corresponding optimization strategies. Chapter 4 is a general overview of the devel-
opment and modification strategy of the zinc anode in aqueous zinc-ion batteries.
Chapter 5 introduces the research progress, key problems, and solutions in the
design of aqueous electrolyte for aqueous zinc-ion batteries. Chapter 6 illustrates
the properties and characteristic parameters of the separator and the strategy to
construct high-performance separators for aqueous zinc-ion batteries. Chapter 7
presents the progress in the structure and packaging of full aqueous zinc-ion
batteries from the perspective of practical application. Chapter 8 provides advanced
characterization tools and theoretical research methods for aqueous zinc-ion bat-
teries. Chapter 9 summarizes the current challenges of aqueous zinc-ion batteries
and proposes some future directions for their further development. Thanks to Prof.
Yougen Tang, Dr. Qi Zhang, and Dr. Yixin Li, we wrote this book together. Also,
many thanks to my group members, Dr. Chao Hu, Zefang Yang, Chunlin Xie, Qi
Wang, Yihu Li, Wenbin Li, Huimin Ji, Tingqing Wu, Hao Wang, and Zhiwen Cai,
for their participation in the compilation of each chapter. All the above colleagues
have been engaged in scientific research in aqueous zinc-ion batteries and have
made hard efforts to ensure the quality of this book.

This book aims to provide a comprehensive overview of aqueous zinc-ion batter-
ies in terms of basic theory, frontier science, current status, and development trends
of practical applications, which can be used as a reference for science and technol-
ogy workers engaged in scientific research and technology development in the field
of electrochemical energy storage materials and devices. There are inevitably omis-
sions in this book since aqueous zinc-ion batteries are still developing rapidly and
new knowledge and research advances are emerging. We hope that experts will offer
valuable comments on the additions and revisions.

|

|
/

c
Prof. Haiyan Wang

Hunan Provincial Key Laboratory of Chemical Power Sources
College of Chemistry and Chemical Engineering

Central South University

Changsha, P.R. China



1

Introduction for Aqueous Zinc-lon Batteries

1.1 History of Aqueous Zinc-lon Batteries

Aqueous zinc-based batteries can be traced as far back as the voltaic battery, which
first used zinc metal as the negative electrode. Subsequently, alkaline zinc-based
batteries such as alkaline Zn-MnO,, Zn-Ni, Zn-C, Zn-Ag, and Zn-Air were devel-
oped successively [1]. Among them, alkaline Zn-MnO, batteries have dominated
the primary battery market since their commercialization. Earlier attempts to
develop rechargeable Zn-based batteries were plagued by fast capacity fading and
poor coulombic efficiency, mainly due to the uncontrollable growth of Zn dendrites
and the formation of insulating, irreversible by-products (e.g. ZnO) in alkaline
electrolytes (e.g. concentrated KOH solution). However, these batteries mentioned
above cannot be called aqueous Zn-ion batteries (AZIBs) because the reaction
mechanism of AZIBs is the plating/stripping of Zn?* at the anode and the interca-
lation/deintercalation at the cathode in an aqueous solution. The AZIBs differ from
the traditional alkaline Zn battery that is based on dissolution/precipitation reac-
tions at the Zn anode (Zn + 40H~ < Zn(OH), ™ + 2e~ < ZnO + 20H~ + H,0 + 2¢7)
and distinguished from other batteries with a Zn anode but no intercalation of Zn
ions in cathode reactions [2]. The early investigations of AZIBs date back to 1986,
when Yamamoto and Shoji first replaced the alkaline electrolyte with a zinc sulfate
electrolyte and tested the electrochemical behavior of rechargeable Zn|ZnSO,IMnO,
batteries [3]. But its research boom was overshadowed by lithium-ion batteries
due to lower energy density and poor cycle stability (Figure 1.1a). Studies on
rechargeable AZIBs slowed down until 2012, when Kang and coworkers revisited
zinc-ion battery chemistries with mildly acidic aqueous electrolytes [5]. As shown
in Figure 1.1b, a rechargeable AZIB generally consists of a metallic Zn anode, a
Zn?* storage cathode, and a Zn?*-salt electrolyte, operating via the reversible Zn**
intercalation/deintercalation (cathode) and Zn plating/stripping (anode) upon
discharging/charging [4]. AZIBs have been intensively investigated as potential
energy storage devices on account of their low cost, environmental benignity, and
intrinsically safe merits. With the exploitation of high-performance cathode materi-
als, electrolyte systems, and in-depth mechanism investigation, the electrochemical
performances of ZIBs have been greatly enhanced. For example, much work has
been done on the modification of zinc anodes, and it mainly focuses on issues such

Aqueous Zinc Ion Batteries: Fundamentals, Materials, and Design, First Edition.
Haiyan Wang, Qi Zhang, Yixin Li, and Yougen Tang.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.
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Figure 1.1 (a) Multi-angle comparison of zinc-ion and lithium-ion batteries. (b) Schematic
illustration of the working principle of rechargeable zinc-ion batteries. Source: Zhang
et al. [4]/Royal Society of Chemistry.

as the inhibition of zinc dendrite growth and the occurrence of side reactions. In
terms of electrolytes, in addition to ZnSO,, electrolytes with ZnCl,, Zn(CF,;S0,),,
and Zn(CH;COO), as the main salts have been developed, while much work has
been done in optimizing electrolytes, such as solvents, additives, and concentrations.
Cathode materials have also been expanded from the earliest manganese-based
materials to vanadium-based materials, Prussian blue and analogs, and conductive
polymer materials. The main purpose of these modification strategies is to improve
the cycle stability and energy density of AZIBs, which has greatly promoted the
development of AZIBs.

1.2 Main Challenges for Aqueous Zinc-lon Batteries

Recently, AZIBs have attracted much attention due to their advantages of large
theoretical capacity, low cost, and environmental friendliness. The research on each
component of AZIBs has increased significantly over the past decade [6]. However,
the AZIBs have not been widely industrialized because their overall performance is
not comparable to that of commercial lithium-ion and lead-acid batteries. The main
reason is that the key materials involved in AZIBs, such as electrolytes, separators,
anode materials, cathode materials, and current collector materials, cannot meet
the cycle life and energy density requirements of practical batteries (Figure 1.2).
Herein, the challenges and perspectives for the further development of AZIBs are
reviewed, which are instructive for the research toward next-generation batteries
for household appliances, electric vehicles, and large-scale energy storage systems.

1.2.1 Cathode

It is important to develop promising cathode materials with excellent electro-
chemical performance since the overall performance of AZIBs is determined by the
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Figure 1.3 Operating voltage vs. specific capacity of various cathode materials currently
used for AZIBs. Source: Xu and Wang [7]/Springer Nature/Licensed under CC BY 4.0.

cathode materials. Manganese-based, vanadium-based, and polyanionic materials
are the common cathodes applied in AZIB systems (Figure 1.3) [7]. However,
these cathode materials exhibit low specific capacity and low-voltage platforms,
and their wide application is limited due to the rapid capacity fading caused by
cation dissolution, irreversible phase transition, and by-product generation. In
addition, the current cathode materials usually cannot meet the requirement of
some advanced features for practical AZIBs such as low-temperature performance,
low cost, and nonbiotoxicity. Therefore, researchers have attempted to explore
the large-scale preparation of commercial cathode materials with outstanding
performance to solve the above problems using inexpensive modification strategies.

1.2.2 Anode

Zinc foil is the most common anode material used in AZIBs. However, the electro-
chemical performances of zinc foils are not sufficient for large-scale applications

3
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Figure 1.4 The dendrites (a), hydrogen evolution (b), and corrosion (c) of zinc metal
anodes. Source: Xie et al. [8]/John Wiley & Sons/Licensed under CC BY 4.0.

due to the severe dendrite growth, corrosion, and hydrogen evolution reaction
(HER) (Figure 1.4) [8]. The corrosion and HER on the anode surface in AZIBs
generally occur in neutral or mildly acid electrolytes, which give rise to decreased
capacity, increased impedance, and electrolyte leakage. The by-products generated
from corrosion and HER will hinder the uniformity of ion transmission to induce
more dendrites and further exacerbate the corrosion and HER due to the increased
specific area of zinc anodes. The zinc foil anode suffers from electrode perforation
and joint detachment during the deep charge and discharge processes, which also
limits its wide application.

1.2.3 Separator

Glass fibers are widely used as the separator in AZIBs due to their low price, large
liquid absorption, and low ion transmission impedance. Glass fibers can signifi-
cantly improve the ion transport of the cathode material for AZIBs. However, zinc
dendrites are easily generated on the zinc anode due to their low strength, irregular
pore size distribution, and high zinc affinity (Figure 1.5) [9]. Therefore, the glass fiber
isnot completely suitable for AZIBs. A large number of studies suggested that Nafion
films, nonwoven fabrics, cellulose films, and coating-modified glass fibers can be
considered substitutes for glass fibers. However, as there are still some problems
with liquid absorption, pore size distribution, strength, and the high cost of these
separators, they are not suitable for wide application in AZIBs. In addition, most of
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Figure 1.5 Relevant physical properties of the separators. SEM images of (a) glass fiber,
(b) filter paper, and (c) filter membrane, (d) stress—strain curves, (e) ionic conductivities
(the insert panel is corresponding to EIS curves), (f-h) and water contact angles. Source:
Qin et al. [9]/John Wiley & Sons.

the performance evaluations of separators are only carried out in button batteries,
and these evaluation results may not be used as test indicators for practical batter-
ies (such as soft pack and box batteries), caused by separators that should possess
the strength, wettability, and pore size distribution of the separator, environmental
protection, and low cost.

1.2.4 Electrolyte

The design of electrolytes is an important method to improve the performance of
aqueous batteries (Figure 1.6) [10]. Therefore, deepening the basic understanding
of the solvation structure and interfacial chemistry of electrolytes is of great
significance to promote the practical application of ZIBs. Compared with the
traditional organic electrolyte battery, the aqueous battery possesses the following
advantages, such as avoiding fire disasters caused by battery short circuits and
lower cost. Meanwhile, aqueous batteries can be assembled and disassembled in the
environment because their components are insensitive to air, which is beneficial
to battery manufacturing and recycling. In addition, aqueous electrolytes display
higher rate capability and power density than organic electrolytes because the ionic
conductivity of aqueous electrolytes (about 0.1 Scm™!) is much higher than that
of organic electrolytes (1-10 mS cm~!). However, the presence of water makes the
electrochemical window of the common electrolyte only 1.23 V (the organic system
has more than 3V), and the freezing point is high (about —10°C), which results
in lower energy density, obvious battery self-discharge, and poor low-temperature
performance for AZIBs. Therefore, it is of great significance to design electrolytes
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Figure 1.6 The challenges and solutions for AZIB electrolytes. Source: Zhang et al. [10]/
John Wiley & Sons/Licensed under CC BY 4.0.

with low cost, high safety, wide electrochemical window, low freezing point, fast
ion transport speed, and good compatibility with electrode materials.

1.2.5 Full Battery Assembly and Practical Application

AZIBs have gradually shown a trend of widespread application due to their low
cost, environmental friendliness, intrinsic safety, and relatively high energy and
power densities. However, since the energy density, cycle stability, self-discharge
behavior, and operating temperature range of AZIBs have not been uniformly
optimized, assembling such batteries into commercial batteries still faces serious
challenges [11]. The actual energy density of the battery is significantly lower than
the theoretical energy density because the coin cells assembled in the laboratory
rarely consider the capacity matching of cathode/anode electrodes and the load-
ing of cathode active materials. The problems of low coulombic efficiency, poor
cycle stability, and poor low-temperature performance in full cells have not been
completely solved. Meanwhile, the widespread application of AZIBs requires a
structural design that incorporates the essential characteristics of the battery. For
example, aqueous batteries are not sensitive to air, so they can be designed as open
batteries, which can replenish electrolytes in time to avoid battery failure caused by
gas production and irreversible consumption of electrolytes. The choice of current
collectors also has a critical impact on the performance and energy density of
AZIBs. The carbon-based and self-supporting electrodes seem to be only suitable
for small-scale AZIB devices due to their high price and difficulty in large-scale
fabrication and battery assembly. Ni-based and Ti-based metal current collectors
are not suitable for wide application due to their high price. Therefore, it is of great
significance to develop current collectors (such as special copper foil and foamed
stainless steel) that are cheap, show excellent performance, and are suitable for
assembling large batteries.
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2

Theoretical Fundamentals of Aqueous Zinc-lon Batteries

2.1 Electrochemical Reaction Mechanism of Cathodes

The energy-storage mechanism of cathode materials remains complicated and
controversial in aqueous zinc-ion batteries (AZIBs). To date, the recognized
energy-storage mechanisms of zinc batteries are broadly classified into three
categories: (i) Zn?*-insertion/extraction mechanism, (ii) co-insertion mechanism,
and (iii) chemical conversion reaction mechanism [1]. A brief account of these
mechanisms is provided in this section, and readers may refer to other literature for
an in-depth mechanistic understanding of charge storage in AZIB.

2.1.1 Zn%*-Insertion/Extraction Mechanism

Among the three mechanisms, the insertion/extraction of Zn** in the host mate-
rials is the most essential mechanism in the AZIBs system, similar to that of the
traditional rechargeable lithium-ion batteries (LIBs). In the discharge process, the
Zn** in the electrolyte is inserted into the cathode, and the Zn in the anode loses
electrons to produce Zn?*, which maintains the charge balance of the electrolyte.
When charging, Zn?* is extracted from the cathode to the electrolyte. It migrates
to the anode and collects electrons at the interface, finally diffusing inward in the
form of atoms [2]. The cathode materials of the tunnel/layer structure store Zn?*
through this mechanism. Reversible Zn?*-insertion/extraction was first proposed to
explain the energy-storage mechanisms of ZIBs. Kang and coworkers first reported
mild aqueous rechargeable ZIBs [3].

Meanwhile, they proposed that Zn?* can be reversibly inserted into or extracted
from a-MnO, cathode during discharge/charge processes (Figure 2.1a). And the
Zn anode gets dissolving/depositing at the same time. Subsequently, it was proven
that the Zn2*-insertion/extraction mechanism would occur in f-MnO,, y-MnO,,
and A-MnO, [4]. In addition to reversible Zn?*-insertion/extraction, a reversible
phase transition from the tunneled structure (a-MnO,) to layered polymorphs was
observed. This transition is initiated by the dissolution of manganese from a-MnO,
during the discharge process to form layered Zn-birnessite (Figure 2.1b) [5].

Vanadium-based compounds are mainly layered/tunnel frameworks with a large
void space favoring Zn?*-insertion. In a milestone study, a reversible Zn**-insertion

Aqueous Zinc Ion Batteries: Fundamentals, Materials, and Design, First Edition.
Haiyan Wang, Qi Zhang, Yixin Li, and Yougen Tang.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.
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Cryptomelane
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£
(b) Mn2+  Zn-birnessite

Figure 2.1 (a) Schematics of the chemistry of the zinc ion battery. Source: Xu et al.
[3]/John Wiley & Sons. (b) Schematic illustrating the mechanism of zinc intercalation into
a-Mn0,. Source: Lee et al. [4]/Springer Nature.

Layered Zn . V,0,-yH,0

Layered Zn, .. V,0,ZH,0

0z @H,0

Figure 2.2 Rechargeable Zn,,;V,0,-nH,0 system. Source: Kundu et al. [6]/Springer
Nature.

mechanism of Zn,,;V,0,-nH,0 was revealed by combining operando X-ray
diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses [6]. This
corresponds to the following equations (Figure 2.2):

Anode:

1.1Zn « 1.1Zn*" + 2.2¢~ (2.1)
Cathode:

1.1Zn** +2.2e” + Zn,,5V,05 - nH,0 « Zn, 35V,0, - nH,0 (2.2)



2.1 Electrochemical Reaction Mechanism of Cathodes

Overall:
1.1Zn + Zn,, ,;V,0; - nH,0 < Zn, ;;V,0; - nH,0 (2.3)

Alshareef and coworkers reported a simple microwave to synthesize layered metal
pyrovanadate nanowires (Zn,V,0,(OH),-2H,0) with a porous crystal framework
[7]. The electrochemical energy storage mechanism can be described by the follow-
ing equation:

Zn,V,0,(OH), - 2H,0 + 1.9Zn**3.8¢~ « Zn,,V,0,(0OH), - 2H,0  (2.4)

Similar Zn2?*-(de)intercalation storage processes have been demonstrated
in most of the reported vanadium-based cathodes, such as VO,, V,0,,-6H,0,
Na,V,0,,-3H,0, Li, V,0,-nH,0, and Ca,,;V,05-nH,0 [8]. Vanadium-based com-
pounds evolve from V3* to V4 or even V3* through the evolution of the V oxidation
state, adapt to the intercalation of Zn?*, and maintain a stable crystal framework.
Irreversible phase transitions were also observed in examples of NaV,Oq-type
compounds like Na;V,,0;,, which experienced structural destruction, phase
transition, and thus capacity degradation [9].

2.1.2 Co-Insertion/Extraction Mechanism

The Zn?* insertion/extraction mechanism is the most ideal and acceptable, so the
Zn/MnO, battery was developed based on the migration of Zn?* ions between the
cathode and anode, which was very early reported in 2012. It was found that not only
zinc ions but also other ions were involved in the co-insertion/extraction mecha-
nism. Because of the sluggish Zn?* and the strong electrostatic repulsion, other ions
or molecules (including H*, Li*, and H,O) in the electrolyte can also be embedded
and released when the insertion and extraction of zinc ions are happening in cathode
during the process of charge and discharge [10, 11].

2.1.2.1 Ht and Zn?* Insertion/Extraction Mechanism

For manganese-based cathode materials, Sun et al. [12] first proposed the
co-insertion mechanism of H* and Zn?* in Zn/e-MnO, batteries, and the insertion
of H* and Zn** corresponds to the sloped plateau from 1.8 to 1.35 V in region I and
the flat plateau at 1.3V in region II, respectively (Figure 2.1a). Similar mechanisms
of the difference crystallographic («, 8, and p) are observed in these experiments.
The joint charge storage of H* and Zn?* delivers high-rate performance and long
cycle life in the Zn-5-MnO, batteries [13]. The first step in fast charge storage is
non-diffusion-controlled Zn**-ion-storage mechanism in bulk §-MnO, without
significant phase transition. In contrast, the following step reaction is proven to
be the diffusion-controlled H* conversion reaction in Zn(TFSI),-based electrolyte
(Figure 2.1b). In addition, as evidenced by Gao et al., H*-insertion can boost the
a-MnO, electrode [14]. They find that the capacity fading during cycling process
is mainly due to the decay of second discharge plateau, which is ascribed to Zn**
insertion (Figure 2.3a). An increased amount of irreversible ZnMn,0O, is observed
on the surface of a-MnO,, which is less reversible than that of H*. $-MnO,
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Figure 2.3 (a) Charge/discharge curves at different rates in the first cycle and two
discharge regions. (b) Joint non-diffusion-controlled Zn?*-intercalation and
H*-insertion/extraction in 8-MnO,.

possessing oxygen defects also allows the insertion of H*, and density functional
theory (DFT) computation shows that the f-MnO, host structure is much easier for
H* insertion rather than Zn?* [15] (Figure 2.4).

For Zn/vanadium-based batteries, Wan et al. [16] reported that sodium vanadate
hydrate experienced a simultaneous H* and Zn?* insertion/extraction process as
a cathode, which was mainly responsible for their excellent performance with a
capacity of 380mAh g™ at 4 Ag™! (a capacity retention of 82% after 1000 cycles).
Furthermore, as shown in Figure 2.1b, Wang and coworkers [17] verified the sequen-
tial insertion of H* and Zn?* at 1.1-0.71 and 0.71-0.32V plateaus in Zn/V,C@CNT
battery. Similar co-insertion mechanisms of H* and Zn?* are also observed in other
vanadium-based battery materials, such as V,,0,,-12H,0 [18], Zn, ;V,0s-1.5H,0
[19], and (Ni)VO, [20].

2.1.2.2 Zn%*/H,0 Co-Insertion/Extraction Mechanism
Zn**/H,0 co-insertion/extraction mechanisms usually exist in vanadium-based
cathodes because the tunnel structure or layered structure of the cathode is
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Figure 2.4 (a) Turning point in charge/discharge profiles. (b) Capacity statistics of two
discharge plateaus after different cycles.

beneficial to the insertion/extraction of H,O. Sometimes, the water in such layers of
vanadium-based materials provides a pillar effect for stabilizing structures [21, 22].

Kundu etal. [6] reported that a single-crystal layered structure of Zn, ,;V,05-nH,0
nanobelt possesses two-electron redox containing intercalated divalent cations and
water. Interlayer metal ions Zn?* and/or structural water in this layered oxide act as
pillars stabilizing the structure (Figure 2.5), providing a capacity retention of more
than 80% after 1000 cycles. The water molecules expanding and contracting the lay-
ered galleries of Zn,,sV,0s, allow Zn?*-insertion/extraction in a highly reversible
manner, and promise high-rate performance with a capacity of 220mAhg! at a
15 Crate.

When used as cathode for AZIBs [23], porous V,0,@C material exhibits a capacity
of 350mAh g=! at 100mAhg! and capacity retention of 90% after 4000 cycles at
5Ag™!. It is worth noting that the Raman spectra and ex situ XPS demonstrate the
co-intercalation of Zn?* and water, and the electrochemical reaction in the Zn//V, 0,
can therefore be illustrated in Figure 2.6.

2.1.2.3 Li*- and Zn?*-Insertion/Extraction Mechanism

An aqueous Zn/V, O, rechargeable battery with a Lit/Zn?* co-insertion mechanism
was reported. By XRD, voltammetric, and Raman spectroscopy, it was elucidated that
exclusive Li*-insertion into V,0, occurs up to mid-discharge. Still, the co-insertion
of a few zinc ions is likely involved in the second part of the reduction. Besides,
Zn?* acts as pillar species, preventing important structural change and hindering
the formation of the distorted 8-LiV,0 phase [24].

Except for vanadium-based materials, Prussian blue analogs, for example, iron
hexacyanoferrate (FeHCF), can also store and release Zn?* and Li* [25]. It is
found that Zn?>*- and Li*-insertion/extraction cause crystalline distortion and the
reduction of interlayer spacing, respectively (Figure 2.7).

2.1.3 Chemical Conversion of Cathodes

Compared with Zn?* insertion/extraction and co-insertion/extraction mechanisms,
the conversion reactions in the battery would tend to provide higher capacity due
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Figure 2.5 (a) Schematic of the Zn metal/Zn,,;V,0; battery and the expanded interlayer
arrangement of Zn,,:V, 0. (b) Scheme showing reversible water intercalation into

Zn, ,5V,05-nH,0 and the intercalation or deintercalation of the water and Zn** during
discharge/charge.

to direct charge transfer. Hence, it is very promising and effective to develop and
design cathode materials with highly reversible conversion mechanisms [11]. Pan
etal. [26]. first proved the role of the chemical conversion mechanism in charge stor-
age of MnO,-based cathodes. During the discharge process, a-MnO, reacted with H*
to form MnOOH. To keep the charge constant in the system, the subsequent OH™~
reacts with ZnSO, and H,O to form lamellar ZnSO,[Zn(OH),];-xH,0 (ZHS). After
charging, the aforementioned products are reduced to the original a-MnO,, indicat-
ing that MnO, has reversible electrochemical behavior with MnOOH/ZHS, which
can be expressed as follows:

Cathode:

H,0 < H* + OH™ (2.5)
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Figure 2.6 Schematic illustrations of Zn?* and H,0 co-insertion mechanisms of V,0;
cathode.

Figure 2.7 (a) Schematic diagram of Zn/V, 0, battery with Li*/Zn** and Li* electrolyte.
(b) Schematic illustration of the crystalline structure evolution under the insertion/
extraction of Zn?* and Li*.

MnO, + H" + e~ &» MnOOH (2.6)
1., 54 o1 x 1
5Zn*" + OH + 27ZnS0, + “H,0 < =ZnS0,[Zn(OH,)]; - xH,0 (2.7)
Anode:
1 1, 20
~Zn o =Zn“" +e (2.8)
2 2
Overall:

MnO, + %Zn +ZH,0+ %ZnSO4 < MnOOH + %ZnSO4[Zn(OH2)]3 - xH,0

(2.9)

Similar to the co-insertion mechanism, the H* required for the chemical conver-
sion reaction is generated by water decomposition, and the corresponding generated

OH™ leads to the formation of ZHS [27]. There is another explanation for the for-
mation of ZHS and the energy storage of MnO, in the charge/discharge process of
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the battery [28]. During the discharge process, the cathode manganese dioxide is
electrochemically reduced to soluble Mn?**, and OH~ is generated at the same time,
increasing the pH of the electrolyte (Eq. (2.10)). Thus, Zn?* reacts with the elec-
trolyte to form ZHS and deposits on the electrode surface (Eq. (2.11)). Combining the
aforementioned two equations, the total cathodic reaction equations can be obtained
(Eg. (2.12)). The corresponding anodic reaction on the negative electrode during the
discharge is a typical stripping reaction of zinc metal into the electrolyte (Eq. (2.13)).
So, the total electrochemical reaction mechanism equation of a-MnO,/Zn battery
can be described as a reaction equation (Eq. (2.14)). Atomic absorption spectroscopy
(AAS) and in situ pH measurement was used to analyze the concentration of man-
ganese and zinc ions in the electrolyte at various stages of the charge-discharge
process. Combined with in situ XRD analysis, the key role of pH change in the
reaction mechanism of the battery system was further confirmed. Figure 2.8 shows
the schematic diagram of the Zn/a-MnO, battery discharge process in the ZnSO,
electrolyte.

MnO, + 2H,0 + 2~ - Mn** + 40H"~ (2.10)
4Zn** 4+ 60H™ + SO,*” + 5H,0 < Zn,(OH)4(SO,) - 5H,0 | (2.11)
Discharge
e e

ZNn? S 710

Zn

Zn,(OH),SO, - 5H,0

(Precipitation)

1M ZnS0O, in H,0
(Electrolyte)

(Positive electrode) (Negative electrode)

Figure 2.8 Schematic diagram of the conversion reaction energy-storage mechanism for
the aqueous Zn/a-MnO, battery system. Source: Adapted from Lee et al. [28].



