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Foreword

Recent advancements in Automatic Speech Recognition (ASR) and 
Machine Translation (MT) technologies have brought about a new era of 
hope and possibility for these low-resource languages. The convergence of 
cutting-edge research, powerful algorithms, and increased computational 
capacity has paved the way for groundbreaking applications that can revo-
lutionize linguistic accessibility and inclusion. 

This book stands as a testament to the transformative potential of ASR 
and MT technologies for marginalized languages. It brings together a 
diverse group of experts, researchers, and practitioners who have dedicated 
their efforts to addressing the unique challenges faced by low-resource lan-
guages and finding ways to overcome them with ASR and MT. 

The chapters herein explore a wide range of topics related to ASR and 
MT for low-resource languages. The book delves into the theoretical foun-
dations of ASR and MT, providing readers with a comprehensive under-
standing of the underlying principles and methodologies. It examines the 
technical intricacies and practical considerations of developing ASR and 
MT systems that are specifically tailored to low-resource languages, taking 
into account the scarcity of data and linguistic resources.

Moreover, this book sheds light on the potential applications of ASR and 
MT technologies beyond mere transcription and translation. It explores 
how these technologies can be harnessed to preserve endangered lan-
guages, facilitate cross-cultural communication, enhance educational 
resources, and empower marginalized communities. By offering real-world 
case studies, success stories, and lessons learned, the contributors provide 
invaluable insights into the impact of ASR and MT on low-resource lan-
guages and the people who speak them.

As you embark on this enlightening journey through the pages of this 
book, you will discover the tremendous potential of ASR and MT technol-
ogies to bridge the digital divide and empower low-resource languages. 
You will witness the strides made in linguistic accessibility and cultural 



xx Foreword

preservation, and you will gain a deeper appreciation for the profound 
impact these technologies can have on societies, both large and small. 

I extend my heartfelt appreciation to the editors and authors who have 
contributed their expertise, dedication, and passion to this volume. Their 
collective wisdom and tireless efforts have given rise to a comprehensive 
resource that will undoubtedly serve as a guiding light for researchers, 
practitioners, and policymakers committed to advancing the cause of lin-
guistic diversity and inclusivity.

Together, let us embrace the power of ASR and MT technologies as 
instruments of empowerment and change. Let us work collaboratively to 
ensure that no language, no matter how small or remote, is left behind 
in the digital era. Through our collective endeavors, we can unleash the 
full potential of low-resource languages, fostering a world where linguis-
tic diversity thrives, cultures flourish, and global understanding is truly 
within reach.

Sheng-Lung Peng
Dean, College of Innovative Design and Management, National Taipei 

University of Business, Creative Technologies and Product Design, Taiwan
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Preface 

In today’s interconnected world, effective communication across different 
languages is vital for fostering understanding, collaboration, and prog-
ress. However, language barriers pose significant challenges, particularly 
for languages that lack extensive linguistic resources and technological 
advancements. In this context, the field of Automatic Speech Recognition 
(ASR) and translation assumes paramount importance. 

ASR and Translation for Low Resource Languages is a comprehensive 
exploration into the cutting-edge research, methodologies, and advance-
ments in addressing the unique challenges associated with ASR and trans-
lation for low-resource languages. This book sheds light on the innovative 
approaches and techniques developed by researchers and practitioners to 
overcome the limitations imposed by scarce linguistic resources and data 
availability. 

To start, the book delves into the fundamental concepts of ASR and 
translation, providing readers with a solid foundation for understanding 
the subsequent chapters. Then in explores the intricacies of low-resource 
languages, analyzing the factors that contribute to their challenges and the 
significance of developing tailored solutions to overcome them.

The material contained herein encompasses a wide range of topics, 
ranging from both the theoretical and practical aspects of ASR and trans-
lation for low-resource languages. The book discusses data augmentation 
techniques, transfer learning, and multilingual training approaches that 
leverage the power of existing linguistic resources to improve accuracy and 
performance. Additionally, it investigates the possibilities offered by unsu-
pervised and semi-supervised learning, as well as the benefits of active 
learning and crowdsourcing in enriching the training data. 

Throughout the book, emphasis is placed on the importance of consid-
ering the cultural and linguistic context of low-resource languages, recog-
nizing the unique nuances and intricacies that influence accurate ASR and 
translation. Furthermore, we explore the potential impact of these technol-
ogies in various domains, such as healthcare, education, and commerce, 



xxii Preface 

empowering individuals and communities by breaking down language 
barriers. 

The editors of this book brought together experts, researchers, and 
enthusiasts from diverse fields to share their knowledge, experiences, 
and insights in ASR and translation for low-resource languages. We hope 
that this collaborative effort will contribute to the development of robust 
and efficient solutions, ultimately fostering inclusive communication and 
bridging the language divide. We invite readers to embark on this jour-
ney of discovery and innovation, gaining a deeper understanding of the 
challenges, opportunities, and breakthroughs in ASR and translation for 
low-resource languages. Together, let us pave the way towards a world 
where language is no longer a barrier, but a bridge that connects individu-
als, cultures, and ideas.

Dr. L. Ashok Kumar
Professor, PSG College of Technology, India

Dr. D. Karthika Renuka
Professor, PSG College of Technology, India

Dr. Bharathi Raja Chakravarthi
Assistant Professor/Lecturer above-the-Bar School of Computer Science, 

University of Galway, Ireland
Dr. Thomas Mandl

 Professor, Institute for Information Science and Language Technology, 
University of Hildesheim, Germany



xxiii

Acknowledgement

We bow our head before “The God Almighty” who blessed us with health 
and confidence to undertake and complete the book successfully. We 
express our sincere thanks to the Principal and Management of PSG College 
of Technology, University of Galway, Ireland, University of Hildesheim, 
Germany for their constant encouragement and support. 

We thank our family and friends who always stood beside us and 
encouraged us to complete the book. 

Dr. L. Ashok Kumar is thankful to his wife, Y. Uma Maheswari, for her 
constant support during writing. He is also grateful to his daughter, A. K. 
Sangamithra, for her support; it helped him a lot in completing this work.

Dr. D. Karthika Renuka would like to express gratitude to her parents, 
for their constant support. Her heartfelt thanks to her husband, Mr. R. 
Sathish Kumar, and her dear daughter, Ms. P. S. Preethi, for their uncondi-
tional love which made her capable of achieving all her goals.

Dr. Bharathi Raja Chakravarthi would like to thank his students.
Dr. Thomas Mandl would like to thank his parents and family as well as 

all his academic colleagues for their inspiration during cooperation.
We would like to acknowledge the help of all the people involved in this 

project. First, we would like to thank each one of the authors for their con-
tributions. Our sincere gratitude goes to the chapter’s authors who contrib-
uted their time and expertise to this book. We thank all the authors of the 
chapters for their commitment to this endeavor and their timely response 
to our incessant requests for revisions.



xxiv Acknowledgement

Second, the editors wish to acknowledge the valuable contributions of 
the reviewers regarding the improvement of quality, coherence, and con-
tent presentation of chapters. Next, the editors would like to recognize the 
contributions of editorial board in shaping the nature of the chapters in this 
book. In addition, we wish to thank the editorial staff at Wiley-Scrivener 
book for their professional assistance and patience. Sincere thanks to each 
one of them.

Dr. L. Ashok Kumar
Professor, PSG College of Technology, India

Dr. D. Karthika Renuka
Professor, PSG College of Technology, India

Dr. Bharathi Raja Chakravarthi
Assistant Professor/Lecturer above-The-Bar School of Computer  

Science, University of Galway, Ireland
Dr. Thomas Mandl

Professor, Institute for Information Science and Language Technology, 
University of Hildesheim, Germany



1

L. Ashok Kumar, D. Karthika Renuka, Bharathi Raja Chakravarthi and Thomas Mandl (eds.) Automatic 
Speech Recognition and Translation for Low Resource Languages, (1–14) © 2024 Scrivener Publishing LLC

1

A Hybrid Deep Learning Model  
for Emotion Conversion 

in Tamil Language
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Abstract
In speech signal processing, emotion recognition is a challenging task in classifying 
speech into different emotions. In this chapter, we propose a hybrid model based 
on FFNN (feed forward neural network) and SVM (support vector machine) for 
automated emotion conversion in the Tamil language. The use of voice command 
indeed contributes to a better integrated human-machine interface integration 
where one can give voice command, which intelligent machine understands and 
obeys. The Tamil language is mostly syllabic for the synthetical analysis of speech 
signal recognition. The changes in speech signal processing are mainly observed in 
several acoustic parameters such as root mean square energy, short-time energy, 
mel-frequency cepstral coefficient, and zero crossing rate, which are subsequently 
used for discrimination of the generation of a new set of the feature vector. In 
this proposed model, firstly, the FFNN model is complemented on the training 
and test datasets. Thereafter, SVM is used to perform the classification task. In 
the proposed emotion transformation, emotions such as angry, happy, sad, calm, 
surprised, fearful, neutral, and disgust are considered as target emotions with the 
multi-layered signal processing framework. This framework is required for spec-
tral mapping to convert neutral utterance into target emotional utterance that is 
evaluated by subjective tests. Finally, both subjective and objective tests reveal a 
high and increased accuracy with the proposed model for spectral mapping and 
also show that the proposed model is better than Gaussian mixture model (GMM), 
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FFNN and some pre-trained convolutional neural network (CNN) architectural 
models.

Keywords: Spectral mapping, emotion conversion, GMM, FFNN, pre-trained 
CNN, FFNN+SVM, objective measure

1.1 Introduction

Speech signal processing for emotion conversion has been a recent emerg-
ing domain in the human-machine interface. Presently, people are con-
stantly trying to make computers intelligent so that they can do almost all 
the work easily like humans [1]. The communication between human and 
computer occurs in both directions [2]. This communication should have 
two important features of speech technology, speech recognition and speech 
synthesis. It is known that humans use emotions frequently to convey the 
intended message. Therefore, it is expected that the machine should be able 
to understand and generate desired emotions [3, 26]. Most of the existing 
speech systems can generate only neutral style speech. In this situation, the 
transformation of emotion is applied to convert the neutral style speech 
to desired expressive style speech. The modules of emotion transformation 
are used for making speaking instruments for disabled people and telling 
the stories in an automatic way [5, 24]. Generation of emotional speech 
is a challenging research problem. Some research works have attempted 
to generate expressive speech using text-to-speech synthesis (TTS) tech-
nique. Researchers have used the following methods for expressive speech 
synthesis: (i) formant synthesis or rule-based synthesis, (ii) di-phone con-
catenation synthesis, (iii) unit selection synthesis, and (iv) Hidden Markov 
Model (HMM)-based parametric speech synthesis. Emotion transforma-
tion approach differs from expressive speech synthesizers because it takes 
input as neutral speech, while the input of expressive speech synthesizer 
is text. It can be used with any speech synthesizers to convert their neu-
tral speech output to the desired emotional speech. It generates emotional 
speech by creating emotional parameters into neutral speech [6, 7]. A for-
mant vocoder is used to synthesize the speech transformation, showing the 
contour mapping of the target emotion through neural network [25]. For 
synthesizing emotional speech, the most important issue is to identify fea-
tures which carry the emotion-specific information. Among various speech 
features, the widely used features for discrimination of emotions are pro-
sodic and spectral features. The existing emotion transformation techniques 
transform neutral to emotional speech using prosody manipulation [8–10]. 
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In this chapter, we have generated emotional speech by mapping of spectral 
features from neutral to target emotions in Tamil language.

1.2 Dataset Collection and Database Preparation

Spectral feature mapping framework needs parallel utterances of source 
and target emotions to perform emotion transformation process. Around 
30 to 50 parallel utterances are sufficient to build emotion-specific map-
ping functions [11, 12]. In this work, we selected 100 parallel utterances 
from the emotional speech database collected from one male and one 
female speaker in Tamil language. These utterances were recorded in eight 
emotions such as angry, happy, sad, calm, surprised, fearful, neutral, and 
disgust. Training facilitates a learning system for creating an acoustic train-
ing dataset [4]. For training and testing purposes, we used 70 and 30 par-
allel utterances, respectively.

1.3 Pre-Trained CNN Architectural Models

1.3.1 VGG16

VGG16 is a convolutional neural network (CNN) model which basically 
focuses on depth. VGG takes 224 x 224 pixel RGB image. It uses a small 
receptive field (3 x 3 with stride of 1) followed by a ReLu unit. VGG16 has 
three fully connected layers; the first two have 4096 channels and the third 
has 1000 channels, one for each class. All of VGG16’s hidden layers use 
ReLu. VGG has many variants, among which is VGG16, which is famous 
as its name is derived from its architecture using 16 layers in total among 
13 convolution layers, two fully connected layers, and one output layer.

1.3.2 ResNet50

ResNet50 is known as residual network. ResNet works on skip connection. 
As it is known, deep networks always suffer from vanishing gradients with-
out adjustments. Tiny gradients make learning intractable. To overcome 
this problem, Microsoft introduced a deep residual learning framework. 
The skip connection provides the learning network to identity function 
for passing the input through the block without passing through the other 
weight layers and allowing the network to traverse through its layers with-
out gaps.
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1.4 Proposed Method for Emotion Transformation

In this chapter, feed forward neural network (FFNN) was explored for 
emotion transformation. In the literature, Gaussian mixture model (GMM) 
was used for mapping features from one domain to others. However, the 
weakness of GMM is that it uses the assumption that the shape of mapping 
function is Gaussian. In addition to it, GMM requires to fix the number of 
mixtures before the mapping process. These weaknesses motivated us to 
explore FFNN to develop an emotion transformation system. Normally, 
it contains two hidden layers for capturing global and local information 
between input and output parameters [13–15]. Any continuous valued 
function can be simulated by considering two or more hidden layers in the 
neural network [16]. Hence, two hidden layers are sufficient for develop-
ing mapping functions. We considered three hidden layers in place of two 
hidden layers to take the additional benefit of symmetric structure. The 
symmetric structure is useful to map input parameter to output parameter 
[16–20]. The FFNN is depicted in Figure 1.1. The third hidden layer of 
FFNN compresses the dimension of input parameters. It captures global 
information while other hidden layers capture local information required 
for developing mapping functions. The accurate mapping functions are 
developed by selecting an appropriate structure of FFNN. The mapping 
function F(t) can be expressed as following:
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Figure 1.1 The diagram 5 layers feed forward neural network model.


