

GUIDELINES FOR PROCESS SAFETY KNOWLEDGE MANAGEMENT

Guidelines for Process Safety Knowledge Management

Center for Chemical Process Safety
American Institute of Chemical Engineers
New York, NY

WILEY

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permission>.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data applied for:
Hardbook ISBN: 9781394187713

Cover Images: Silhouette, oil refinery © manyx31/iStock. com; Stainless steel © Creativ Studio Heinemann/Getty Images; Dow Chemical Operations, Stade, Germany/Courtesy of The Dow Chemical Company

Guidelines for
Process Safety Knowledge Management

This book is one in a series of process safety guidelines and concept books published by the Center for Chemical Process Safety (CCPS). Please refer to wiley.com/go/ccps for a full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to a better safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor PSRG, and its employees and subcontractors warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers, and directors, and PSRG and its employees and subcontractors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

Table of Contents

List of Figures	vii
List of Tables.....	ix
Acronyms and Abbreviations	x
Glossary.....	xi
Acknowledgments.....	xiv
Dedication.....	xvi
Preface	xviii
1 Introduction	1
1.1 What Is Process Safety Knowledge Management (PSKM)?	1
1.2 Purpose and Scope of this Book	2
1.3 Historical Development of PSKM	2
1.4 Knowledge Pyramid.....	3
1.5 Audience	6
1.6 Elements Not Covered in This Book	7
1.7 Content and Organization of this Book.....	7
2 The Business Case for Process Safety Knowledge Management	9
2.1 Generating Process Safety Knowledge.....	11
2.2 Retaining Process Safety Knowledge.....	15
2.3 Sharing Process Safety Knowledge	16
2.4 From Knowledge to Wisdom	18
3 PSKM and Risk Based Process Safety	20
3.1 Process Knowledge Management vs. PSKM	21
3.2 PSKM Cycle Impacts on the Four Pillars of RBPS.....	25
3.3 Commit to Process Safety	26
3.4 Understand Hazards and Risk	33
3.5 Manage Risk.....	36
3.6 Learn from Experience	42
3.7 Chapter Summary.....	46
3.8 Introduction to the Next Chapter	46

4 Developing and Implementing PSKM	47
4.1 Introduction	47
4.2 Resources for Capturing, Organizing and Providing PSK.....	50
4.3 Capturing Knowledge and Information.....	59
4.4 Organizing Knowledge and Information	62
4.5 Providing Knowledge and Information	68
4.6 Organizational Structure to Build PSKM	70
4.7 Establishing PSKM Culture.....	77
4.8 Chapter Summary.....	91
4.9 Introduction to the Next Chapter	91
5 Maintaining and Improving PSKM	92
5.1 People, Roles and Responsibilities for Managing the PSK.....	93
5.2 Tools to Maintain the PSK.....	98
5.3 Assessing and Improving the PSKM Program	109
5.4 Information Management.....	127
5.5 Chapter Summary.....	131
5.6 Introduction to the Next Chapter	131
6 Case Studies and Lessons Learned	132
6.1 Introduction to PSKM Focus Charts.....	132
6.2 Case Studies from Significant Incidents	133
6.3 Key Factors from PSKM Success Stories in Other Industries....	183
6.4 Understanding Knowledge Management System Failures.....	185
6.5 Chapter Summary.....	188
6.6 Introduction to the Next Chapter	189
7 Summary of Process Safety Knowledge Management (PSKM).....	190
References	194
Index.....	201

List of Figures

Figure 1-1 Data-Information-Knowledge-Wisdom (DIKW) pyramid	4
Figure 3-1 PSKM system	22
Figure 3-2 Continuous PSKM cycle	23
Figure 3-3 Impact of the PSKM Cycle on the Four RBPS Pillars.....	25
Figure 3-4 Integration of PSKM Into HIRA Activities	36
Figure 4-1 Example Resources for PSKM Development and Implementation...	55
Figure 4-2 Sequence of Actions of PSKM Development Process.....	56
Figure 4-3 Inputs to a PSKM Logic Model	57
Figure 4-4 Types of Information to Capture.....	59
Figure 4-5 Information Sources	60
Figure 4-6 PSKM Organizational Structure	71
Figure 4-7 Example PSKM Business Management Plan.....	75
Figure 5-1 Knowledge Sources.....	95
Figure 5-2 Performance Measurement and Performance Management.....	111
Figure 5-3 Auditing Resources	124
Figure 5-4 Characteristics of a Storage and Retrieval Information System.....	129
Figure 5-5 Characteristics for Data Preservation in Operations Environment	130
Figure 6-1 BP Texas City Raffinate Splitter Tower and the Blowdown Drum...	134
Figure 6-2 BP Texas City PSKM Focus Chart - Provide Knowledge Gap	137
Figure 6-3 BP Texas City PSKM Focus Chart - Maintain Knowledge Gap	139
Figure 6-4 BP Texas City PSKM Focus Chart - Organize Knowledge Gap.....	140
Figure 6-5 BP Texas City Case Study PSKM Focus Chart.....	142
Figure 6-6 Destroyed trailers near ISOM unit at BP Texas City.....	144
Figure 6-7 CSI Vacuum Distillation Process	146
Figure 6-8 CSI Case Study PSKM Focus Chart	149
Figure 6-9 Aerial view of Concept Sciences Inc.....	150
Figure 6-10 Merrimack Valley Gas Distribution Configuration	153
Figure 6-11 Merrimack Valley Case Study PSKM Focus Chart.....	157
Figure 6-12 Firefighters Battling Merrimack Valley Fire	158
Figure 6-13 Tesoro Anacortes NHT Unit Heat Exchangers.....	160
Figure 6-14 Anacortes Tesoro Case Study Focus Chart	164
Figure 6-15 Image of the Fire After the Heat Exchanger Failure.....	165
Figure 6-16 Access Paths to SCBAs.....	169
Figure 6-17 Dispersion Impact of Methyl Mercaptan.....	170
Figure 6-18 Loss of level in Methyl Mercaptan Storage Tank	171
Figure 6-19 Excerpt from CSB Investigation Report.....	173
Figure 6-20 DuPont LaPorte Case Study Focus Chart	175

Figure 6-21 Buncefield Oil Storage Depot	177
Figure 6-22 Description of the IHLS Design.....	179
Figure 6-23 Buncefield Case Study Focus Chart	181
Figure 6-24 Aerial View of Buncefield Fire	183
Figure 6-25 Example Bow Tie	185
Figure 6-26 Bow Tie Diagram - Inadequate PSKM System Design	187
Figure 6-27 Bow Tie Diagram - Inadequate Attention to Human Factors	188
Figure 7-1 Data-Information-Knowledge-Wisdom (DIKW) pyramid	191

List of Tables

Table 1-1 Example Inputs and Outputs of the DIKW Pyramid	6
Table 3-1 RBPS Pillars and Corresponding Elements.....	26
Table 3-2 Process Safety Competency Interactions with RBPS and PSKM	30
Table 3-3 Examples of PSKM Interactions on the Second Pillar of RBPS.....	35
Table 3-4 PSKM Impact on Operating Procedures	38
Table 4-1 Example PSKM Roles and Responsibilities	52
Table 4-2 RACI Role Definitions	53
Table 4-3 Example PSKM RACI Chart	54
Table 4-4 Example Activities for Building PSKM Management System.....	58
Table 4-5 Example Logic Model Components to Capture the Knowledge	61
Table 4-6 Organizational Methods	64
Table 4-7 Example Logic Model Components to Organize the Knowledge	67
Table 4-8 Example Logic Model Components to Provide Knowledge.....	69
Table 4-9 Steps to Implement PSKM	73
Table 4-10 Workplace Factor Effects on PSKM implementation.....	80
Table 4-11 Potential Barriers to PSKM and Strategies to Drive PSKM	82
Table 4-12 Effect of Human Factors on the PSKM System	85
Table 4-13 Types of Software for PSK Management.....	87
Table 4-14 Example Template Inputs for a Hazard Registry	89
Table 4-15 Example Template for an Incident Investigation Registry.....	90
Table 5-1 Example PSKM RACI Chart for Maintaining Knowledge	94
Table 5-2 Example Logic Map Components to Maintain Knowledge.....	96
Table 5-3 Examples of Static and Dynamic Information.....	99
Table 5-4 Tools and Methods for Maintaining Maintenance-related PSK	106
Table 5-5 Core Components of a Successful PSKM Program	110
Table 5-6 Suggested PSKM Health Measurement KPIs.....	112
Table 5-7 PSKM Performance Indicators	113
Table 5-8 Example Four Level Organizational Maturity Model.....	114
Table 5-9 Example Logic Map Components to Gauge PSKM Maturity Level ...	115
Table 5-10 Example Gap Assessment Questions	118
Table 5-11 Types of Audit Teams.....	120
Table 5-12 Knowledge Audit Criteria.....	122
Table 5-13 Knowledge Management Software Evaluation Criteria.....	125

Acronyms and Abbreviations

AIChE	American Institute of Chemical Engineers
API	American Petroleum Institute
CCPS	Center for Chemical Process Safety
CRW	Chemical Reactivity Worksheet
DIKW	Data-Information-Knowledge-Wisdom
HAZID	Hazard Identification
HAZOP	Hazards and Operability Study
KM	Knowledge Management
KPI	Key Performance Indicators
MOC	Management of Change
MOOC	Management of Organizational Change
PHA	Process Hazards Analysis
PSI	Process Safety Information
PSK	Process Safety Knowledge
PSKM	Process Safety Knowledge Management
RACI	Responsible, Accountable, Consulted, and Informed chart
RAGAGEP	Recognized and Generally Accepted Good Engineering Practices
RBPS	Risk Based Process Safety (CCPS)
SDS	Safety Data Sheet

Glossary

This Glossary contains Process Safety terms significant to this CCPS publication, which are current at the time of publication. For other CCPS Process Safety terms and updates to these terms, please refer to the CCPS Process Safety Glossary [1].

Term	Definition
Accident precursors [2]	Events that must occur for an accident to happen in each scenario but have not resulted in an accident so far
Cause (Incident)	An event, situation, or condition which results, or could result (Potential Cause), directly or indirectly in an accident or incident [1].
Chief Knowledge Officer	Person accountable for the overall PSKM strategy, planning and implementation (Highest position within PSKM)
Contributing Cause	Factors that facilitate the occurrence of an incident such as physical conditions and management practices (also known as contributory factors) [1].
Key Performance Indicators (KPI)	A quantifiable way to monitor the health of the overall PSKM System and proactively identify potential issues early to be corrected or improved. KPIs tell an organization how effective their PSKM is at supporting their RBPS program.
Logic Model	A logic model is a tool that can be used to develop and implement the PSKM System [3]. Logic models are graphic illustrations of the PSKM Implementation Plan and show the relationship between the planned work and anticipated results.
Management of Organizational Change (MOOC)	Framework for managing the effect of new business processes, changes in organizational structure or cultural changes within an organization

Term	Definition
Process Safety Knowledge (PSK)	Knowledge is related to information, which is often associated with policies, and other rule-based facts. It includes work activities to gather, organize, maintain, and provide information to other process safety elements. Process Safety Knowledge primarily consists of written documents such as hazard information, process technology information, and equipment-specific information.
Process Safety Knowledge Management (PSKM)	System for capturing, organizing, maintaining, and providing the right Process Safety Knowledge to the right people at the right time to improve process safety in an organization
Process Safety Knowledge Management Focus Chart	A chart divided into three columns that depict causes and other factors related to the incident, and four rows that show elements of the PSKM System (i.e., Capture, Organize, Maintain, and Provide).
Process Safety Knowledge Management System	A tool that makes necessary Process Safety Knowledge available to everyone who needs it, when they need it, and at the right level of detail
Proximate Cause	The cause factor which directly produces the effect without the intervention of any other cause. The cause nearest to the effect in time and space [1].
PSKM Audit	A PSKM audit expands on a regulatory audit such that it covers not only availability of documents but their content, accuracy, system/process to create/update, and how the information is shared and utilized. A PSKM audit benefits an organization by identifying gaps in the system and improvement opportunities.
PSKM Champions	A PSKM Champion will promote PSKM in the workplace and facilitate Communities of Practice.

Term	Definition
PSKM Editors	A PSKM Editor is someone who knows where PSKM is located and manages format and language of knowledge so users can easily use it.
PSKM Navigators	Navigators connect people who need knowledge with systems and people who have knowledge.
PSKM Project Manager	An executive who manages the implementation of the PSKM initiatives
PSKM Stewards	A steward is responsible for ensuring PSKM updates are made following Management of Change and track changes for follow-up and validation.
Root Cause	A fundamental, underlying, system-related reason why an incident occurred that identifies a correctable failure(s) in management systems. There is typically more than one root cause for every process safety incident [1].

Acknowledgments

The American Institute of Chemical Engineers (AIChE) and the Center for Chemical Process Safety (CCPS) express their appreciation and gratitude to all members of the *Guidelines for Process Safety Knowledge Management* Subcommittee for their generous efforts in the development and preparation of this important guideline. CCPS also wishes to thank the subcommittee members' respective companies for supporting their involvement during the different phases in this project.

Subcommittee Members:

Michelle Brown, Chair	FMC
Denise Albrecht, Co-Chair	3M
Jennifer Brittain	AdvanSix
Brian Farrell	CCPS Consultant
Linus Hakkimattar	ReVizions
Mark Hall	Mallinckrodt Pharmaceuticals
Dan Hannewald	BASF
Rainer Hoff	Gateway Group
Allison Knight	3M
Jennifer Mize	Eastman chemical
Steve Murphy	Syngenta
Mohammad Nashwan	Saudi Aramco
Ravi Ramasamy	Nghi Son Refinery & Petrochemical LLC
Jeffery Todd	Holly Frontier
Florine Vincik	BASF
Jerry Yuan	IRC Risk
Hafeez Ahmad Zeeshan	Tronox Management Pty Ltd

The book committee wishes to express their sincere appreciation to PSRG (Robert J. Weber, Tekin Kunt, Madonna Breen, Michael Munsil, Ester Zelaya, Aaran Green, Ngoc "Annie" Nguyen, Carolina Del Din, Jimmy D Trinh, Russ Kawai, Ryan Terry, and Sonny Sachdeva) for their contributions in preparing the guideline's manuscripts.

Before publication, all CCPS guidelines are subjected to a peer review process. CCPS gratefully acknowledges the thoughtful comments and suggestions of peer reviewers. Their work enhanced the accuracy and clarity of this guideline.

Although the peer reviewers provided comments and suggestions, they were not asked to endorse this guideline and did not review the final manuscript before its release.

Peer Reviewers:

Jack Chosnek	Knowledge One
Raj Dahiya	AIG
Emmanuelle Hagey	NOVA
Trish Kerin	ICHEM E
Joompote Ketkeaw	SCG Chemicals
Shannon Ross	Chevron
Juliana Schmitz	Linde
Herve Vaudrey	Dekra

Dedication

This book is dedicated to:

Kenneth E. Tague, CCPSC, CSP

Ken Tague is a Rose-Hulman Institute of Technology graduate with a career spanning over 38 years in chemical operations. His many roles have included Production Manager and Plant Manager. Before retirement, he was the CCPS Technical Steering Committee (TSC) representative for Archer Daniels Midland Company (ADM) and was on the CCPS Planning Board. His experience and presentation skills have made him a sought-after instructor for CCPS's flagship course, *Foundations of Risk Based Process Safety*. He has contributed to the AIChE SACChE and RAPID education programs by developing e-learning courses related to process safety.

Ken also served on CCPS book committees, contributing to the development of two CCPS books: *Dealing with Aging Process Facilities and Infrastructure* and *Recognizing and Responding to Normalization of Deviance*. Based on his hands-on experience, he also significantly contributed to the web-based training on *Process Safety for Maintenance Workers and Operators*.

He is a strong proponent of process safety, having shared his commitment to Process Safety at the 2018 Global Congress on Process Safety in the session "When PSM Hit Home." Preventable incidents continue to stir his passion for sharing his experiences to strengthen the expertise of engineers new to and within the Process Safety field.

Ken is a CCPS Certified Process Safety Professional (CCPSC), a Certified Safety Professional (CSP) in the Safety, Health, and Environmental (SH&E) field, and was an active member of the CCPS Pharma, Food, and Fine Chemicals (PFFC) Committee before he retired. In addition, he holds Patent 9,481,609 as a co-inventor of the process to make *Heteromorphic Lysine Feed Granules*.

CCPS is delighted to dedicate this book to Ken in recognition for his past, present, and continuing support of CCPS and the global Process Safety community.

Louisa A. Nara, CCPSC
Global Technical Director, CCPS

Anil Gokhale, Ph.D.
Chief Operating Officer, CCPS

Preface

The Center for Chemical Process Safety (CCPS) has been the world leader in developing and disseminating information on process safety management and technology since 1985. The CCPS, an industry technology alliance of the American Institute of Chemical Engineers (AIChE), has published over 100 books in its process safety guidelines and process safety concepts series, and over a hundred courses, including 33 training modules through its Safety in Chemical Engineering Education (SAChE) series. CCPS is supported by the contributions and voluntary participation of more than 250 companies globally.

This book contains guidelines for companies to improve their process safety performance through the implementation of a Process Safety Knowledge Management (PSKM) system. The characteristics of a PSM system are defined and guidelines are shared on how to set up a PSM system to improve overall Process Safety performance. The underlying factors for success are presented which include leadership, employee involvement, and organizational culture with case studies used to illustrate key points and learnings. New perspectives on PSM are included along with strategies to overcome difficulties in transitioning from a process safety culture based on data and information to a culture based on knowledge and wisdom. Case studies with PSM-related lessons learned demonstrate the principles and practices described in the book.

1 Introduction

"A society grows great when old people plant trees whose shade they know they shall never sit in." Greek proverb

1.1 What Is Process Safety Knowledge Management (PSKM)?

This chapter introduces the key definitions for Process Safety Knowledge and Knowledge Management. Process Safety Knowledge Management (PSKM) is a subset of Knowledge Management focusing on building, disseminating, and sustaining Process Safety Knowledge (PSK) in an organization.

Knowledge Management has been defined by many authors over the years as collected and published by Girard and Girard [4]. One of the classic and most cited definitions of Knowledge Management is by O'Dell and Grayson [5]:

"Knowledge Management is a conscious strategy of getting the right knowledge to the right people at the right time and helping people share and put information into action in ways that strive to improve organizational performance."

CCPS defines Process Safety Knowledge (PSK) as follows [1]:

"Knowledge related to information, which is often associated with policies, and other rule-based facts. It includes work activities to gather, organize, maintain, and provide information to other process safety elements. Process Safety Knowledge primarily consists of written documents such as hazard information, process technology information and equipment-specific information."

Hence, Process Safety Knowledge Management (PSKM) is defined as:

"A system for capturing, organizing, maintaining, and providing the right Process Safety Knowledge to the right people at the right time to improve process safety in an organization."

PSKM includes methodologies, tools, processes, organizational structures, and human capital management strategies used to convert data to information, information to knowledge and knowledge to wisdom.

Process Safety Knowledge Management (PSKM) systems cover the entire life cycle of Process Safety Knowledge including development, implementation, and maintenance. The knowledge management system must ensure Process Safety Knowledge is easily accessible and understandable to the people who need it.

and that the knowledge shared is consistent, current, and accurate. We note that there is a special case with regards to Contractors and other outside entities which could impact this stated goal. A brief discussion is included in Section 4.5.

1.2 Purpose and Scope of this Book

This book is intended to be a resource for sharing industry-leading best practices on PSKM and for providing a blueprint for developing an effective PSKM program for companies. This book is divided into three sections:

1. Business case for an effective PSKM program and its relationship to PSM elements (Chapters 2 and 3)
2. Setting up a successful PSKM system and sustaining it (Chapters 4 and 5)
3. Sharing case studies illustrating the importance of an adequate and effective PSKM system (Chapter 6)

The principles of PSKM are transferable across industries. Examples contained within this book will provide guidance on how the knowledge obtained from past incidents, and current best practices from industry leaders, can be applied to many different organizations.

1.3 Historical Development of PSKM

Historically, the terms Process Safety Information (PSI) and Process Safety Knowledge (PSK) have been used interchangeably [6], [7]. As companies' maturity level in Process Safety Management (PSM) improves, there is a continuing focus in the industry to transition from information to knowledge.

Before the 1990's, the PSK resided in the organization as a core competency of chemical or process engineers. Analysis of serious process safety events such as the methyl isocyanate release at Bhopal, India in 1984 and explosions at a chemical complex at Pasadena, Texas in 1989, showed that while PSI resided within an organization, it did not consistently turn into knowledge at the operational level. Hence, the right knowledge was not available to the right people.

With the establishment of the US PSM Standard by Occupational Safety and Health Administration (OSHA) in 1992, the importance of PSI and informing all affected employees of PSI became a key requirement in US facilities. Regulation, however, left the importance of Process Safety Information at the information level without extending it to knowledge.